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Introduction

This tutorial is intended for biologists

and computational biologists interested in

adding text mining tools to their bioinfor-

matics toolbox. As an illustrative example,

the tutorial examines the relationship

between progressive multifocal leukoen-

cephalopathy (PML) and antibodies. Re-

cent cases of PML have been associated to

the administration of some monoclonal

antibodies such as efalizumab [1]. Those

interested in a further introduction to text

mining may also want to read other

reviews [2–4].

Understanding large amounts of text

with the aid of a computer is harder than

simply equipping a computer with a

grammar and a dictionary. A computer,

like a human, needs certain specialized

knowledge in order to understand text.

The scientific field that is dedicated to

train computers with the right knowledge

for this task (among other tasks) is called

natural language processing (NLP). Bio-

medical text mining (henceforth, text

mining) is the subfield that deals with text

that comes from biology, medicine, and

chemistry (henceforth, biomedical text).

Another popular name is BioNLP, which

some practitioners use as synonymous with

text mining.

Biomedical text is not a homogeneous

realm [5]. Medical records are written

differently from scientific articles, sequence

annotations, or public health guidelines.

Moreover, local dialects are not uncom-

mon [6]. For example, medical centers

develop their own jargons and laboratories

create their idiosyncratic protein nomen-

clatures. This variability means, in prac-

tice, that text mining applications are

tailored to specific types of text. In

particular, for reasons of availability and

cost, many are designed for scientific

abstracts in English from Medline.

Main Concepts

Terms
A term is a name used in a specific

domain, and a terminology is a collection of

terms. Terms abound in biomedical text,

where they constitute important building

blocks. Some examples of terms are the

names of cell types, proteins, medical

devices, diseases, gene mutations, chemical

names, and protein domains [7]. Due to

their importance, text miners have worked

to design algorithms that recognize terms

(see examples in Figure 1). The task of

recognizing terms is also called named entity

recognition in the text mining literature,

although this NLP task is broader and goes

beyond recognition of terms. Although the

concept of term is intuitive (or, perhaps,

because it is intuitive), terms are hard to

define precisely [8]. For example, the text

‘‘early progressive multifocal leukoenceph-

alopathy’’ could possibly refer to any, or all,

of these disease terms: ‘‘early progressive

multifocal leukoencephalopathy,’’ ‘‘pro-

gressive multifocal leukoencephalopathy,’’

‘‘multifocal leukoencephalopathy,’’ and

‘‘leukoencephalopathy.’’ To overcome

such dilemmas, text miners ask experts to

identify terms within collections of text such

as sets of selected Medline abstracts. These

annotations are then used to train a

computer by example, so that the computer

can emulate the knowledge experts deploy

when they read biomedical text. This

pedagogical method, ‘‘teaching by exam-

ple,’’ is a common approach used in many

text mining tasks and it is more generally

called supervised training. (Alternatively,

text miners create rules using expert

knowledge.) Thus, text miners rely heavily

on collections of text (corpora) that have

been annotated by experts (see compila-

tions of corpora: http://www2.informatik.

hu-berlin.de/,hakenber/links/benchmarks.

html;http://compbio.uchsc.edu/ccp/corpora/

obtaining.shtml). Before beginning a text

mining task, it is advisable to limit the

scope of the task to a corpus made of a set

of documents around the topic of interest.

In our case, a PML corpus could comprise

all the Medline abstracts that mention the

term ‘‘progressive multifocal leukoenceph-

alopathy,’’ because this is an unambiguous

term. Another relevant corpus to consider

could be the ImmunoTome [9], which is

focused on immunology.

Text miners are interested in terminol-

ogies that have been built manually.

These controlled terminologies have no-

table roles in biomedicine, for example,

the HUGO gene nomenclature, the ICD

disease classification, or the Gene Ontol-

ogy. Many of these terminologies are

more than just a flat list of terms. Some

include term synonyms (thesauri) or

relations between terms (taxonomies,

ontologies). For text miners, their useful-

ness comes from their ability to link to

information. Once a text is mapped to

one of these terminologies, a bridge is

opened between the text and other

resources. This usefulness justifies efforts

such as the National Library of Medi-

cine’s manual mapping of Medline ab-

stracts to the Medical Subject Headings

(MeSH) terminology. In our example,

MeSH can be used to make the PML

corpus more focused by restricting it only

to abstracts with the MeSH term ‘‘leuko-

encephalopathy, progressive multifocal.’’

