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Abstract

How interactions between neurons relate to tuned neural responses is a longstanding question in systems neuroscience.
Here we use statistical modeling and simultaneous multi-electrode recordings to explore the relationship between these
interactions and tuning curves in six different brain areas. We find that, in most cases, functional interactions between
neurons provide an explanation of spiking that complements and, in some cases, surpasses the influence of canonical
tuning curves. Modeling functional interactions improves both encoding and decoding accuracy by accounting for noise
correlations and features of the external world that tuning curves fail to capture. In cortex, modeling coupling alone allows
spikes to be predicted more accurately than tuning curve models based on external variables. These results suggest that
statistical models of functional interactions between even relatively small numbers of neurons may provide a useful
framework for examining neural coding.
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Introduction

One of the central tenets of systems neuroscience is that the

functional properties of neurons, such as receptive fields and

tuning curves, arise from the inputs that each neuron receives from

pre-synaptic neurons. Over the past few decades, a number of

experimental techniques have been developed to study exactly

how interactions between neurons determine receptive field

structure, including in vivo intracellular or paired recording [1–6]

and pharmacological or electrophysiological interventions [7–10].

As electrophysiologists record from increasing numbers of neurons

simultaneously [11–13], statistical approaches that estimate

interactions between neurons have the potential to explain the

functional properties of neurons as network effects using only

passive spike observations [for review see 14].

To understand how interactions between neurons drive neural

activity, recent model-based statistical methods attempt to predict

the activity of each neuron based on the activity of other

simultaneously observed neurons in addition to any external

variables, such as the orientation of a visual stimulus or the

direction of hand movement [15–19]. This type of inferential

approach provides estimates of potential interactions between

neurons and allows us to assess how much external variables or

interactions between neurons may have contributed to the

observed spiking. It is important to note that these models provide

only an approximation to the true underlying network structure.

Since the vast majority of pre-synaptic inputs to any given neuron

are unobserved, the interactions that these approaches describe

reflect many different factors including common input in addition

to direct and indirect synaptic connections [14,20]. However, due

to the fact that neurons are not independent, these models can

improve both encoding accuracy (how well neural responses can

be predicted) as well as decoding accuracy (how well external

variables can be predicted from neural responses).

Statistical models of interactions between neurons have been

used to describe many different aspects of multi-electrode data in

retina [21], LGN [22], primary visual cortex [23,24], motor

cortices [17,25,26], and hippocampus [27,28]. Here we present a
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unified analysis of data from six different brain areas with a

particular view towards three questions: 1) How are estimated

interactions between neurons related to apparent tuning proper-

ties?, 2) How do traditional tuning curve models change as

interactions between neurons are included in the model? and 3)

How does our ability to predict and decode neural activity

improve as increasing numbers of simultaneously recorded

neurons are observed?

To make our analysis as broad as possible, we collected ten

multi-electrode spike train datasets with at least 30 simultaneously

recorded neurons. Datasets were obtained from six different brain

areas across four different species performing a variety of tasks. By

modeling typical tuning curves for neurons in each area as well as

interactions between neurons we determine how much these two

factors contribute to spike prediction. We find that including

information about the activity of other observed neurons improves

both spike prediction and decoding accuracy substantially. By

capturing noise correlations and unmodeled features of the

external world models of interactions between even a relatively

small number of recorded neurons can complement and, in some

cases, surpass, models of tuning curves alone.

Results

Although neurons are often characterized by how their firing

rate relates to external stimuli or movement variables, the

functional properties of most neurons are byproducts of the input

they receive from other neurons (Fig. 1A). By modeling typical

tuning curves as well as coupling between neurons we aim to

determine how well each of these factors explains spiking (Fig. 1B).

We fit three, time-instantaneous, generalized linear models

(GLMs) to recorded spike trains from 10 different datasets and

attempt to predict spiking given: 1) external variables, 2) the

activity of other observed neurons, or 3) both external variables

and the activity of other observed neurons. After fitting these

models to spike data the estimated parameters correspond to a

typical tuning curve model, a phenomenological model of

interactions between neurons, and a full model that allows

functional interactions between neurons to provide an alternative

explanation for the spiking that is traditionally attributed to tuning

to external variables (see Methods).

Tuning curves can be ‘‘explained away’’ if the other observed

neurons provide a better explanation for spiking than the external

variables (Fig. 1C). For instance, in a toy network where neuron 1

is tuned to external variables and projects to neurons 2 and 3.

Neurons 2 and 3 will appear tuned, despite having no direct

relationship to the external world (Fig. 1C, middle). By using the

activity of neuron 1 to predict the spiking of neurons 2 and 3, the

tuning properties can be explained away by the more direct

interactions between neurons (Fig. 1C, bottom). Apparent tuning

can appear in any number of network configurations, but given a

set of simultaneously recorded neurons the models used here aim

to explain spiking as directly as possible. In physiological data, it is

unlikely that we are recording from synaptically connected pairs of

neurons. The estimated couplings that we observe are likely to be

strongly influenced by common input from outside of the

recording area and do not necessarily reflect local, recurrent

effects. However, tuning curves can still be ‘‘explained away’’ if the

activity of the other observed neurons allows better spike

prediction.

We fit spike count data from multi-electrode recordings in 6

different brain areas using maximum a posteriori (MAP) estimation for

each of the three models (see Methods). Data from motor cortices

were recorded during reaching movements to measure tuning to

hand direction (Fig. 2A, top). Data from visual cortex were

recorded during the presentation of drifting gratings (Fig. 2B, top).

Data from auditory cortex were recorded during the presentation

of pure tones (Fig. 2C, top). Data from primary somatosensory

cortex were recorded during reaching (Fig. 2D, top). Data from

hippocampus were recorded during free foraging (Fig. 2E, top).

Details of the experiments as well as model fitting and validation

procedures are included in the methods.

In the full model, most, but not all, neurons showed decreased

modulation to external variables (Fig. 2, bottom). That is, spiking

that was previously attributed to tuning properties was more

directly explained by functional interactions with other neurons.

However, the structure of the tuning curve (i.e. the preferred

direction, frequency, or place) remained relatively unchanged.

The tuning modulation (minimum-to-maximum) decreased 34–

82%, with hippocampus showing the smallest decrease and

primary auditory cortex the greatest decrease (Fig. 3A). On the

other hand, typical tuning preferences are generally well-preserved

(Fig. 3B). Preferred direction, frequency, and place are consistent

between the tuning curve model and the full model (correlation

coefficient R = 0.34–0.86, circular correlation coefficient where

appropriate).

