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Abstract

We propose a novel method for detecting sites of molecular recombination in multiple alignments. Our approach is a
compromise between previous extremes of computationally prohibitive but mathematically rigorous methods and
imprecise heuristic methods. Using a combined algorithm for estimating tree structure and hidden Markov model
parameters, our program detects changes in phylogenetic tree topology over a multiple sequence alignment. We evaluate
our method on benchmark datasets from previous studies on two recombinant pathogens, Neisseria and HIV-1, as well as
simulated data. We show that we are not only able to detect recombinant regions of vastly different sizes but also the
location of breakpoints with great accuracy. We show that our method does well inferring recombination breakpoints while
at the same time maintaining practicality for larger datasets. In all cases, we confirm the breakpoint predictions of previous
studies, and in many cases we offer novel predictions.
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Introduction

Recombination is the process by which a child inherits a mosaic

of genes or sequences from multiple parents. Though most species

participate in some form of genetic mixing or recombination, the

mechanics by which this occurs varies greatly among them. In

higher order organisms, crossing over occurs in meiosis along the

parent-child relationship, whereas in bacteria, viruses, and

protozoans, homologous exchange of DNA material can occur

from one individual to another without the need for sexual

reproduction [1]. The diversity with which recombination occurs

motivates the need for different models and methods, each ideally

suited to its biological situaion. We have developed a probabilistic

approach to recombination detection that we believe to be

superior for analyzing situations of admixture of pathogen

subspecies with a high mutation/recombination ratio.

The situation we concern ourselves with has been termed

phylogenetic recombination inference (PRI) by [2], and works by inferring

phylogenetic tree topology changes over a multiple alignment.

Though it has been shown that under a neutral coalescent model,

the number of recombination events which will lead to a tree

topology change is very small, [3] in situations of admixture

following geographical separation a greater proportion of

topology-changing recombinations are expected. Abandoning

the infinite-sites model of sequence evolution and instead using a

continuous-time Markov chain makes direct inference intractable,

and so we instead employ a phylo-HMM which models an effect of

recombination, rather than modeling the process explicitly.

While recombination detection is an interesting mathematical

challenge, fast, flexible, and reliable computational methods are

also motivated by a multitude of biological reasons. We see our

method not as being able to answer all of these biological questions

on recombination, but rather a potentially valuable tool for

furthering recombination research.

N Genome Dynamics The two most significant factors driving

change in genomes in the context of evolutionary adaptation

and diversity are point mutation and recombination. The ratio

between these two differs greatly among organisms; in most,

recombination among subtypes is fairly rare and point mutation

occurs comparatively often. Similarly to point mutation,

recombination has the possibility to combine independent

fitness-enhancing changes among genomes as well as disable

genes. As Awadalla remarks, ‘‘recombinant genomes are known

to be associated with changes in phenotype or fitness, including

heightened or reduced pathogenicity or virulence’’ [1]. Our

understanding about where, how, and why recombination

occurs is comparatively primitive. We know, for example, that

pathogens such as Chlamydia trachomatis have recombination

hotspots [4], but the relevant cis-acting factors are unknown.

The precise determination of breakpoints in recombining

pathogens is crucial for higher-level downstream analyses such

as that of [4], or the methods proposed by [2] and [5] in which

genome-scale conclusions about recombination are made from

large sets of observed breakpoint locations. We believe our

method offers improved precision and flexibility as compared to

other programs. Furthermore, in light of the high proportion of

HIV isolates which are recombinant, it can be useful that PRI

allows one to safely relax the requirement that all but one of the

sequences in the alignment are ‘pure’ subtypes.

As well as being an appealing scientific challenge, a better

understanding of the dynamics of pathogen genome evolution
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might help highlight molecular processes to target in designing

therapeutics, as well as opening up the possibility for genetic

manipulation.

N Phylogenetic Analysis When performing phylogenetic

analysis on a multiple sequence alignment, most methods

assume that there is a unique hierarchical relationship among

the taxa in question. If recombination has occurred in

evolutionary history, this phylogeny reconstruction will be

systematically faulty in either its topology, branch lengths or

both. Incorrect trees could hinder further comparative

genomic inferences made from the data [6]. In our training

scheme, we estimate separate trees for all regions in the

alignment, and if more sophisticated tree-inference methods

ought to be used, our precise breakpoint inference allows for

training trees on the alignment sections.

N Genetic Mapping In using genetic mapping information to

locate genes associated with various phenotypes, it is vital to know

the extent of genome rearrangement present. For a discussion of

how this can affect microbial pathogen analysis, see [7].

Previous Related Work
We give here an outline of previous methods which are related

to our phylo-HMM approach. For a more thorough survey or

recombination detection methods, see [1].

The rationale for phylogenetic recombination inference is

motivated by the structure of the Ancestral Recombination Graph

(ARG), which contains all phylogenetic and recombination

histories. The underlying idea is that recombination events in

the history of the ARG will, in certain cases, lead to discordant

phylogenetic histories for present-day species.

Various approaches to learn the ARG directly from sequence

data have been developed, such as [8] and [9]. We recognize that

PRI is in a somewhat different category both in goal and approach

as compared these methods, though they are motivated by the

same underlying biological phenomenon. Rather than aiming to

reconstruct the ARG in its entirety, our emphasis is on modeling

fast-evolving organisms with the goal of accurately detecting

breakpoints for biological and epidemiological study.

The most widely-used program for phylogenetic recombination

detection is SimPlot [10] (on MS Windows). Recombination

Identification Program (RIP), a similar program, [11] runs on

UNIX machines as well as from a server on the LANL HIV

Database site. This program slides a window along the alignment

and plots the similarity of a query sequence to a panel of reference

sequences. The window and step size are adjustable to

accommodate varying levels of sensitivity. Bootscanning slides a

window and performs many replicates of bootstrapped phyloge-

netic trees in each window, and plots the percentage of trees which

show clustering between the query sequence and the given

reference sequence. Bootscanning produces similar output to our

program, namely a predicted partition of the alignment as well as

trees for each region, but the method is entirely different.

