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Abstract

A common assumption in comparative genomics is that orthologous genes share greater functional similarity than do
paralogous genes (the ‘‘ortholog conjecture’’). Many methods used to computationally predict protein function are based
on this assumption, even though it is largely untested. Here we present the first large-scale test of the ortholog conjecture
using comparative functional genomic data from human and mouse. We use the experimentally derived functions of more
than 8,900 genes, as well as an independent microarray dataset, to directly assess our ability to predict function using both
orthologs and paralogs. Both datasets show that paralogs are often a much better predictor of function than are orthologs,
even at lower sequence identities. Among paralogs, those found within the same species are consistently more functionally
similar than those found in a different species. We also find that paralogous pairs residing on the same chromosome are
more functionally similar than those on different chromosomes, perhaps due to higher levels of interlocus gene conversion
between these pairs. In addition to offering implications for the computational prediction of protein function, our results
shed light on the relationship between sequence divergence and functional divergence. We conclude that the most
important factor in the evolution of function is not amino acid sequence, but rather the cellular context in which proteins
act.
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Introduction

The potential for gene duplication to generate evolutionary

novelty was first noted in 1918 by Calvin Bridges (cited in [1]), and

the idea quickly found many supporters [2–4]. The advent of

protein-sequencing technologies in the 1950s and ‘60s confirmed

the presence of many gene duplicates, and once again researchers

championed the importance of duplication in evolution [5].

Today, the sequencing of hundreds of whole genomes has revealed

the ubiquity of gene duplicates in all domains of life, and a growing

number of empirical and computational studies have provided

direct evidence for the role of gene duplication in adaptation [6].

As the first protein-sequence data became available, Zuck-

erkandl and Pauling [7] made the distinction between ‘‘duplica-

tion-independent homology’’ and ‘‘duplication-dependent homol-

ogy,’’ what we now refer to as orthology and paralogy, respectively

[8,9]. They recognized that the paralogous a-, b-, and c-

hemoglobin chains present in all jawed vertebrates were less

functionally similar to each other than were orthologous copies

between closely related species, largely because they had been

diverged for a very long period of time. Despite the fact that this

and a small handful of other examples were confined to cases with

very deep divergences between paralogs, the idea that orthologs

were more similar in function than paralogs continued to be a

basic tenet of comparative studies. As the first large genome

sequencing projects were completed and thousands of previously

unknown genes had to be annotated, this idea re-appeared in the

seminal papers of the field now known as phylogenomics:

‘‘Normally, orthologs retain the same function in the course of

evolution, whereas paralogs evolve new functions, even if related

to the original one. Thus, identification of orthologs is critical for

reliable prediction of gene functions in newly sequenced genomes’’

[10]. Similar statements can be found in many papers (e.g. [11–

18]), and—as pointed out by Studer and Robinson-Rechavi

[19]—can even be found in the primer on phylogenetics at the

National Center for Biotechnology Information (NCBI) website

(http://www.ncbi.nlm.nih.gov/About/primer/phylo.html).

We refer to the hypothesis that orthologs are more likely to be

functionally similar than are paralogs as the ‘‘ortholog conjecture’’

(cf. [15]). In fact, only rarely has it even been noted that this idea is

a hypothesis about functional similarity [15,19]—in most studies it is

either assumed to be true or is supported by evidence from a small

number of genes. It is certainly the case that increased rates of

sequence evolution often follow gene duplication [20–23], but

rarely are these changes connected to functional differences (e.g.

[24]). Moreover, one of the three major hypotheses for the

maintenance of gene duplicates (subfunctionalization) does not

require any functional change, and another (gene dosage) even

prohibits such changes from occurring [6]. There have been

studies comparing rates of adaptive evolution in duplicates versus
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single-copy genes, but these have provided conflicting results

[25,26]; rates of adaptive evolution may also be poor predictors of

overall functional similarity [27]. We do not know of any study

that has systematically tested the ortholog conjecture.

A large number of methods have been developed to identify

orthologous relationships among proteins. These methods range

from simple pairwise comparisons, to standard phylogenetic tree-

building, to probabilistic assignment using Bayesian analyses [28–

30]. Several databases provide predicted orthologs [31–33], and

whole scientific meetings are devoted to their study [34]. While

the identification of orthologs is certainly highly relevant to many

evolutionary questions—especially in systematics—many of these

methods are explicitly made for functional inference. Note also

that in most cases these methods are only distinguishing between

orthologs and outparalogs [35]: that is, between an ortholog and

a paralog that duplicated before the speciation event separating

the orthologs, and that is therefore almost always more diverged

at the sequence level (Figure S1). Paralogs more closely related to

each other than either is to an ortholog (‘‘inparalogs’’; Figure S1)

are by definition co-orthologous to a single-copy gene from

another species, and neither represents the ‘‘true’’ ortholog

(though see [36] for more complex sets of relationships between

inparalogs).

In this paper we directly test the ortholog conjecture using

comparative functional genomic data. We use experimentally

derived functional assignments of more than 8,900 genes from

mouse and human, as well as a microarray dataset that includes 25

tissues in both mouse and human, to directly assess our ability to

predict function using orthologs and paralogs. We use this pair of

species both because they are two of the best-studied and best-

annotated organisms and because homologous relationships are

easy to identify due to their relatively recent divergence time.