To quantify how coupling in the full model relates to tuning

properties we measured the overlap between tuning curves for

each pair of neurons in each dataset using the angle between the

tuning curve parameter vectors (cosine similarity). An overlap of

zero corresponds to orthogonal tuning (i.e. cosine tuned neurons

with preferred directions of 0 and 90 deg), an overlap of one

corresponds to identical tuning, and an overlap of negative one

corresponds to exactly opposite tuning (i.e. cosine tuned neurons

with preferred directions of 0 and 180 degrees). We find that

tuning curve overlap is clearly related to the bulk spike-count

correlation across all stimulus/movement conditions (Fig. 3C).

However, coupling strength is only indirectly related to tuning

curve overlap (Fig. 3D). Two neurons having similar tuning curves

will not necessarily have strong coupling in the full model. This

suggests that the explaining away of tuning curves by coupling is

not a straight-forward byproduct of stimulus correlation and that

including other observed neurons in spike prediction provides

information that is not present in the tuning curves alone.

Author Summary

The number of simultaneous neurons that electrophysiol-
ogists can record is growing rapidly, and a central goal of
computational neuroscience is to develop statistical
methods that can make sense of this growing data. Here
we present a unified statistical analysis of 10 different
datasets recorded from several different species and brain
areas. We show how functional interactions between
neurons may be used to predict spiking in each of these
different areas, and find that, in many cases, modeling
interactions between a small number of neurons yields
better spike predictions than modeling each neuron’s
relationship to the outside world using tuning curves.
Although these statistical results cannot be linked to
specific network architectures, since the measured inter-
actions between neurons are purely functional rather than
anatomical, they suggest that modeling interactions
between neurons will be a useful approach to under-
standing neural coding as electrophysiologists record from
increasing numbers of neurons.

Functional Connectivity and Tuning Curves
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Figure 1. Functional connectivity and tuning curves. A) Schematic illustrating how tuning properties may be related to functional connectivity.
The tuning properties of observed neurons (black) are a direct result of input they receive from peripheral neurons (blue and red). Even when
observed neurons do not have a direct relationship to external variables, each neuron may have apparent tuning caused by the input it receives from
peripheral neurons and shaped by interactions with other observed neurons. B) A linear-nonlinear-Poisson model that includes both tuning
properties as well as interactions or coupling between neurons. The firing rate of each neuron is modeled as a weighted sum of external variables as
well as the activities of other observed neurons passed through an exponential nonlinearity. C) A toy example where tuning properties are explained
away using coupling. In two simulated networks only neuron 1 is directly related to the external world (with Gaussian tuning). However, neurons 2
and 3 have tuning due to the input they receive from neuron 1 (middle). If these interactions are estimated, then coupling can fully explain the
observed tuning (bottom).
doi:10.1371/journal.pcbi.1002775.g001

Figure 2. External covariates for each dataset with tuning curve estimates under the tuning curve only and full models. A) Hand
position during center-out reaching in a monkey M1 dataset (top) and tuning curves to hand direction for typical M1 neurons under the tuning
curve-only model (black) and the full model including coupling between neurons (red). All tuning curve plots are rescaled between zero and the
maximum tuning curve value for visualization purposes. B) Randomly oriented gratings for the monkey V1 dataset (top) and typical V1 tuning curves
to grating direction. C) Random frequency tones for the ferret A1 dataset (top) and typical A1 tuning curves to frequency fit using radial basis
functions in the log-frequency domain. D) Hand position during random-target pursuit in the monkey S1 dataset (top) and typical 2-dimensional
tuning curves to hand position and velocity under the tuning curve model and full model. E) Head position during free-foraging in the rat
hippocampus dataset (top) and place fields for typical hippocampal neurons under each model. Color in E and D denotes firing rate. The color scale is
the same for TC and full, but differs across neurons. Note that, for most neurons, the modulation decreases when coupling to other neurons is
included (full model), while preferred direction, velocity, and place remain similar.
doi:10.1371/journal.pcbi.1002775.g002

Functional Connectivity and Tuning Curves
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The structure of the coupling terms, particularly the number of

connections that each neuron makes with the other observed

neurons (the ‘‘degree’’) provides some insight into how tuning

curves are explained away. In contrast to theories of scale-free

neural connectivity [29] – which predict power-law degree

distributions – the estimated functional interactions in these

datasets, under the full model, have uni-modal degree distributions

(Fig. 4A). Interestingly, across all datasets, it seems that out-degree

(how many outputs a neuron drives) is more narrowly distributed

than in-degree (how many inputs a neuron receives). The exact

structure of the functional connectivity graphs may be affected by

electrode spacing and geometry [24]. However, in-degree is

correlated with how well coupling can explain tuning (Fig. 4B). In

general, neurons whose tuning curves are well explained by

coupling receive input from more neurons compared to neurons

whose tuning curves are not well explained by coupling.

How these models behave as the number of simultaneously

recorded neurons grows is an important consideration for future

modeling. Here we fit the coupling alone and the full model,

varying the number of neurons used to predict spikes. Under the

full model, we find that, in good approximation, the fraction of

variance explained by tuning decreases logarithmically as the

number of observed neurons increases (Fig. 5). Place fields in

hippocampus are explained away slowly, while tuning curves in

motor and sensory cortices are explained more rapidly. In general,

10–70% of the variance initially attributed to tuning curves is

explained by coupling between neurons in the full model.

A second metric for studying how these methods scale with the

number of observed neurons is spike prediction accuracy (see

Methods). As the number of neurons included in the model

increases we find that spike prediction accuracy scales, to a good

approximation, hyperbolically (Fig. 6A). Note that the full model

begins providing the same accuracy as the tuning curve model. As

more neurons are included in the model, spike prediction accuracy

increases and appears to converge towards a maximum. Interest-

ingly, modeling coupling alone shows this same hyperbolic

behavior, beginning at zero and converging towards a maximum.

Once 10–30 neurons are included in the model, coupling alone

provides more accurate spike prediction that traditional tuning

curve models in most datasets.

Hippocampal neurons appear to differ from cortical recordings

in that spike prediction accuracy increases approximately linearly.