In [12], Husmeier and Wright use a model that is similar to ours

except for the training scheme. Since they have no scalable tree-

optimizing heuristic, their input alignment is limited to 4 taxa so as

to cover all unrooted tree topologies with only 3 HMM states,

making their method intractable for larger datasets. They show

they are able to convincingly detect small recombinant regions in

Neisseria as well as simulated datasets limited to 4 taxa [12].

The recombination detection problem can be thought of as two

inter-related problems: how to accurately partition the alignment

and how to construct trees on each region. This property is due to

the dual nature of the ARG: it simultaneously encodes the marginal

tree topologies as well as where they occur in the alignment. Notice

that if the solution to one sub-problem is known, the other becomes

easy. If an alignment is already partitioned, simply run a tree-

inference program on the separate regions and this will give the

marginal trees of the sample. If the trees are known, simply

construct an HMM with one tree in each state and run the forward/

backward algorithm to infer breakpoints. Previous methods have

used this property by assuming one of these problems to be solved

and focusing on the other. For example, in Husmeier and Wright’s

model, there were very few trees to be tested, and so the main

difficulty was partitioning the alignment, which they did with a

HMM similar to ours. In SimPlot, windows (which are essentially

small partitions) passed along the alignment and trees/similarity

plots are constructed. This allows the program to focus on tree-

construction (usually done with bootstrapped neighbor-joining)

rather than searching for the optimal alignment partition.

By employing a robust probabilistic model with a novel training

scheme, we find a middle ground between the heuristic approach of

SimPlot [10] and the computational intractability of Husmeier and

Wright’s method [12], where we are essentially able to solve the

recombination inference problem a whole, rather than neglecting

one sub-part and focusing on the other. We use a HMM to model

tree topology changes over the columns of a multiple alignment.

This is done much in the same way as Husmeier and Wright, but

our use of a more sophisticated tree-optimization (the structural

EM heuristic) method allows searching for recombination from a

larger pool of sequences. By modifying the usual EM method for

estimating HMM parameters in a suitable way, we are able to

simultaneously learn the optimal partitioning of the alignment as

well as trees in each of these partitions. We are able to detect short

recombinant regions better than previous methods for several

reasons. First, we do not use any sliding windows which may be too

coarse-grained to detect such small regions of differing topology.

Second, our method allows each tree after EM convergence to be

evaluated at every column, and so small recombinant regions are

not limited by their size; they must only ‘match’ the topology to be

detected or contribute to the tree training. By embedding trees in

hidden states of an HMM, the transition matrix allows us to

essentially put a prior on the number of breakpoints, as opposed to

Author Summary

In viral and bacterial pathogens, recombination has the
ability to combine fitness-enhancing mutations. Accurate
characterization of recombinant breakpoints in newly
sequenced strains can provide information about the role
of this process in evolution, for example, in immune
evasion. Of particular interest are situations of an
admixture of pathogen subspecies, recombination be-
tween whose genomes may change the apparent phylo-
genetic tree topology in different regions of a multiple-
genome alignment. We describe an algorithm that can
pinpoint recombination breakpoints to greater accuracy
than previous methods, allowing detection of both short
recombinant regions and long-range multiple crossovers.
The algorithm is appropriate for the analysis of fast-
evolving pathogen sequences where repeated substitu-
tions may be observed at a single site in a multiple
alignment (violating the ‘‘infinite sites’’ assumption inher-
ent to some other breakpoint-detection algorithms).
Simulations demonstrate the practicality of our implemen-
tation for alignments of longer sequences and more taxa
than previous methods.

Detecting Breakpoints
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considering each column independently. Furthermore, since the

counts in the E-Step are computed using all columns of the

alignment, distant regions of the alignment with similar topology

may contribute their signal to a single tree, whereas in a window-

sliding approach each window is analyzed independently.

Results

Interpretation of the Results
Since it is difficult to experimentally verify predictions of

recombination, we test our methods on previously-analyzed data

from earlier studies on Neisseria and HIV-1 as well as simulated

datasets. Individual cases highlighting various facets of our method

can be seen in Text S1, whereas statistics summarizing simulations

with respect to several simulation parameters are included in Figure 1.

When comparing real and simulated data, one must keep in

mind that real data may have complications such as rate

heterogeneity and structural features that are not present in

simulations, which are carried out using a simple independent-sites

Markov chain model of nucleotide evolution, such as the HKY85

model [13]. While this is currently the only model we use in our

program, it is straightforward to extend this to other models.

Figure 1. Accuracy of breakpoint detection varies as a function of simulation and inference parameters. In each case, we plot both
positive predictive value (TP/(TP+FP) = PPV ) and sensitivity (TP/(TP+FN)). A correctly predicted breakpoint is defined as one which occurs less than
10 bp from a true breakpoint. We observe that the overall accuracy remains high except for situations of high diversity, extremely short recombinant
region (less than 50 bp), or more than 20 taxa. In several cases, we were resource-limited and only able to provide a few data points for each variable,
and this is the reason for the sparseness of the plots. Each data point is the maximum-likelihood outcome of 10 independently run EM trials, each one
taking on average 15 minutes for small length/taxa, though this varies as seen in Figure 9.
doi:10.1371/journal.pcbi.1000318.g001

Detecting Breakpoints
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In analyzing real data, when there were several alignments in

the original analysis, we include only those in which we recover

new breakpoints, or otherwise demonstrate our method’s utility. It

is implicitly assumed that in the analyses which we don’t include,

we came to similar or identical conclusions as the original authors.

In our analysis of simulated data, we aim to quantitatively

characterize the strengths and weaknesses of the recHMM

method by varying several simulation and analysis parameters.

In each simulation case, ARGs (and hence K-tuples of trees)

were generated with RECODON [14], which uses a coalescent-

based simulation approach (for exact simulation parameters, see

Text S1). In keeping with the above discussion of PRI vs

coalescent modeling, we filter out ARGs whose marginal trees

are identical in topology using the treecomp program [15].