Controlled terminologies can be used to

annotate results from experiments and

databases [10]. Text miners attempt to

make such mappings automatically. For

example, a task called gene normalization

consists in recognizing names of genes in

text and mapping them to their corre-
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sponding gene identifiers (e.g., Entrez

Gene ID). Thus, using gene normaliza-

tion it is possible to identify all the

abstracts in Medline that mention a given

gene from Entrez Gene [11].

Because there are many controlled ter-

minologies, some terminologies have been

created to map between them. For example,

the BioThesaurus [12] is a compilation of

protein synonyms from several terminolo-

gies. The Unified Medical Language System

(UMLS) [13,14] is a grand compilation of

more than 120 terminologies and close to 4

million terms. Despite UMLS’s size, all

controlled terminologies are incomplete,

because new terms are created too quickly

to keep them up to date. Furthermore, all

have gaps and areas of emphasis that conflict

with the needs of users.

Tools for Terms
Whatizit [15] is a tool that recognizes

several types of terms. It can be accessed

through a Web interface, Web services, or

a streamed servlet. Abner [16] is a

standalone application that recognizes five

types of terms: protein, DNA, RNA, cell

line, and cell type. More specialized term

recognition has been used, for example,

for databases such as LSAT [17] for

alternative transcripts and PepBank [18]

for peptides. Text miners have also used

terminologies to enrich PubMed’s search

capabilities. Some recent search engines

are semedico [19], novo|seek [20], and

GoPubMed/GoGene [21,22].

Relationships
After recognizing terms, the natural

next step is to look for relationships

between terms. The simplest method to

identify relationships is using the co-

occurrence assumption: terms that appear

in the same texts tend to be related. For

example, if a protein is mentioned often in

the same abstracts as a disease, it is

reasonable to hypothesize that the protein

is involved in some aspect of the disease.

The degree of co-occurrence can be

quantified statistically to rank and elimi-

nate statistically weak co-occurrences (see

Box 1). An example using GoGene [22]

can illustrate the use of simple co-occur-

rence, MeSH terms, and gene normaliza-

tion. The query ‘‘leukoencephalopathy, progres-

sive multifocal’’[mh] in GoGene returns all

the genes mentioned in Medline abstracts

annotated with the MeSH term for PML.

The genes that appear most often are

likely to be related to PML. Those that

appear disproportionately more often for

PML than for other diseases are likely to

be more specific to PML.

Better evidence than co-occurrence

comes from relationships that are de-

scribed explicitly [23]. For example, the

sentence ‘‘We describe a PML in a 67-

year-old woman with a destructive poly-

arthritis associated with anti-JO1 antibodies

treated with corticosteroids’’ [24] describes

an explicit link between PML and anti-

JO1 antibodies. We can simplify this

relationship into a triplet of two terms

Figure 1. Examples of term recognition. (A) Text marked with protein (blue), disease (crimson),
Gene Ontology (bright red), chemical (dark red), and species (red) terms by Whatizit [15] with the
whatizitEBIMedDiseaseChemicals pipeline. (B) Text marked with protein and cell line terms by ABNER [16].
(C) Protein terms identified by the prototype BIOCreAtIvE metaserver [68]. In the example shown, the
metaserver combines the output of systems hosted in three servers.
doi:10.1371/journal.pcbi.1000597.g001

Box 1. The strength of a relationship. The confidence in a fact that comes
from text can be qualified by the level of certainty of the assertion where the fact
was found or by the strength of the evidence pointed [71]. Since facts do not
stand alone, this confidence depends also on the fact’s consistency with related
facts [72]. In the case of co-occurrence of two terms t1 and t2, the simplest
confidence metric is the count c of texts that include both terms, c(t1 ^ t2) (for a
PPI example, see [73]). This measure can be normalized by the possibility of
random co-occurrences due to the sheer popularity of one or both terms. For
example,

c(t1 ^ t2)

c(t1)c(t2)
:

Pointwise mutual information (PMI) is similarly derived as

PMI(t1,t2)~log2

p(t1 ^ t2)

p(t1)p(t2)

� �
,

where p, in this case, is c divided by the total number of texts. More generally,
different measures can be drawn from the 262 contingency table that
encompasses the counts of texts that include the two terms, c(t1 ^ t2), only
one term (c(t1 ^ :t2) and c(:t1 ^ t2)), and none, c(:t1 ^ :t2). Using this
contingency table, Medgene [32] compared the merit of different statistical
measures for gene-disease associations such as chi-square analysis, Fisher’s exact
probabilities, relative risk of gene, and relative risk of disease. More heuristic
methods have been devised that use manually adjusted weights for different
types of co-occurrence [36].