Moreover, modeling coupling alone does not provide more

accurate spike prediction than the basic place field model. This

Figure 3. Changes in tuning under the full model and the relationship between coupling, correlation, and tuning curve overlap. A)
Tuning curve modulation (max-min) under the tuning curve and full model. Note that the modulation attributed to the tuning curve decreases under
the full model on average for all datasets. B) Tuning curve preference under the tuning curve and full model. Preferred direction is shown for M1/V1/
PMd/S1 (deg), preferred frequency for A1 (Hz), and preferred place along the x-axis for HC (cm). Gray lines denote equality. C) Correlation coefficient
as a function of tuning curve overlap for all pairs of neurons. Note that, in general, correlations increase with increasing tuning curve overlap. D)
Coupling strength as a function of tuning curve overlap for all pairs of neurons. Note that, in general, coupling strength does not depend on tuning
curve overlap. Red lines denote linear fit. Plots in B–D are organized by dataset as in A.
doi:10.1371/journal.pcbi.1002775.g003

Functional Connectivity and Tuning Curves
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may be due to the low correlations between HC neurons.

Electrode spacing may also be a factor, since, unlike the 400 mm

electrode spacing used in almost all of the intra-cortical arrays, HC

recordings had 20 mm vertical electrode spacing. However, the

coupling model for spontaneous activity in V1 shows the same

hyperbolic behavior despite data being recorded using a polytrode

with 50 mm electrode spacing. Scaling of spike prediction accuracy

in hippocampus appears to be qualitatively different from that in

cortex.

In addition to examining how encoding accuracy scales with the

number of recorded neurons, we also examined decoding accuracy

for several datasets (Fig. 6B). For the V1, M1, and PMd datasets,

we infer which of eight different reach targets or stimuli was

presented given the observed spiking on a given trial. Here we use

Bayesian decoding under either the tuning curve encoding models

or the full encoding model described above (see Methods for

details). As with spike prediction accuracy, decoding accuracy

grows approximately hyperbolically as more neurons are included

in the models. Including coupling between neurons in addition to

tuning improves decoding by a small but significant amount:

4.860.3%, 7.860.4%, 10.360.4%, and 7.960.3% for the two

M1 datasets, PMd, and V1, respectively. Many studies have

illustrated how dependencies between neurons can reduce

decoding accuracy [30]. By simulating from the tuning curve

Figure 4. Sparseness and fraction of variance explained by tuning. A) Degree distributions, both in-degree (blue) and out-degree (red), for
the coupling matrices estimated from each dataset under the full model. B) The fraction of non-zero inputs for each neuron as a function of the
fraction of variance explained by tuning. Red lines denotes the linear trend. Plots are organized by dataset as in A.
doi:10.1371/journal.pcbi.1002775.g004

Figure 5. Mean fraction of variance explained by tuning as a function of network size. For the full model the fraction of variance explained
by the tuning component of the model decays approximately logarithmically (note the log-scale) to 30–90% of the total variance when all neurons
are included in the model.
doi:10.1371/journal.pcbi.1002775.g005

Functional Connectivity and Tuning Curves

PLOS Computational Biology | www.ploscompbiol.org 5 November 2012 | Volume 8 | Issue 11 | e1002775



model we can examine how well we could decode external

variables if the neurons were conditionally independent. In this

case, decoding from such an independent population of neurons

would be ,25% more accurate than decoding the observed data

with the tuning curve model.

It is important to consider what factors may be driving these

scaling phenomena. Although the coupling terms are regularized

during estimation and the spike prediction accuracy is cross-

validated, it may be the case that tuning curves are explained away

as a result of over-fitting or, alternatively, as a simple side effect of

stimulus correlations. To test for this possibility we simulated spike

counts from the tuning curve model, where the neurons are

conditionally independent given the external variables. That is,

although there may be stimulus correlations, spiking can be

completely predicted by external variables. Here we find that no

matter how many neurons are included in the full model, tuning

explains between 90–100% of the variance (Fig. 7A). This suggests

that the results for the full model in real data are not driven by

over-fitting or stimulus correlation alone.

Additionally, we can quantify how much stimulus correlation

contributes to explaining away by shuffling the data to remove

noise correlations. Where possible (M1, PMd, and V1) we shuffle

the spike counts within each trial condition (target or grating

direction) independently for each neuron. This manipulation

retains stimulus correlations while destroying any structure

unrelated to the stimulus. Here we find that, in the full model,

tuning explains between 85–95% of the variance (Fig. 7B).

Furthermore, the spike prediction accuracies of the full and

coupling models do not exceed the accuracy of the tuning curve

model in shuffled data (Fig. 7C). These two controls demonstrate

that the observed explaining away is not simply a byproduct of

stimulus correlations or of a poor tuning curve model. Explaining

away can only occur when the other observed neurons provide a

more direct explanation of spiking than the external variables.

Finally, to examine what drives the shape of these spike

prediction accuracy curves we simulated a linear-nonlinear-

Poisson neuron receiving sparse, correlated input. As input

correlation increases spike prediction accuracy converges more

quickly to its maximum (Fig. 8A). When the inputs are strongly

correlated, neurons added later are only providing redundant

information. However, when the inputs are independent, each

additional neuron contributes to more accurate spike prediction. If

the inputs are sparse and some of them are irrelevant to the

prediction, information added by each neuron is simply smaller on

Figure 6. Encoding and decoding accuracy. A) Mean spike prediction accuracy under the tuning curve (black), coupling (blue), and full (red)
models. Where spike prediction accuracy denotes the cross-validated log likelihood ratio relative to a homogeneous Poisson process reported in bits/s.
Error bars denote SEM across neurons (tuning curve models) or networks (coupling and full models). In all cortical areas the coupling model
out-performs tuning curve models once coupling between 10–30 neurons is included. Note that for spontaneous activity in V1, coupling
improves spike prediction accuracy even though stimuli were not displayed and tuning curves cannot be fit. B) Mean decoding accuracy
under the tuning curve (black) and full (red) models, as well as accuracy for simulated, conditionally independent neurons with data-matched
tuning curves (green). Note that the full model slightly outperforms the tuning curve model alone, but dependencies between neurons
degrade decoding performance relative to the simulated conditionally independent neurons. Error bars denote standard deviation across
neurons (tuning curve models) or networks (full model).
doi:10.1371/journal.pcbi.1002775.g006

Functional Connectivity and Tuning Curves
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average (Fig. 8B). That is, if only 10% of the inputs are non-zero

then it takes 10 times as many neurons to reach a given spike

prediction accuracy compared to the case where all of the inputs

were non-zero. For input correlation r and probability ps of a

given input being non-zero, the simulations are well-approximated

by a hyperbolic function Lmaxn=(1zrpsn)=N where Lmax is the

maximum spike prediction accuracy and N the maximum number

of neurons.

Linking the strength of common input and sparseness to the

spike prediction accuracy curves observed in real data is difficult.

Both a weakly correlated, highly connected network and a highly

correlated, highly sparse network will have near-linear growth.