Thus, in all of the simulations, a perfect detector of topology

change would find every breakpoint. After tree-simulation, we

simulate alignments using Seq-Gen, which generates multiple

alignments according to simple independent sites Markov chain

models. The reason for this decoupling of tree and sequence

simulation is that Seq-Gen allows for easier manipulation of the

variables we’re testing, namely length of region, divergence since

recombination, and overall divergence (by way of branch-

scaling.) [16].

After running our program on the simulated data to estimate

parameters, recombinant regions are determined by a posterior

decoding algorithm which we describe briefly in the Methods

section and is fully outlined in Text S1. (We use posterior

decoding as opposed to the Viterbi algorithm since we are

primarly concerned with maximizing the expected number of

correct column labelings as opposed to maximizing the

probability that our state path is exactly correct.) As the notion

of a ‘true negative’, a column which was correctly annotated as a

non-breakpoint, is not meaningful in this case, we instead

examine positive predictive value: TP
TPzFP

, where a true positive

(TP) is defined as a predicted breakpoint which occurs within 10

positions of a true breakpoint. Similarly, a false positive (FP) is a

predicted breakpoint which has no true breakpoint within 10

positions. In plotting sensitivity: TP
TPzFN

, we define a false

negative (FN) to be a true breakpoint for which we have no

predicted breakpoint within 10 positions.

We vary the following parameters with regard to simulation of

data, the results of which are depicted in Figure 1:

N Length of recombinant region The length of the region

which has a discordant phylogenetic signal is inversely

proportional to detection power. We simulated alignments

with three regions: two regions of length 200 bp on either side

of the variable-length region, resulting in two true breakpoints,

at positions 200 and 200+length(region).

On alignments with recombinant regions longer than 100 bp,

recHMM detects a high percentage of breakpoints with few false

positives. Below 100 bp the detection suffered, with the program

able to detect approximately 40% of breakpoints. For any

recombination-detection program, smaller regions will be harder

to detect, and so high accuracy down to 100 bp is promising.

N Taxa With more taxa, tree estimation becomes more difficult,

and so distinguishing regions having different trees becomes more

challenging. Further, comparing likelihoods of two large trees

becomes unreliable as the scale of the likelihood becomes larger.

In alignments with up to 23 taxa, detection is fairly strong, but

begins to taper off around 25 taxa. Still, this is a notable

improvement over Husmeier and Wright’s model which could

only accommodate 4 species. This is practically relevant only for

initial screening for recombination; once the donor species are

known, the alignment can be pruned of the irrelevant taxa for

more accurate breakpoint detection.

N Divergence We vary the overall evolutionary time since

speciation among the taxa by scaling the branch lengths of the

tree used to simulate the alignment. The idea is that as

divergence grows and the tree becomes indistinguishable from

a ‘star-like’ topology, the phylogenetic signal relating species

becomes weaker. On the other hand, if divergence were 0, the

population would appear clonal (e.g. identity along alignment

columns) and recombination would be undetectable.

N Divergence since recombination event In varying the

divergence time since recombination, we wish to quantify the

idea that more recent recombination events are easier to

detect, since they have closer homology to their donor

genomes.

Since directly varying the divergence since the recombination

event is difficult, we instead restrict our analysis to a subset of

topology-changing ARGs, namely those whose marginal trees

differ by a leaf-transfer event (as opposed to a general subtree-

transfer). While this may be an unlikely scenario from a pure

coalescent perspective, newly emergent recombinant patho-

gens can be represented as leaf-transfer events. In terms of

simulation, this restriction of ARGs allows us to approximate

scaling all branches (and sub-branches) since recombination by

scaling only terminal branches, allowing us to demonstrate the

difference in detection power between ‘ancient’ and ‘recent’

recombination events.

Divergence and divergence since recombination appear to affect

detection power in a similar way. Though it is difficult to draw

conclusions from so few data points, one can see a sharper

dependence in the leaf-scaling case, whereas in scaling all

branches, the curve is slightly gentler. This can be intuitively

understood considering that the leaf-scaling is varying only the

relevant part of the tree, whereas when the whole tree is scaled,

the effect on the phylogeny is more evenly dispersed, resulting in

a more gradual effect on detection power.

N Number of recombinant regions K This varies the

number of topologically distinct regions in the alignment. In

analyzing these alignments, the number of HMM states, k, is

set to the correct value K .

We observe that the method is relatively stable with respect to

number of regions for the values we tested (2–8), provided that

the number of regions is correctly specified. When this part of

the model is mis-specified, the results are mixed, and we show

results from simulation studies varying the model structure for

fixed alignments in Figure 2. The K-varying plot in Figure 1

does not take into account the possibility that non-bordering

regions were wrongly annotated as coming from the same

state. The breakpoints of these regions would still be detected,

but their tree topology would be incorrect. Thus, we re-

emphasize that recHMM is primarily a breakpoint-detection

tool, and that if serious inferences are to be made from the

trees within each hidden state, then more sophisticated tree

construction methods should be used on the separate

alignment regions.

We examined the effect of the following parameters in data

analysis:

N Predicted number of recombinant regions For certain

values of K above, we vary k to see how detection power is

affected when we have greater or fewer HMM states than

distinct regions. We would have liked to vary k extensively for

every value of K , but we as were limited by computing time,

Detecting Breakpoints
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we analyzed only k~4,5,6,7,8 for K~5.

From this study, we concluded that specifying more states

increases sensitivity, but at a slight cost of PPV. Intuitively, if a

model has too few states, discordant regions may be merged

together and modeled by a consensus topology, instead of

being correctly modeled as separate recombinant regions with

their own tree-states. If excessively many states are used, then

presumably more of the genuinely differing regions will be

modeled, but also small, spurious regions of convergent

mutations or rate heterogeneity could be modeled by one of

the extra states, leading to falsely predicted breakpoints. In

many cases, the cutoff criterion helps in filtering out small

errant regions, and we see only a moderate drop in PPV in

Figure 2 for 7 and 8 states.