PLoS Computational Biology | www.ploscompbiol.org 2 December 2009 | Volume 5 | Issue 12 | e1000597



and a verb: PML is associated with anti-JO1

antibodies. To create the triplet, the verb

can be identified with the aid of a part-of-

speech (POS) tagger. An example of a

POS tagger for biomedical text is MedPost

[25]. This triplet representation is power-

ful due to its simplicity, but it omits crucial

details from the original article, such as the

fact that the evidence comes from a

clinical case study.

A heavily studied area in text mining

concerns the relationships known as pro-

tein-protein interactions (PPI). Using the

triplet representation, PPI can be depicted

as network graphs with the proteins as

nodes and the verbs as edges (see Figure 2).

When analyzing text-mined interaction

networks, it is important to understand

the information that underpins them. For

example, interactions can be direct (phys-

ical) or indirect, depending on the verb

(examples of direct verbs are to bind, to

stabilize, to phosphorylate; examples of indi-

rect verbs are to induce, to trigger, to block)

[26]. The different nature of the protein

interactions described in the literature

reflects in part the experimental method-

ology employed and the nature of the

interaction itself. A common way to

capture the textual variations is by ex-

haustively identifying all the patterns that

appear and writing a set of rules that

capture them [27,28]. For example, a

simple pattern to capture phosphoryla-

tions might involve, sequentially, a kinase

name, a form of the verb to phosphorylate,

and a substrate name [29,30].

Tools for Relationships
To see co-occurrence in action, try

FACTA [31]. MedGene and BioGene

[32,33] use co-occurrence for gene prioriti-

zation. Gene prioritization tools such as

Endeavour [34] and G2D [35] use text as

well as other data sources. PolySearch [36]

uses heuristic weighting of different co-

occurrence measures and includes a detailed

guide to implementation and vocabularies.

Anni [37] uses textual profiles instead of co-

occurrence to measure relationship between

terms. For PPI, iHOP [38] is the most

popular tool. RLIMS-P [30] uses linguistic

patterns to detect the kinase, substrate, and

phosphosite in a phosphorylation. E3Miner

[39] detects ubiquitinations, including con-

textual information.

Discovery
Besides finding relationships, text min-

ers are also interested in discovering rela-

tionships. Due to the size of the literature,

scientists miss links between their work

and other, related work. Swanson called

these links ‘‘undiscovered public knowl-

edge.’’ In a classic example he found by

careful reading 11 links between magne-

sium and migraine that had been neglect-

ed [40]. One method to discover relation-

ships is based on transitive inference [41].

Simply stated, if A is linked to B, and B is

linked to C, then there is a chance that A is

linked to C. PPI networks are, at the core,

an example of transitive inference. Arrow-

smith [42] is a basic discovery tool that

compares two literature sets to find links

between them. Applying Arrowsmith to

the literature for PML and antibodies

yields the immunomodulator tacrolimus, a

calcineurin inhibitor, among the top hits.

Tacrolimus affects the production of

several proteins depicted in Figure 2, such

as IL-2.

Quality
The most common measure of output

quality in text mining is the F-measure,

which is the harmonic mean of two other

measures, precision and recall. These

three measures can be described with the

analogy of searching for needles in a

haystack. After a manual search of a

haystack, our hands end up full with

valuable needles but also with some useless

straws. Recall is based on the number of

needles found. High recall means that we

have found most of the needles for which

we were looking. Precision, however, is

based on the number of both needles and

straws. High precision means that we have

retrieved far more needles than straws.

Both high precision and high recall are

desirable, and a high F-measure reflects

both because it is the harmonic mean.

Optimizing the F-measure of a text mining

application is often different from optimiz-

ing the accuracy, because there are usually

few needles and large amounts of hay in

the haystack. An application that identifies

the whole haystack as being only hay is

quite accurate but misses all the needles.

It is important to ponder over the way

an application has been evaluated before

assessing its F-measure [43], and especially

to consider how realistic the evaluation

was. The F-measure is not an absolute

value. The larger a haystack is, the more

difficult it is to find needles. In other

words, a low F-measure might reflect a

harder task, not a worse application.