However, here we find that neurons in cortex (particularly V1 and

A1) tend to be more strongly correlated than neurons in

hippocampus (Fig. 3C). This may partially explain the rapid

growth in spike prediction accuracy for the cortical datasets and, in

comparison, the near-linear growth for hippocampal datasets.

Especially in cortex, the fact that neural activity traditionally

attributed to tuning curves is more directly explained by

interactions between neurons appears to be a byproduct of

unobserved common input.

Discussion

Excepting peripheral neurons such as photoreceptors, the

relationship between a neuron’s spiking and the external world

is a result of the input that each neuron receives from other

neurons. Many studies have examined how pre-synaptic input

determines receptive field structure and tuning properties both

experimentally [e.g. 1,3,4,5] and theoretically [31–33]. Here we

have used multi-electrode recordings and statistical modeling to

examine, broadly, how tuning curves might be explained, in a

statistical sense, by functional interactions between neurons. We

have found that, in a variety of brain areas, modeling coupling

between a relatively small number of simultaneously observed

neurons in the same brain area allows more accurate encoding and

decoding. As the number of observed neurons grows the fraction

of spiking variability attributed to tuning appears to decrease

Figure 7. Controls for over-fitting and removing noise correlations using within stimulus/target shuffling. A) Mean fraction of variance
explained by tuning as a function of network size for simulated, independent neurons whose tuning curves were matched to the recorded data. The
fraction of variance explained by tuning remains close to 1, indicating that there is little to no over-fitting. B) Mean fraction of variance explained by
tuning as a function of network size for shuffled data. These results provide an additional control for over-fitting, while retaining stimulus correlations.
C) Mean spike prediction accuracy under the tuning curve (black), coupling (blue), and full (red) models on shuffled data. Error bars denote SEM
across neurons (tuning curve models) or networks (coupling and full models).
doi:10.1371/journal.pcbi.1002775.g007

Figure 8. Scaling of spike prediction accuracy as a function of common input and sparseness. A) Spike prediction accuracy for simulated
neurons receiving correlated input, with different levels of input correlation. For these simulations all neurons contribute to the output (100% non-
zero entries). B) Spike prediction accuracy for simulated networks with different input sparseness. For these simulations the input correlation is fixed
at 0.25. Percentages denote the fraction of non-zero input.
doi:10.1371/journal.pcbi.1002775.g008

Functional Connectivity and Tuning Curves
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logarithmically, while spike prediction accuracy increases hyper-

bolically. Once interactions between 10–30 neurons are modeled,

coupling alone can often provide more accurate spike prediction

than traditional tuning models.

The extent to which the activity of simultaneously observed

neurons or tuning properties explain spiking likely depends on a

number of factors including the timescales on which we model

spiking, the stimulus or task parameters, and the external variables

being used to describe tuning. The coarse, instantaneous coupling

models used here cannot distinguish between the many possible

hidden causes of correlated neural activity. Since the models used

here reflect pair-wise dependencies on a long timescale of 100 s of

milliseconds, it is likely that unobserved behavioral variables and

internal processes make strong contributions to the coupling terms.

Modeling these effects explicitly may yield a more nuanced view of

the relationship between tuning curves and interactions between

neurons [23,34]. Although we model trial-by-trial spike-count data

here, both tuning and coupling can also be modeled as history-

dependent effects. Since external variables change fairly slowly,

whereas interactions between neurons are likely to be relatively

fast, adding such temporal information may result in qualitatively

different results. More detailed models that include history-

dependent coupling on millisecond timescales may be able to

further unpack the functional roles of recurrent, local coupling and

instantaneous common input [35].

The datasets used here yield surprisingly similar results

considering that they were recorded from different brain areas

and species with different electrode configurations. However, in

addition to these anatomical differences, it is important to note

that the datasets were recorded under a variety of experimental

circumstances, which may help to explain some of the remaining

differences in the results obtained from each dataset. For data from

motor cortices and hippocampus, for instance, the external

variables are not controlled in the same way that sensory

experiments are. Movement variables such as velocity or body

orientation differ even when the monkey’s reaches to the same

target or when the rat is at the same maze location. These external

differences may lead to higher apparent trial-to-trial variability.

Additionally, data from V1 was recorded while the animals were

under anesthesia, which may lead to higher correlations between

neurons [36–38].

The tuning models used here, despite their wide-spread use, are

relatively simplistic. Tuning functions that take into account more

external variables are likely to give more accurate spike prediction,

and including these variables may change the degree to which

tuning properties are explained away as interactions between

neurons are added to the model. At the same time, exploring the

space of external variables and determining what causes a neuron

to fire can be difficult [39–41]. Fitting tuning functions to neurons

in medial temporal lobe, for instance, might require exploring the

space of all possible objects [42]. Fitting high-dimensional tuning

functions, in general, can require large amounts of data as well as

sophisticated estimation methods [43]. Rather than exploring the

space of external variables, exploring the statistical structure of

interactions between neurons may be an alternative strategy for

understanding tuning properties.

The unreasonable effectiveness of small numbers of
neurons

Neurons receive pre-synaptic input from tens of thousands of

other neurons, and each of these inputs, presumably, plays a role

in determining the tuning properties of a post-synaptic neuron.

How is it possible then that models of interactions between ,100

neurons are able to explain spiking more directly than traditional

tuning curve models without any guarantee that the neurons are

even anatomically connected?

Ultimately, explaining away can only occur when neural activity

is not independent. Many studies have examined correlated neural

activity [38,44–48] as well as its potential functional roles

[30,37,49,50]. Here correlations between neurons are essential

in allowing tuning properties to be explained away by the

functional interactions between small numbers of neurons.

However, the fact that coupling terms do not explain away tuning

curves in simulated or shuffled data, suggests that our results are

not simply a byproduct of stimulus correlation. Rather, the

estimated coupling between neurons is likely to reflect a

combination of direct and indirect interactions [e.g. 51] as well

as additional unobserved common input [14] and internal

processes [52–54]. Several studies have made progress in

attempting to infer unobserved common input related to the

external world [34] as well as internal processes [35,55]. Here we

simply note that unobserved common input may allow more

accurate spike prediction in models of interacting neurons by

creating correlations that cannot be attributed to the observed

external variables. Modeling these dependencies improves decod-

ing by a small, but significant, amount and may be useful for

improving brain-machine interfaces [56]. Moreover, the correla-

tions induced by unobserved common input appear to allow

neural activity traditionally attributed to tuning properties to be

more directly explained by interactions between neurons.