N Length of cutoff criterion The cutoff criterion is the value

of the smallest distance between breakpoints we allow in our

predicted state path. For a detailed description on how this

cutoff criterion informs our posterior decoding algorithm, see

the Methods section and Text S1. Simply stated, we disregard

paths with breakpoints occurring within the cutoff of each

other when choosing a maximal path.

In Figure 1, we see that sensitivity rises as we allow for shorter

region predictions (by specifying a higher cutoff value). PPV

shows the opposite trend; with smaller cutoff criteria, we can

be increasingly certain that any breakpoints we find are true

breakpoints. The cutoff value where the two curves intersect

can be thought of as a value which optimally balances

sensitivity and PPV, and so in our simulated data analysis we

set the cutoff to 30 bp.

In our analysis of real data, we cover a range of data sizes and

types, ranging between 4 and 9 taxa, with length ranging from

700 bp to circa 10,000 bp. We find that in each case, we are able

to recover the previous authors’ predictions for breakpoints. In

many cases, we find compelling evidence for additional, often

shorter recombinant regions that the original analysis either

missed completely or registered as minor ‘spikes’ in their plot. In

each example we highlight the aspects of our method that

contribute to its sensitivity, flexibility and utility. In the case where

we had no additional predictions to add to a dataset, we omitted

that analysis for brevity. For example, we analyzed the data from

[4], but the low mutation rate enabled their simpler approach to

adequately determine breakpoints. In this situation we acknowl-

edge that our method is able, but not necessary, to analyze the

data.

Neisseria ArgF and penA Genes
We used our program to analyze data from Neisseria data that

consisted of single gene regions suspected of recombination. In

these analyses, recombinant regions were quite short and we

demonstrate that our method is capable of handling this situation.

In their 2001 work, Husmeier and Wright use a similar tree-

topology HMM to detect recombination. Since each EM iteration

involves searching over all possible tree topologies for the optimal

trees for each region, they were limited to alignments of 4 taxa,

where there are only 3 unrooted phylogenies [12]. As mentioned

earlier, both this and window-based methods assume one part of

the recombination inference problem to be solved. In this case, the

method allocates one tree per HMM state, and so estimation of the

trees is no longer necessary, leaving only the alignment

partitioning problem to be solved. Our results on this dataset

are shown in Figure 3. The previous predictions are shown in red

dashed lines. The horizontal axis refers to the position within the

alignment, and the vertical axis is partitioned according to

posterior state probability of the HMM. The posterior state

probability can intuitively be thought of as the probability that a

certain column was generated by a certain phylogenetic tree,

taking into account the model structure and all the alignment data.

At each position, the posterior probabilities for the three trees must

sum to one, and hence the different colors partition the vertical

axis. We were able to closely replicate their results (namely the

state probabilities depicted in Figure 15 of [12]).

In comparing our results to theirs, we note that our program,

which does a probabilistic tree-updating step, rather than

providing a hidden state for all possible topologies, recovers all

the breakpoints of the previous study. At positions 202, 507, and

538 there are clearly points at which different colors have high

posterior probabilites. In regions such as 0–50, it is difficult to

make reliable inferences because with so few bases, phylogenetic

tree construction is unreliable. As mentioned in the Methods

Figure 2. The detection power increases as more trees are added to the model. Here we analyze alignments with 5 regions, while setting
our predicted number of states to various values. The sensitivity increases steadily while PPV tapers off at a fixed value.
doi:10.1371/journal.pcbi.1000318.g002

Detecting Breakpoints
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section, we employ a simple length cutoff heuristic whereby all

recombinant regions smaller than a certain length are removed.

Though this is less sophisticated than, say, explicitly specifying a

prior distribution over state paths which takes length into account,

it performs reasonably well for the situations we analyzed. In

considering putative crossovers, points where a tree with high

posterior probability changes abruptly in favor of a different tree

should be considered most closely. Also, topology changes that are

extremely short could be the result of spurious convergent mutations,

in which two phylogenetically distant species undergo mutations to

the same base, making it seem as if they had exchanged information.

Note also that our method is better able to characterize the regions

537–560 and 750–780. In [12], 537–560 is classified as ‘‘irregular’’,

and 750–780 shows only a spike in probability in Figure 13 of [12],

and not at all in their Figure 15. We predict the 500–600 region to be

composed of two separate topologies, and 750–780 to be a possibly

newly characterized recombinant region, having the same topology

as the 100–202 region.

In [17], Bowler et al. discovered a mosaic structure in the PenA

gene of Neisseria Meningitidis which conferred resistance to

Penicillin. Analyzing a DNA multiple alignment between 9

species, they were able to manually determine estimates for

recombination breakpoints. Constructing phylogenetic trees for

each of the regions gave them clues as to the donors of the

acquired regions, after which these predictions were experimen-

tally verified. In contrast, our method is able to simultaneously

partition and estimate the trees of a recombinant alignment. In

Figure 3 we see that our method predicts nearly the same

breakpoints with high posterior probabilities. The alignment

analyzed was composed of 9 species, covering the range of

virulent and commensal Neisseria subtypes, with length 1950 bp.

This analysis demonstrates the ability of our phylo-HMM to

effectively make use of alignments with relatively many taxa, a

notable advantage over Husmeier et al.’s method. For a

quantitative look at how detection power varies with taxa number,

see Figure 1. By using so many subtypes for comparison, Bowler et

al. were able to precisely determine which species were the donors

and recipients of the recombinant regions, and subsequently

verified these predictions in a laboratory setting. If they had been

limited to 4 taxa, the analysis would have had to be repeated many

times to cover all the possibilities. Biologically, the results in [17]

motivate a search for recombination within genes implicated in

resistance, in contrast to the multiple resistance gene transfer that

has been previously studied, and this is a possible application of

our method.