Moreover, text mined applications may

perform differently in different types of

text and this may be reflected in lower F-

measures than advertised. When the F-

measure attainable is not high enough,

one solution is to use text mining as a filter.

A filter needs high recall, but only

moderate precision, to reduce the amount

of hay without affecting the needles.

Figure 2. Example of text-mined PPI network. The nodes are proteins identified using the
query: ‘‘leukoencephalopathy, progressive multifocal’’[mh] antibody[pubmed] in GoGene [22]. The
query retrieves gene symbols mapped to PubMed abstracts that include the keyword antibody
and the MeSH term leukoencephalopathy, progressive multifocal (PML). The gene list was exported
to SIF format and the gene symbols extracted and used to query PPI using iHOP Web services
[69]. Only those iHOP interactions with at least two co-occurrences and confidence above zero
were considered. The network was plotted using Cytoscape [70]. The node color is based on the
number of interactions (node degree).
doi:10.1371/journal.pcbi.1000597.g002
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Filtering with text mining is used as a

preliminary step in databases such as

MINT [44], DIP [45], and BIND [46].

Filtering is followed by human curation,

which involves the review and assessment

of results to reduce hay and, hopefully,

provide feedback to improve the filtering.

The feedback loop between text mining

and curation can have an incremental

positive impact in output results [47].

Comprehensiveness
Doing comprehensive text mining

means considering all sources of informa-

tion—Medline and beyond. The abstract

conveys an article’s main findings, but

many other pieces of information are

elsewhere in the full text, figures, tables,

supplementary information, references,

databases, Web sites, and multimedia files.

In particular, the full text is critical for

information that rarely appears in ab-

stracts, such as experimental measure-

ments. A more comprehensive PML

corpus would include full text articles,

however despite the surge in open access

articles (see the Directory of Open Access

Journals, www.doaj.org; [48]), the major-

ity of published articles have access and

processing restrictions. PubMed Central

[49] is the main source of open access

articles, and the specialized search engines

BioText [50], Yale Image Finder [51], and

Figurome [52] search PubMed Central

figures and tables. A search for ‘‘progres-

sive multifocal leukoencephalopathy’’ in

the Yale Image Finder yields only one

figure, while a search for ‘‘PML’’ yields a

large number of hits, most of them not

relevant because PML is an ambiguous

acronym.

Text and DNA
Considering text as a sequence of

symbols as informative as a protein’s

DNA sequence is the underlying premise

of many text mining tools for bioinfor-

matics. For example, the linguistic simi-

larity between protein corpora (sets of texts

built around proteins) correlates with the

BLAST score between those same proteins

[53]. Text that is used in articles or

database annotations to describe a protein

can be used for protein clustering and to

predict structure [54], subcellular localiza-

tion, and function [55]. For example, a

protein corpus of a protein located in the

nucleus uses a vocabulary that is some-

what different from a corpus built around

a secreted protein. These vocabulary

differences can be used to predict the

subcellular localization of a protein of

unknown location. One way to measure

vocabulary differences is to represent the

texts as vectors of word counts. The word

counts can be normalized by the size of

the text they come from and the vectors

compared using, for example, Euclidean

distance (for more, see [56]). To reduce

vector dimensionality, some words can be

grouped using a method called stemming.

A simple example of stemming is convert-

ing plural nouns into singular form and

verbs into infinitive form (a widely used

stemming algorithm is the Porter stemmer

[57]). Additional simplification can be

achieved via tokenization, because some

words can be separated into constitutive

elements called tokens. In English, how-

ever, most words are a single token. An

example of a word of two tokens is don’t.

Text mining applications for bioinfor-

matics [58] include subcellular localization

prediction such as Sherloc and Epiloc

[59,60] and protein clustering such as

TXTGate [61]. Thus, text mining tools

can be used for annotating biological

databases in the same fashion other

bioinformatics tools are used.

More Tools
An extensive list of text mining applica-

tions is maintained in http://zope.bioinfo.

cnio.es/bionlp_tools/ [62]. A growing

number of tools are being developed

under a standard framework called

UIMA, which comprises NLP as well as

BioNLP tools [63].

Conclusion

Text mining tools are increasingly more

accessible to biologists and computational

biologists and these can often be applied to

answer scientific questions in combination

with other bioinformatics tools. Getting

acquainted with them is a first step

towards grasping the possibilities of text

mining and towards venturing into the

algorithms described in the literature. One

way to get started on this path is by

looking at examples such as [64–67].
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