It is important to note, however, that the statistical approaches

used here are unlikely to capture anatomical information about

the underlying circuitry. These methods still only provide a sketch

of the underlying circuit that best explains the observed spiking.

The hyperbolic scaling of spike prediction accuracy observed here,

for instance, may be a general property of correlated prediction

problems [57]. found a similar hyperbolic scaling in accuracy

using the firing rates of neurons in motor cortex for linear

prediction of hand position.

Towards a description of tuning properties based on
network architecture

For many years, studies of the relationship between neural

interactions and tuning properties have been based on detailed

electrophysiology [58,59], experimental intervention , or simula-

tion [32,60]. Most of these studies have addressed data collected in

sensory cortices or peripheral areas. However, understanding the

response properties of neurons in other areas, such as motor and

association cortices, in terms of neural circuits has been difficult.

Here we used simultaneous neural recordings and a model-based

statistical approach to ask how well tuning properties can be

explained, in a statistical sense, by functional interactions between

neurons. While these models are able to explain a surprisingly

large fraction of the variation in neural spike counts in a variety of

brain areas with a relatively small number of observed neurons,

they only provide a rough picture of how network architecture might

give rise to commonly observed tuning properties.

Understanding how interactions between neurons give rise to

tuning properties, will ultimately mean understanding the relative

contributions of feed-forward, local, and top-down pre-synaptic

inputs, as well as how different subtypes of neurons and neurons

with different types of tuning interact. One area where statistical

approaches have revealed this type of detailed architecture is in the

retina. By recording from dense populations of retinal ganglion

cells (RGCs), recent work has shown that RGC receptive fields

arise directly and clearly from input received from rods and cones

[61]. Moreover, functional interactions between retinal ganglion

cells appear to have a strong, local structure [21]. Although
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photoreceptors are the only elements in the retinal circuit that

have direct responses to the external world, the receptive fields of

RGC responses can be understood as a byproduct of indirect

interactions with photoreceptors, mediated by intermediate

neurons, such as horizontal, amacrine, and bipolar cells.

In most areas of the brain, beyond the retina, recording from a

complete neural circuit is experimentally infeasible and the

complete network of neurons is immensely under-sampled. In

these cases, it is difficult to determine whether potential

interactions between neurons are direct (mono-synaptic) or

indirect (poly-synaptic), and the estimated interactions are likely

to be strongly influenced by unobserved common input [14]. What

is ultimately estimated by the statistical approaches is a phenom-

enological model of the circuitry that best describes the observed

spikes [20]. For this reason it is difficult to draw conclusions about

detailed architecture in current multi-electrode datasets. Here we

have examined how modeling interactions between small numbers

affects neural coding and how model-based estimates of interac-

tions relate to stimulus and noise correlation. As electrophysiol-

ogists record from increasing numbers of neurons [13] these

approaches have the potential to reveal more detailed information

about the structure of these cortical and sub-cortical areas.

Methods

We analyzed 10 multi-electrode spike datasets recorded from 6

different brain areas and 4 different species. Recordings from

primary (M1) and dorsal pre-motor cortex (PMd) were made while

a macaque monkey performed a center-out reaching task.

Recordings from primary sensory cortex (S1) were made while a

macaque monkey performed a random-target pursuit task.

Recordings from primary auditory cortex (A1) were made while

a ferret was exposed to random frequency tone stimuli. Data from

primary visual cortex (V1) consisted of recordings of 1) evoked

activity while an anesthetized monkey viewed randomly oriented

moving gratings and 2) spontaneous activity from an anesthetized,

paralyzed cat. Finally, recordings from dorsal hippocampus (HC)

were made while a Long-Evans rat was freely foraging for food on

a square platform.

All animal use procedures were approved by the institutional

animal care and use committees at Northwestern University (M1

& S1), University of Chicago (M1 & PMd), Albert Einstein College

of Medicine (V1), University of Maryland College Park (A1),

University of British Columbia (V1 spont), or Rutgers University

(HC) , and conform to the principles outlined in the Guide for the

Care and Use of Laboratory Animals (National Institutes of

Health publication no. 86-23, revised 1985). Data presented here

were previously recorded for use with multiple analyses. Proce-

dures were designed to minimize animal suffering and reduce the

number used.

The aim of our analysis was to examine the relationship

between typical tuning curves and receptive fields in each of these

brain areas and coupling between neurons. To this end we

extracted spike count data from the spike-sorted multi-electrode

recordings and focused either on evoked responses for the stimulus

and directed movement tasks or binned responses for the foraging

and spontaneous tasks. Each dataset contained at least 31 and as

many as 107 simultaneously recorded, putative single neurons

after spike sorting (Table 1).

Multi-electrode recordings
Recordings from primary and pre-motor

cortex. Datasets were obtained from the motor cortices of two

monkeys (designated K and R). Monkey K was implanted with a

100-electrode Utah array (Blackrock Microsystems, 400 mm

spacing, 1.5 mm length) in the arm area of primary motor cortex.

Data were recorded during two different tasks: a standard eight-

target center-out reaching task, and an isometric eight-target

center-out wrist force task. In the first task the monkey was seated

in a primate chair, with movement constrained to a horizontal

plane, with the arm roughly in a sagittal plane. The monkey

grasped the handle of a two link planar manipulandum that

moved within a 20 cm by 20 cm workspace. In the second task the

monkey used isometric forces about the wrist (with the forearm in

a posture midway between pronation and supination) to produce

center-out forces. In both tasks feedback about movement or force

was given on a computer screen in front of the monkey, displayed

as a circular cursor, 1–2 cm diameter. The recordings were made

approximately 4 months apart with 87 well isolated single-units

recorded during the center-out reaching task and 101 units

recorded during the center-out wrist-force task after offline

spike-sorting. Trial-by-trial spike counts were collected during

the period 100–300 ms following movement onset on 209 and 193

trials, respectively.

For Monkey R, two 100-electrode Utah arrays (Blackrock

Microsystems) were implanted in dorsal pre-motor and primary

motor cortices. Data were recorded while the monkey performed a

randomized, eight-target, center-out reaching task using a

KINARM device (BKIN Technologies, Kingston, ON, Canada)

in which the monkey’s arm rested on cushioned troughs secured to

links of a two-joint robotic arm [62]. After spike-sorting, 78 well

isolated single-units were recorded in M1 with 65 well isolated

single-units in PMd. Data from M1 and PMd are treated

separately here, and trial-by-trial spike counts were collected

during the period 100–300 ms following movement onset from

315 trials. See [63] for surgical, stimulus, and preprocessing

details.