HIV-1 Whole-Genome Scans
In order to determine the effectiveness of our method on longer

alignments, we analyzed several datasets of entire genomes

(10,000 bp) of HIV-1 strains suspected of inter-subtype recombi-

nation. Our method is equally able to perform on the genome

scale as it is on the single-gene scale. In Neisseria argF, one of the

predicted recombinant regions was only 30 bp long, whereas in

HIV they range from 100 bp to 6 kb. This is a notable advantage

over sliding-window methods which have a fixed resolution to be

used over the whole scan. We demonstrate here that we are able to

determine breakpoints between both large and small recombinant

regions, making our method a promising tool for comparative

analysis of HIV and similar genomes. In analyzing data from

previous studies, we recovered all the breakpoints found by the

previous authors. In cases in which we found additional break-

points, we describe them below, but otherwise we omit the plots

for brevity.

HIV-1 CRF01_AE/B from Malaysia
Figure 4 depicts our results on a new Malaysian HIV strain

previously analyzed by Lau et al. [18]. We recover all six of the

breakpoints inferred by the original authors, who used a SimPlot/

Bootscanning approach, and also we find two new breakpoints

whose significance appears equal to those found previously. In

Figure 4, we show for comparison the results from bootscanning,

which Lau et al. used for their inference of recombination

breakpoints. Lau et al. provided precise breakpoint positions, and

these are plotted in our diagram as red dashed lines. Since

bootscanning typically removes gaps from multiple alignments

before analysis, the breakpoint positions do not align with Lau et al.’s

plot very well, and we provide rough mapping between plots. All six

of their breakpoint predictions are well-represented in our analysis.

Note the ‘spike’ in likelihood at around nt 5800 in Lau et al’s plot.

This region registered as strongly recombinant in our analysis,

depicted as the grey region in region nt 6415–6594. Lau et al.’s

characterization of the 1500 to 2000 region ( 2141 to 2856 in ours ) is

marked somewhat by uncertainty in the optimal tree topology; their

‘‘% trees’’ line wavers and is never very close to 100%, in contrast to

their inference of region 3000 to 5500, where the line remains

constant and close to 100%. This uncertainty suggests that there may

be additional recombination points within that region, as is more

conclusively shown in our diagram. We venture that the region

between nt 2141 and 2856 can be further partitioned by two more

breakpoints, at nt 2360 and 2553, shown in Figure 4.

Figure 3. Analyses of Neisseria argF (left) and penA (right) data. The left plot shows the analysis of Neisseria argF data with predictions from
Husmeier and Wright, who used a similar method, [12] in red dashed lines. We confirm each of their breakpoints and are able to better characterize
uncertain regions. Still, the region from 0–75 remains difficult to characterize. Different colors represent posterior probabilities of different tree-
topology states in the HMM, and sharp changes in color indicates likely recombination breakpoints. The right figure shows analysis of Neisseria penA
data, an alignment of 9 taxa of length circa 1900 bp, demonstrating our ability to analyze many taxa. We confirm with high posterior probabilities the
two breakpoints previously found by Bowler et al., shown in red [17].
doi:10.1371/journal.pcbi.1000318.g003

Detecting Breakpoints
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When using bootscanning, there is a lower limit to the size of the

recombinant region that can be found, which depends closely on

the size of the sliding window. The 3283–3617 region, at just over

300 nt, is clearly found, but smaller regions registered only as

spikes or showed uncertainty of the region. Our method is

probabilistic, and instead of defining sharp partitions of the

alignment, we allow the parameter training to gradually decide

which regions to use to train different trees. In our analyses, we

consistently found that our program is able to find small

recombinant regions better than others’ methods. In this case, as

the posterior probabilities become more certain of the alignment

partitioning, each of the grey regions contributes its information in

updating the grey tree. If a sliding window was being passed over

the alignment, each region would have to ‘fend for itself’ in

conveying its phylogenetic signal, and small regions would go

undetected. Because we use information from the entire alignment

during tree-optimization and sum over all possible tree-column

assignments, our approach is computationally more expensive but

allows collaboration between small recombinant regions, and,

consequently, improved detection.

HIV-1 A/C Recombinant 95IN21301 from India
We examined data from the original SimPlot paper by Lole et

al. In this work, the authors test five newly-sequence HIV-1 strains

from India, and find one of them to be recombinant [10]. We

examine this strain and confirm all five of their breakpoints and

offer one new prediction. SimPlot detects mosaic strains by

plotting the similarity of a query strain to other subtype reference

strains. The similarity is computed within a sliding window of

predefined size, according to various criteria (eg Hamming

distance, Jukes-Cantor distance, etc). The result is a visualization

of the closest relative of different regions of the query sequence.

This is similar in effect to bootscanning distance-based phyloge-

netic methods (eg Neighbor-joining), and suffers from many of the

same pitfalls. For example, in their whole-genome analysis of

strain 95IN21301, Lole et al. used a window size of 600 bp,

severely limiting the resolution of recombination detection. They

conclusively found breakpoints around nt 6400 and 9500 (since

gaps were removed, it is difficult to determine exact breakpoint

predictions from their plot alone). They then did a second, finer-

scale analysis with window size 200 bp on just the env and nef genes

which were suspected to be recombinant. Within each of these

single-gene regions they found an additional breakpoint in which

the query sequence more closely represented subtype C.

In our analysis, we confirmed all five of these breakpoints by

using our method (again, gap-stripping made exact comparison

somewhat limited), and our result is shown in Figure 5; break-

points previously found are in red, and new predictions in green.