In each of the M1 and PMd datasets neuronal signals were

classified as single- or multi-unit based on action potential shape

and minimum inter-spike intervals greater than 1.6 ms. Spike

sorting was performed by manual cluster cutting using an offline

sorter (Plexon, Inc). All trials for the center-out tasks began with

the acquisition of a square center target that the monkey was

required to hold for 0.3–0.5 s. Subjects had 1.25 s to acquire the

peripheral target and were required to hold this outer target for at

least 0.2–0.5 s. Each success was rewarded with juice or water.

Table 1. Summary of the datasets used here.

Area Neurons #Trials/Bins Bin Size (ms) Stimulus/Task

M1 87 290 200 Center-out Reaching

M1 101 193 200 Center-out Reaching
(Wrist)

M1 78 315 200 Center-out Reaching

PMd 65 315 200 Center-out Reaching

S1 61 3539 200 Random Target Pursuit

V1 107 3200 400 Drifting Sine-Wave
Gratings

V1 50 3600 100 N/A (Spontaneous)

A1 31 165 100 Pure Tones

HC 76 5000 250 Free Foraging

HC 87 5000 250 Free Foraging

doi:10.1371/journal.pcbi.1002775.t001
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Datasets are available for download at http://crcns.org/data-sets/

movements/dream.

Recordings from primary somatosensory cortex. One

dataset was recorded from a macaque monkey implanted with a

100-electrode Utah array (Blackrock Microsystems) in primary

somatosensory cortex (areas 1 and 2) while the monkey performed

a random-target pursuit task. The monkey was seated in a primate

chair, with movement constrained to a horizontal plane. The

monkey grasped the handle of a two link planar manipulandum

that moved within a 20 cm by 20 cm workspace. After each target

hit a new target would appear in a random location. A run of 3–4

successes was rewarded with juice or water.

Neuronal signals were classified as single- or multi-unit and

spike sorted as above to provide 61 well-isolated units. Trial-by-

trial spike counts were collected during the period 100–300 ms

following movement onset from 3539 trials for subsequent

analyses. See [64] for surgical, experimental, and preprocessing

details.

Recordings from primary auditory cortex. Data from the

primary auditory cortex A1 of an awake, passively listening ferret

were recorded during presentations of pure-tones of various

frequencies spanning 6.4 octaves (0.18–15.56 kHz) equally spaced

in log-frequency presented in random order over 165 trials.

Recordings were made with a 32 electrode array (500 mm spacing,

2.5 MV, Microprobes Inc.) in Layer IV (depth ,700 mm).

Neuronal signals were classified as single- or multi-unit based on

action potential shape and inter-spike intervals greater than

1.6 ms. Spike sorting was performed by manual cluster cutting,

providing 31 well-isolated units. Trial-by-trial spike counts were

collected during the 100 ms stimulus period. See [65] for

experimental details regarding surgery and stimulus presentation.

Recordings from primary visual cortex. Two datasets

were obtained from primary visual cortex. The first dataset was

recorded while an anesthetized monkey viewed one of eight

randomly oriented, drifting sine-wave gratings. Stimuli had a

spatial frequency of 1 cyc/deg, drift rate of 6.25 cyc/s, size of 2.9

deg and were presented for 400 ms with a 800 ms delay between

stimuli. Recordings were made using a 100-electrode Utah array,

400 mm electrode spacing (Cyberkinetics Neurotechnology Sys-

tems). After automatic spike sorting and manual cluster adjust-

ment, 107 single units and small multi-unit clusters with firing

rates .1 Hz were used. Trial-by-trial spike counts were collected

for the entire 400 ms stimulus period for 3200 trials (400

repetitions for each orientation) for subsequent analyses. See

[44] and [66] for surgical, stimulus, and preprocessing details.

The second dataset from primary visual cortex was downloaded

from the Collaborative Research in Computational Neuroscience

(CRCNS, http://crcns.org) data sharing initiative [67]. Briefly,

recordings consisted of spontaneous activity from well-isolated

units in area 18 of an anesthetized, paralyzed cat. Recordings were

made using a 54-channel polytrode, 50 mm vertical separation

[68]. The recording was approximately 6 min in duration with 50

well isolated neurons after semi-automatic spike sorting and

manual verification. Spike counts were binned over 100 ms

intervals for subsequent analyses. See [68] for implantation,

experimental, and preprocessing details.

Recordings from dorsal hippocampus. Two hippocampal

datasets were obtained from the Collaborative Research in

Computational Neuroscience (CRCNS, http://crcns.org) data

sharing initiative (data collected in the Buzsaki lab; http://www.

med.nyu.edu/buzsakilab/). Briefly, recordings consisted of well-

isolated units in the right dorsal hippocampus (CA1) of two Long-

Evans rats (250–400 g). Recordings were made using an 8-shank

silicon probe, each shank with 8 recording sites, 20 mm vertical

separation [69], while the rat foraged for water rewards on an

elevated platform (180 cm6180 cm). Recordings were approxi-

mately 90 min in duration with 76 and 87 well isolated neurons

after automatic spike sorting and manual cluster adjustment. Spike

counts were binned over 250 ms intervals for subsequent analyses.

See [70] for implantation, task, and preprocessing details.

Data analysis
Spike count data were fit using either external variables, the

activity of the other recorded neurons, or both [14,17,21,28]. In

each case we used a class of generalized linear model [71] - a linear

non-linear Poisson (LNP) model with exponential nonlinearity

[15,16]. The model and estimation methods have been previously

described in detail elsewhere [21]. Briefly, LNP models assume

that the covariates (tuning to stimulus/movement or activity of

other neurons) are linearly combined, then passed through an

exponential nonlinearity such that the firing rate is non-negative.

The estimated firing rate for each neuron li is then a function of

the external variables during each trial xt and the activity of the

other neurons nt:

li(tDa,b,xt,nt)~exp b0z
X

k

f (xk,t)akz
X
j=i

nj,tbj

 !
,

where f (:) denotes one of K basis functions that describe the shape

of the tuning curve, and the parameters a and b capture tuning,

coupling to other neurons, and a baseline firing rate b0. The basis

functions, described below, will depend on the brain area we are

trying to model and the stimulus/task. The spike count is then

assumed to be drawn from a Poisson distribution with this rate:

ni(t)*Poisson li(t)ð Þ,

where ni(t) represents the spike count for neuron i on trial t.

Using this same framework, tuning curves alone were modeled

by

li(tDb0,a,xt)~exp b0z
X

k

f (xk,t)ak

 !
,

while coupling between neurons was modeled by

li(tDb,nt)~exp b0z
X
j=i

nj,tbj

 !
:

Note that, for the coupling model, the spike count for the

neuron i whose firing rate we are estimating was always excluded.

Using this framework we examined the effect of network size on

spike prediction accuracy by varying the total number of neurons

included in the model and using a random subset of all recorded

neurons, again excluding neuron i.

For each of these three models – the full model, tuning curve

model, and coupling model – we estimated the parameters a and b
directly from the observed spike count data using maximum

likelihood estimation (MLE) or maximum a posteriori (MAP)

estimation with an L1-penalty to prevent over-fitting [see 21].

Here we compute ML estimates using iterative reweighted least

squares (IRLS) with the Matlab package glmfit and compute MAP

estimates using path-wise, cyclical coordinate descent [72] with the

R package glmnet.
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Where regularization is used we optimized the regularization

hyperparameter via the cross-validated (10-fold) log-likelihood,

and in all cases we evaluated the ‘‘spike prediction accuracy’’ of

the models using the cross-validated log likelihood ratio relative to

a homogeneous Poisson process. For a firing rate l, the log-

likelihood is given by

LL~
X

t

n(t) log l(t){l(t){log n(t)!½ �,

and the log likelihood ratio relative to a homogeneous Poisson

process (spike prediction accuracy) is given by

log eLL=eLL0
� �

~LL{LL0~X
t

n(t) log l(t){l(t)½ �{ n(t) logvnw{vnw½ �:

In this case, a spike prediction accuracy of zero corresponds to a

model that does no better than predicting the mean spike count.

Values were calculated in base-2 and rescaled by time to give units

of bits/s [see 21,27]. We find that spike prediction accuracy scales

approximately hyperbolically, following c1n=(1zc2n) where n is

the number of neurons in the model and c1 and c2 are parameters

determining the shape of the curve [see 57].

An important component of these models is the choice of basis

functions for the external variables. Here we have attempted to

choose common tuning models, appropriate for each dataset. For

M1 and PMd neurons, for instance,

f ~
cosh

sinh

�
where h denotes the target direction on each center-out trial. This

linear component of the model corresponds to the traditional

cosine tuning models of motor cortical neurons [73,74]. We used

the same model to capture direction tuning in visual cortex [75].

While activity in M1 has also been shown to covary with speed

[76], we elected to use the simpler direction tuning model here,

and model speed tuning only in S1 neurons, which show direction

tuning [77] as well as clear tuning to hand speed [64]. In this case

we use

f ~

v

v cosh

v sinh

8><>:
Place fields of the neurons in hippocampus have been well

described [78–80]. To model these localized response properties

we use a set of radial basis functions that tile the foraging area.

f ~

N(m1,S)

N(m2,S)

..

.

8>><>>:
Specifically we use K = 25 isotropic Gaussian radial basis

functions equally spaced on a 565 grid with means m1 . . . mK and

covariance S~Is2, s = 9 cm.

Finally, for neurons in A1 [81–83], we again use radial basis

functions. In this case K = 7 Gaussians were equally spaced along the

log-frequency of the stimulus with standard deviation s = 0.64 octaves.

In most cases (TC dimensionality ,4), regularization was only

applied to the coefficients modeling coupling between neurons. To

avoid convergence problems [84] the models using radial basis

functions (A1 and HC) included weak regularization on the tuning

curve coefficients (with 20% of the L1-penalty used for the

coupling coefficients). The tuning curve parameters do not change

substantially for penalties ranging from 1–20%; however, there

may be unintended shrinkage in these models, and the decrease in

modulation observed for these neurons may be somewhat over-

estimated.

It is important to note that the models used here differ from

previous approaches in that they are time-instantaneous — we

model coupling between neurons at the same time. This does not

pose any difficulties during fitting, since we are modeling only the

conditional distributions for each neuron p(Ni DX,N:i). However,

simulating from the joint spiking distribution p(NDX) is no longer

straight-forward. The usual assumption, p(NDX)~P
i

p(Ni DX,N:i),

does not hold, but, since the conditionals are know, we can use

Gibb’s sampling to simulate from this joint distribution if necessary

(see section on Decoding below).

To quantify the changes in tuning under the full model we

evaluate the tuning modulation, tuning preference, and tuning

curve overlap between pairs of neurons. Tuning modulation is

simply the peak-to-peak difference in firing rate for the tuning

curve component of the model, reported in Hz. Tuning preference

is defined differently for each dataset: for M1, V1, PMd, and S1

we use the preferred direction, for A1 we use the preferred

frequency, and for HC we use the preferred place along the x-axis.

Finally, to measure similarity between the tuning curves for pairs

of neurons we evaluate the tuning curve overlap between neurons i

and j, ai
:aj= DDai DD DDaj DD

� �
. Accordingly, a tuning curve overlap of 1

suggests that the two neurons have identical tuning (up to a

constant baseline), while a tuning curve overlap of 0 suggests that

the two neurons have orthogonal tuning.

To quantify network properties we also report the spike count

correlation (Pearson’s correlation). For two neurons with trial-by-

trial spike count observations ni and nj the correlation is given by

r~cov(ni,nj)=sisj . Although the spike count correlation between

pairs of neurons is known to increase with both firing rate [85] and

time interval [86,87], we do not attempt to correct for these effects

here. In most cases the bin-size is determined by the task and the

traditional periods used to measure tuning curves, such as stimulus

duration.

To quantify the relative contributions of the tuning curve and

coupling components in the full model we summarize the fit using

the fraction of variance explained by tuning. For each neuron we

calculate

FV~var
X

k

f (xk,t)ak

 !
=var

X
k

f (xk,t)akz
X
j=i

nj,tbj

 !
:

A value of 1 suggests that the coupling terms provide no

additional information, while a value of 0 suggests that any tuning

information is explained completely by coupling to other observed

neurons. It is important to note that there is considerable

heterogeneity in how well tuned neurons are to the external

variables. Here we analyze all recorded neurons, even those that

might be considered un-tuned.
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Decoding
In contrast to the encoding models above, which aim to predict

spikes given a stimulus, we can also examine how coupling affects

decoding, which aims to predict a stimulus X given a set of spike

observations N. Here, we use Bayesian decoding [88,89] based on

the same encoding models described above. Assuming the stimuli

are equally probable

p(XDN)~
p(NDX)p(X)

p(N)
!