Since we do not have to specify a window and use instead a

probabilistic weighting scheme, we are able to detect large regions

(eg the break at position 6402) just as well as shorter regions (eg

6969–7073, 9431–9585). Furthermore, the method uses informa-

Figure 4. The top figure shows our analysis of the strain CRF01_AE/B Malaysian HIV-1 with our recombination phylo-HMM. We
recover 6 previously predicted recombination breakpoints (red), and predict new regions in 6415–6594 and 2360–2553 (green). The grey and black
regions correspond to posterior probabilities of the trees shown in the lowest figure. Previous bootscanning analysis of the same data is shown in the
middle figure [18]. Since this previous analysis involved removing gaps from the alignment, we provide approximate mappings from our predictions
to theirs, as the red dashed lines between the two figures. They provided precise breakpoint locations in [18] based on consensus HXB2 strain, which
we plot in our figure as the vertical red lines. Note the spike in their plot that appears in our plot around 6500 as a recombinant region. The trees in
the lowest figure were those trained as hidden states in our HMM; the black state clearly shows the query strain clustering with CRF_AE, whereas the
gray tree shows a closer relationship with subtype B, in accordance with the previous findings.
doi:10.1371/journal.pcbi.1000318.g004
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tion from the entire alignment, rather than partitioning it by

windows. In this case, it’s possible that attempting to train a

phylogenetic tree T on the region R between nt 6969 and 7073

wouldn’t have yielded conclusive results. If region R has high

posterior probability of being generated by the ‘black’ tree that is

dominant from positions 1–6402, the following M-Step will

incorporate more counts from region R, and so when region R

is examined, the inference algorithm recognizes that these columns

‘fit’ perfectly with the black topology, which corresponds to having

high emission probabilities from the black HMM state. Also, a

short 83 bp region is found supporting grey topology, in which

95IN21301 clusters with subtype A. This region is short, and its

posterior probability never reaches 1, but a neighbor-joining tree

on this section, 4328–4401 supports this clustering. In this way,

our method is able to take into account information from the

entire alignment, rather than defining a rigid window which can

skip over small recombinant regions.

Three HIV-1 BF recombinants from Brazil
We considered data from Filho et al. [19]. Their data was

composed of 10 newly sequenced strains from Brazil determined

to have varying levels and structure of mosaicism, as determined

by bootscan analysis. We confirm their predictions (from Figure 2

of [19]) in strains PM12313, BREPM11871, and BREPM16704

and we find several more small recombinant regions. Each of the

new recombinant regions we find share breakpoints with other

strains we analyzed as well as strain CRF12_BF [20], suggesting

they could be hotspots for recombination activity.

As seen in Figure 6, strain BREPM12313 showed a clear

recombinant region from nt 1322–2571, previously characterized

by Filho, et al. Also, a region around 4700–5000 showed some

evidence of recombination, having the same topology as 1322–

2571. As this region’s posterior probability is more ‘spike-shaped,’

rather than having sharp borders between colors, it is difficult to

say whether or not it is an ambiguous region or a genuine

recombinant. It does share one crossover point with strain

BREPM11871, giving it somewhat more credibility. Performing

neighbor-joining on nt 4784–4945 (eg positions where posterior

probability is higher for grey) showed BREPM12313 clustering

with subtype F. At the end of the genome, another possible

recombinant region is seen, at around 9700. This region includes

only gaps for the query sequence, and thus the inference is not

reliable. Our method treats gaps as missing information, and when

they are present in small numbers reliability is not affected, but in

places like this where only gaps are present it can hinder the tree-

inference.

Strain BREPM16704 was previously predicted to have four

breakpoints, which we recovered with remarkably high posterior

probabilities for the tree-states. Figure 7 shows our results with

previous predictions in red. A new region, at 9281–9405, shows

high posterior probability and is common to BREPM11871 and

CRF12BF [20], making a strong case for a recombination hotspot.

In strain BREPM11871, all four breakpoints predicted by Filho

et al. were found, as well as a new crossover region, common to

BREPM 16704, at 9238–9361 (shown in green in Figure 8). The

break previously described at nt 5462 bp was predicted by our

method to be at 5277. To determine the more likely crossover

point, we performed 1000 bootstrapping trials on each of the

following regions: 4782–5277 (our prediction), 4782–5462 (Filho

et al.’s prediction), and 5277–5462 (the disputed region). We found

that the 5277–5462 region strongly supported BREPM11871

clustering with subtype B, with 98.2% bootstrap support.

Moreover, bootstrap support for query-F clustering appears higher

for our predicted region (99.9%) than the previous prediction

(85.1%). We conclude that our algorithm often outperforms

previous methods in accurately determining recombination break-

points.

Discussion

Recombination is an important force driving genome evolution,

and in several cases it is the primary force for diversity. As such,

methods which can detect and characterize recombination events

are crucial to the successful utilization of new sequence data. On

the single-gene level, recombination has been shown, in at least

one case, to be able to confer antibiotic resistance [17]. It could be

possible that inter-subtype recombination conferring drug resis-

Figure 5. Analysis of A/C Indian HIV-1 recombinant strain 95IN21301. In the original paper [10], gaps were stripped and so mapping
predictions to our plot is difficult. Instead, we show our confirmations in red, which correspond closely to the predictions seen in Figures 1 and 2 of
[10]. Our new prediction of region 4328–4401 is shown in green. Trees trained as hidden HMM states are shown underneath, with their colored boxes
corresponding to the colors in the plot, which in turn denote posterior probabilities of hidden states. Note that in the black tree the query sequence
doesn’t cluster with C, but the branch length from the (C,F) clade to the query strain is effectively zero, indicating a star-like topology in these areas.
doi:10.1371/journal.pcbi.1000318.g005
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tance is a common phenomenon, which could be investigated

using our methods. On the multiple-gene scale, Chlamydia

trachomatis has been shown to undergo frequent inter-subtype

recombination resulting in mosaic genomes [4] which complicate

subtype definition and classification. On the genome scale, HIV-1

has long been known to participate in recombination leading to

several identified circulating recombinant forms (CRFs). For these

clinically relevant pathogens, accurate detection of recombination

following introgression is important not only to guide disease

treatment methods, but also for tracing the epidemiological history

of the virus. In this work we present a novel method for

recombination detection which we believe to be more sensitive,

flexible, and robust in the aforementioned evolutionary scenario.

We combine two long-standing concepts, phylogenetics and

hidden Markov models, in a maximum-likelihood framework to

model topology changes over an alignment of related sequences.

We present a training scheme which attempts to solve the two

problems embedded within recombination detection simulta-

neously. We model evolution probabilistically with a continuous-

time Markov chain which directs the likelihood-based tree

construction algorithm [21]. Furthermore, our alignment-parti-

tioning is handled with posterior probabilities which take into

account each hidden state tree. By summing over all possible tree-

column assignments and not using sharp window cutoffs, we are

able to perform more precise breakpoint determination. We can

adjust the specificity and sensitivity of the model with the transition

matrix of the HMM, which dictates how much of a likelihood

change should cause the model inference to change states. We

believe this likelihood comparison to be superior to adjusting the size

of the window because it enables distant sections of the alignment

to combine their phylogenetic signal in training a hidden state of

the HMM.

Figure 7. Brazilian strain BREPM16704. We confirm breakpoints near 1322, 2571, and 5462 (red) and predict recombinations in 9281–9405 and
1017–1085 (green). Trees trained in hidden states are shown below the plot.
doi:10.1371/journal.pcbi.1000318.g007

Figure 6. Brazilian strain BREPM12313. We confirm Filho et al.’s breakpoints near 1322 and 2571 (red), and predict new recombinant regions in
nt 4784–4945 as well as 970–1049 (green). The second of these is short, but present in some form in all three strains analyzed here. The spike at 3851–
3909 is even shorter and is not represented in the other two species, leading us to not predict it as a likely recombinant region. Trees trained in
hidden states are shown below the plot.
doi:10.1371/journal.pcbi.1000318.g006
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Methods

The goal of this study is to start with a multiple alignment of

sequence data and find positions where recombination events

have occurred. This is done by recovering a set of phylogenetic

trees and a map that assigns a tree to each column. The points at

which neighboring columns have different tree assignments will

indicate possible locations of recombination events in evolutionary

history.

EM for Recombination-HMM
We use a hidden Markov model with tree topologies as hidden

states and alignment columns as observed states. The usual

method to train HMM parameters is by the specialization of the

EM algorithm known as the Baum-Welch algorithm. Our

transitions can be optimized in the usual way, but the emissions

are more difficult since their likelihood is governed by the tree

topologies in the hidden states, which are not easily optimized. For

this problem, we employ an EM method for trees, developed by

Friedman et al. [21], within our M-step for emission probabilities.

Their phylogenetic inference algorithm is implemented with such

improvements as simulated annealing and noise injection in

SEMPHY, available from their website at http://compbio.cs.huji.

ac.il/semphy/. We instead implemented our own ‘bare-bones’

version of this algorithm, without these improvements. To

progressively assign columns to trees, at each M-step, we weight

the expected counts of the tree-EM by the posterior counts of the

phylo-HMM. Intuitively, this guides the tree-maximization by

providing comparatively more information from regions which fit

a particular tree. We give a high-level description of our method

here and more detail is provided in Text S1. Figure 10 gives a

graphical representation of the overall task-flow. After running our

program on the alignment data to estimate parameters, a state

path through the HMM is computed from the final matrix of

posterior probabilities. We would like this path to represent a

balance between being biologically reasonable and highly

probable under our model. Thus, we propose maximizing the

sum of posterior state probabilities subject to a length cutoff by the

following method.

Let p be a path of length m through the state space of the HMM

(discounting start and end states), emitting the first m columns of

the alignment, with one state per column. Let M be the total

number of columns in the alignment. We say that the state path is

partial if mƒM, and complete if m~M.

Let pn denote the nth state in path p. The score of path p is

defined as S pð Þ~
Pm

n~1 P pn,n½ � where P i,m½ � is the posterior

probability that column m was emitted by state i.

We say a state path p is valid if all its breakpoints are more than e
apart. That is, there exist no m,nw1 with n{mve such that

pm{1=pm and pm=pn.

Finding the maximal valid p is solved by a simple dynamic

programming procedure, outlined in Text S1.

Since the EM algorithm has a tendency to converge to local

likelihood maxima which are not global maxima, especially when

initialized randomly, we ran the algorithm several times for each

dataset, took the highest-likelihood result for the set of trials, and

performed the above posterior decoding on the final distribution.

We show plots of our program’s performance when various aspects

of the model and input alignment are varied in Figure 9.

Algorithm: Recombination Phylo-HMM Training

Input: An alignment D, an integer K specifying number of trees,

a guess at the true tree topologies and transition matrix.

In practice, we initialized the transition matrix to have

values of .999 on the diagonal, and split the remaining

.001 among the remaining columns. Transition proba-

bilities are trained in the normal Baum-Welch manner.

We noted that inference was relatively robust to the

initial value of this parameter.

Figure 8. Brazilian strain BREPM11871. Confirmation of breakpoints 1322 and 2571, and 4782 (red dashed lines). We predict a region common
to BREPM16704 at 9238–9361 (green). Also, the breakpoint previously estimated at 5462 (red) we propose to be at 5277 (green dashed line). In
support of this, we provide bootstrapping values (1000 replicates) for the 3 different regions, indicated by horizontal colored lines above the plot. Our
prediction (orange) carries the highest value, 99.9%, whereas the previous (blue) is only 85.1%, since it includes a region (purple) that strongly
supports BREPM11871 clustering with subtype B, with value 98.2%. The small region at 985–1080 is difficult to confidently categorize, but its high
posterior probability for clustering with F and its agreement with the other two strains lead us to suspect a recombination. Trees trained in hidden
states are shown below the plot.
doi:10.1371/journal.pcbi.1000318.g008
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Output: A proposed MLE of K phylogenetic trees and the

transition matrix. This determines a posterior state

distribution, from which we deduce breakpoints.

E-Step Outer: Calculate the Forward, Backward, and posterior

probability arrays in the usual manner for HMMs, as in [22]. The

emission probabilities for each tree-state are computed by

Felsensteins Pruning algorithm [23]. Use the Forward and

Backward arrays to compute the expected transitions between

hidden states.