1

Z
p(NDX):

For the tuning curve models, we assume that the neurons are

conditionally independent given the stimulus,

p(NDX)~P
i

p(Ni DX):

However, for the full model, since we assume that coupling is

instantaneous, we cannot make this assumption. In this case we

use a variation of Gibb’s sampling [90–92] to approximate the

joint distribution p(NDX). Briefly, in Gibbs sampling we generate

samples from p(NDX) by iterating over all neurons and sampling a

spike count for each neuron based on the conditional distribution

nk
i *p(Ni DX,nk

:i)

where k denotes the iteration. Here we use a method know as

ordered over-relaxation [93] to improve mixing. This makes the

sampler much more efficient for large networks of neurons with

strong coupling. In this case we generate K samples from the

conditional distribution at each update, sort the samples along

with nk{1
i , and if nk{1

i is the r-th largest value we take the K{r-th

sample. After many iterations the set of samples - ignoring a burn-

in period - provides an approximation to the joint likelihood that

we can then use, via Bayes rule, to approximate the posterior over

possible stimuli.

For each model we initialize the sampler with n0*p(Ni DX),

initialize each successive sample using nk~nk{1, and update the

spike counts nk
i for each neuron in a random order using the

conditional distribution nk
i e p(Ni DX,nk

:i) with ordered over-relax-

ation. We then take 5000 samples after a burn-in period of 500

samples to use as an approximation to the joint density.

In practice, it is non-trivial to estimate the probability

p(N~n(t)DX) for each trial given a set of samples from the

distribution p(NDX). When the number of neurons become large

the curse of dimensionality makes histogram estimation impossi-

ble. We would need O(lN ) samples where N is the number of

neurons to construct an accurate histogram. Here we use an

approximation based on the chain rule of probability

p(N~njX)~p(N1~n1jX)p(N2~n2jX,N1~n1)

p(N3~n3jX,N1~n1,N2~n2) � � �

Although we cannot write down the full joint probability

analytically, we can approximate each of the marginal distribu-

tions in the chain rule using the set of Gibbs samples

p(N~njX)~

ð
p(N1~n1jX,N0)p(N0jX)dN0

:
ð

p(N2~n2jX,N1~n1,N00)p(N00jX)dN00

:
ð

p(N3~n3jX,N1~n1,N2~n2,N000)p(N000jX)dN000 � � �

&Sp(N1~n1jX,N0)TSp(N2~n2jX,N1~n1,N00)T

Sp(N3~n3jX,N1~n1,N2~n2,N000)T � � �

where N’ denotes the random variables for all other neurons not

yet taking a specific value n, and the expectations S:T are taken

over the set of Gibbs samples. Importantly, each probability in

each expectation can now be evaluated analytically based on the

conditional Poisson likelihoods of the full model. This approach

allows us to approximate the posterior over stimuli and assess the

Bayesian decoding accuracy of the tuning curve model with

instantaneous coupling.

Simulations
To examine how the scaling of spike prediction accuracy relates

to the underlying structure of the inputs we simulated spikes from

a linear-nonlinear-Poisson neuron receiving correlated input

l(tDb,mt)~exp b0z
X

mj,tbj =DDbDD1
� �

n(t)*Poisson l(t)ð Þ

where the baseline firing rate parameter b0 was fixed and m
denotes a set of correlated Poisson random variables. The

connection strengths b were drawn from a sparse, binary random

vector with entries randomly set to zero with probability 1{ps.

Correlated inputs m were each assumed to have mean 1 and were

drawn from a multivariate Poisson distribution with the covariance

matrix rmJz(m{rm)I where r denotes the specified correlation,

m denotes the mean, J denotes the unit matrix, and I the identity

matrix. Under this covariance matrix all pairs of neurons have

correlation r and we set the variance of each neuron equal to the

mean.

In general, producing correlated Poisson random variables with

specific marginal distributions and covariance structure is difficult.

Here we use a simplified family of covariance matrices where all

neurons have the same correlation and simulate spike counts

following [94]. After simulating and fitting the LNP model, we can

examine how input correlations and sparseness affect spike

prediction accuracy.
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11. Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:
446–451.

12. Nicolelis M (2007) Methods for neural ensemble recordings. CRC Press.

13. Stevenson IH, Kording KP (2011) How advances in neural recording affect data
analysis. Nat Neurosci 14: 139–142.

14. Stevenson IH, Rebesco JM, Miller LE, Körding KP (2008) Inferring functional

connections between neurons. Curr Opin Neurobiol 18: 582–588.

15. Paninski L (2004) Maximum likelihood estimation of cascade point-process

neural encoding models. Network 15: 243–262.

16. Pillow J (2007) Likelihood-Based Approaches to Modeling the Neural Code. In:

Kenji Doya SI, Alexandre Pouget, and Rajesh P.N Rao, editor. Bayesian Brain:
Probabilistic Approaches to Neural Coding. MIT Press. pp. 53–70.

17. Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN (2005) A Point

Process Framework for Relating Neural Spiking Activity to Spiking History,
Neural Ensemble, and Extrinsic Covariate Effects. J Neurophysiol 93: 1074–

1089.

18. Brillinger DR (1988) Maximum likelihood analysis of spike trains of interacting

nerve cells. Biol Cybern 59: 189–200.

19. Chornoboy ES, Schramm LP, Karr AF (1988) Maximum likelihood identifica-

tion of neural point process systems. Biol Cybern 59: 265–275.

20. Aertsen AM, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal
firing correlation: modulation of‘‘ effective connectivity’’. J Neurophysiol 61:

900–917.

21. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, et al. (2008) Spatio-temporal

correlations and visual signalling in a complete neuronal population. Nature
454: 995–999.

22. Babadi B, Casti A, Xiao Y, Kaplan E, Paninski L (2010) A generalized linear

model of the impact of direct and indirect inputs to the lateral geniculate

nucleus. J Vis 10(10): 22.

23. Kelly R, Smith M, Kass R, Lee T (2010) Local field potentials indicate network
state and account for neuronal response variability. J Comput Neurosci 29: 567–

79.

24. Gerhard F, Pipa G, Lima B, Neuenschwander S, Gerstner W (2011) Extraction

of network topology from multi-electrode recordings: Is there a small-world
effect? Front Comput Neurosci 5: 4.

25. Truccolo W, Hochberg LR, Donoghue JP (2010) Collective dynamics in human

and monkey sensorimotor cortex: predicting single neuron spikes. Nat Neurosci

13: 105–111.

26. Stevenson IH, Rebesco JM, Hatsopoulos NG, Haga Z, Miller LE, et al. (2009)
Bayesian Inference of Functional Connectivity and Network Structure From

Spikes. IEEE Trans Neural Syst Rehabil Eng 17: 203–213.

27. Harris K, Csicsvari J, Hirase H, Dragoi G, Buzsáki G (2003) Organization of cell
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