M-Step Outer:

1. Maximize the transition probabilities to obtain a new

estimate of the transition matrix.

2. Find a new set of trees, using model selection with

Structural EM:

E-Step Inner: For all K trees, compute expected counts of hidden

data Sij a,bð Þ (see below). Scale counts for tree k from column m
by the posterior probability that column m was emitted from

state/tree k.

M-Step Inner: Increase the likelihood of each tree topology with

Structural EM (see below) [21].

Figure 9. Resource use of the algorithm increases with model complexity. The algorithm converges in a reasonable number of EM steps, as
seen in the lower right plot. We observed no dependence of iterations to convergence and the model complexity, and so the lower right histogram
represents data concatenated from all simulation trials. The final bar in the histogram represents the proportion of trials which took 14 or more
iterations to converge.
doi:10.1371/journal.pcbi.1000318.g009
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The hidden data for each tree are defined as

Sij a,bð Þ~P xi~a,xj~b D, T ,tð Þj
� �

, the number of transitions

from nucleotide a to nucleotide b from node i to node j, for all

pairs of nodes. For neighboring nodes, this can be computed by

Elston and Stewart’s Peeling algorithm [24], and for non-

neighboring nodes, exact computation requires a dynamic

programming routine described in the original Structural EM

paper [21]. In this work, the authors showed that the likelihood

contribution of an edge between two nodes can be summarized as

a function of this count Sij a,bð Þ.
If we arrange these summaries in a weight matrix W in which

Wij represents the expected likelihood contribution resulting from

placing an edge from node i to node j, it is easy to see that the

maximum expected likelihood tree will be the topology which

maximizes the sum of its edge scores. Finding such a topology is

trivial if we do not require that the tree is binary, for instance by

maximum spanning tree algorithms. This (possibly non-binary)

tree is then transformed to a binary tree by operations which do

not alter the tree’s likelihood. In this way, Structural EM allows for

iteratively constructing higher likelihood trees by choosing the next

tree which maximizes the expected likelihood based on the current

tree. The reader is referred to Text S1 and the original Structural

EM paper [21] for more detailed discussions of this algorithm

which is crucial to our method.

In our methods, instead of allowing Structural EM to converge,

we allow two iterations using the same set of transition and

posterior probabilities, as a heuristic substitute for finding the true

hidden tree topologies.

Possible Extensions
We outline here a number of extensions which could grow

directly from this work. One of the strengths of the method is its

generality and flexibility, and so we believe it is ideally suited for

continued development.

N Sequence Evolution Model Currently we model gaps as

missing information (e.g., summing over possible values). This

is not realistic and may hinder phylogenetic reconstruction,

and consequently recombination inference. The simplest

possible next step is to treat a gap as a ‘5th nucleotide.’ While

this assumes independence among inserted and deleted

residues, it has been shown to aid phylogenetic reconstructions

more than treating gaps as missing characters [25]. Our code

uses the HKY85 substitution model, whose matrix exponential

is solved in closed form. A more general rate matrix

diagonalization and exponentiation is currently only imple-

mented in the Python prototype of our core dynamic program,

which we find to be too slow (the experiments reported in this

Figure 10. Phylo-HMM training algorithm. Input Alignment ) Model Selection/Parameter Estimation ) Recombination Inference.
doi:10.1371/journal.pcbi.1000318.g010
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paper used a core dynamic programming algorithm imple-

mented in C, for speed). This is, however, purely a technical

issue, and modeling gaps is entirely feasible. Similar elabora-

tions of the substitution model, such as codon evolution (if the

region of interest was protein-coding) or an extra hidden state

determining coding and non-coding regions, might provide

more accurate modeling of large genome-scale alignments.

N ARG-like trees and k The method currently does not

restrict the k-tuples of trees produced at each iteration. As

[26] point out, not all groups of trees can fit together to

produce an ARG. Restricting the tree groups would give a

more conclusive answer to the epidemiological recombination

question, and may even be helpful in informing the tree

selection heuristic. One can imagine a simple extension to our

method which attempts to learn k as well as producing

consistent trees:

At each training iteration:

- If the trees maximized in each hidden state are not consistent:

* First, find a set of trees in the usual manner, without regard to

whether they are consistent. Then, find the best-scoring set of

trees which are consistent. This is computationally intensive

but not intractable, since we can enumerate ordered spanning

trees for each of our hidden states from our E-Step. Once this

set has been found, if the likelihood difference between the

inconsistent and consistent set is deemed acceptable, accept

the trees and begin a new training iteration.

* Otherwise, if this likelihood penalty is deemed to large, we

recognize that the current k is inadquate to describe the data,

and so we add a new hidden state to the model, and continue

training.

A simpler way of estimating k would be to run a coarser

heuristic method (e.g., SimPlot) and seed the HMM with the

number of states that it finds.

Sequence Data
All sequence data used in this study was downloaded from

public databases (GenBank and LANL HIV Database). The

sequences were aligned with MUSCLE [27] with the default

parameters. Gaps in the alignments were treated as missing

information. Bootstrap analyses were performed with CLUSTAL

W [28] with 1000 replicates and the default parameters. The

GenBank identifiers for sequences used are as follows, grouped by

figure: Figure 3: argF: X64860, X64866, X64869, X64873; penA:

X59624–X59635; Figure 5: AF067158, AB253429, AF067159,

M17451, AF005494; Figure 4: AB032740, AB023804, AY713408,

EF495062; Figures 6–8: AF286228, AF005494, AY173956,

AB098332, AY173956, DQ085867, DQ085876, DQ085872.

The source code for our programs, though still being developed,

is available upon request or through CVS. For documentation,

contact, and download information See http://biowiki.org/

RecHMM

Supporting Information

Text S1 Results on simulated data; detailed descriptions of

training and decoding algorithms

Found at: doi:10.1371/journal.pcbi.1000318.s001 (8.74 MB PDF)
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