Because paralogs are almost always either more- or less-related to

a focal gene than an ortholog (for inparalogs or outparalogs,

respectively), it is meaningless to compare the predictive power of

all orthologs to all paralogs; it seems obvious that closely related

orthologs will be more similar in function than distantly related

paralogs, and vice versa. Instead, we focus on the predictive power

of both orthologs and paralogs as a function of protein sequence

divergence. Our results demonstrate that paralogous genes from

the same species are often a much better predictor of functional

divergence than are orthologs or paralogs from different species,

even at lower sequence identities.

Results

Functional similarity between orthologs and all paralogs
Functional similarity was calculated between all pairs of

homologous proteins (i.e. those in the same gene family) in human

and mouse for which there is experimentally defined function for

both members of the pair. These pairs include 2,579 one-to-one

orthologs between human and mouse and 21,771 paralogous

comparisons of any type. The experiments used to annotate these

genes come from 12,204 unique published papers whose results

are collected in the Gene Ontology (GO) database; in a later

section we carry out an independent analysis using microarray

data to measure functional similarity. Figure 1 shows the

relationship between experimentally defined functional similarity

and protein sequence identity for both orthologous and paralogous

pairs.

Functional similarity can be measured for both the Biological

Process and Molecular Function categories defined in the GO

database. For the Biological Process category, Figure 1A shows

that the average functional similarity between human-mouse

orthologs was consistently between 0.4 and 0.5 over the entire

range of sequence identities. Similarly, for the Molecular Function

category, Figure 1B shows functional similarity was between 0.6

and 0.7 over the entire range. The relatively low levels of similarity

are at least partially influenced by the sparsity of annotation, but

this is unlikely to affect comparisons between classes of homologs.

Most strikingly, there is no correlation between functional

similarity and protein sequence identity for orthologs (Figure 1):

two orthologs have the same average functional similarity at 99%

as they do at 51% (see Discussion). This relationship holds no

matter the exact measure of sequence identity used; there is also

no relationship observed between selective constraint (i.e. dN/dS)

and functional similarity (Figure S2). In contrast, the functional

similarity between paralogs is positively correlated with sequence

identity for both ontologies, but shows a steeper decline for

Biological Process. In Figure 1, the protein pairs included in the

paralog category consist of both inparalogs and outparalogs; thus,

the distributions largely consist of inparalogs in the high sequence

identity ranges and outparalogs in the low sequence identity

ranges.

Contrary to a common assumption (the ‘‘ortholog conjecture’’),

the functional similarity between paralogs is significantly higher

than that between orthologs for high sequence identities ($70%

for Biological Process; P,1025; $80% for Molecular Function,

P,1024;Wilcoxon test) and functional similarity is nearly the same

for the different types of homologs as sequence identity approaches

50%. The curves do not provide comparable information for

sequence identities below 50% because of an insufficient number

of 1-to-1 orthologous pairs with very low identity.

Functional similarity between orthologs and subtypes of
paralogs

While the ortholog data can be easily understood from Figure 1,

the combination of several types of paralogs obscures the

interpretation of the functional similarity between paralogs. We

therefore separated paralogs into three further classes: (i)

inparalogs, (ii) within-species outparalogs, and (iii) between-species

outparalogs (Figure S1). Inparalogs and within-species outparalogs

include protein pairs from the same species (human-human or

mouse-mouse) whereas the between-species outparalogs include

human-mouse pairs only. Figure 2 presents results for these

Author Summary

The use of model organisms in biological research rests
upon the assumption that gene and protein functions
discovered in one organism are likely to be the same or
similar in another organism. Hence, the assumption that
experiments in mouse will tell us about the function of
genes in humans. A guiding principle in the assignment of
function from one organism to another is that single-copy
genes (‘‘orthologs’’) are statistically more likely to provide
functional information than are multi-copy genes, whether
in the same organism or different organisms. Here we have
tested this idea by examining genes with known functions
in human and mouse. Surprisingly, we find that multi-copy
genes are equally or more likely to provide accurate
functional information than are single-copy genes. Our
results suggest that the organism itself plays at least as
large a role in determining the function of genes as does
the particular sequence of the gene alone. This insight will
benefit the assignment of function to genes whose roles
are not yet known by widening the pool of appropriate
genes from which function can be inferred.

Testing the Ortholog Conjecture
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separate types of paralogs; note that the curves for orthologs are

identical to those in Figure 1. In total, there were 597 inparalogous

pairs compared, 11,334 within-species outparalogs, and 9,840

between-species outparalogs.

The functional similarity curves show a clear difference between

subtypes of paralogs. Inparalogs appear to be most functionally

similar to one another, and their functional similarity is positively

correlated with sequence identity in both ontologies. Within-

species outparalogs have a slightly steeper decline than inparalogs,

but are significantly more functionally similar than either between-

species outparalogs or orthologs. The between-species outparalogs

show trends most similar to orthologs. In fact, in the Biological

Process category, these two curves are nearly identical. However,

in the Molecular Function category, the more sequence-similar

outparalogs have slightly higher functional similarity than do

orthologs, while the less-similar outparalogs have lower functional

similarity than do orthologs. In the Discussion we propose an

explanation for these relationships.

Family-based analyses
In addition to a large-scale view of functional similarity, it is also

useful to take a family-based view in order to compare the

predictive power of paralogs and orthologs within the same family.

We asked, for a given family, first whether an ortholog or a

paralog was more similar at the sequence level, and then whether

an ortholog or the particular paralog was more similar at the

functional level.

The counts for the groups were obtained as follows: for each

family, only one target protein (functionally annotated) was

selected uniformly randomly from all proteins with at least one

ortholog and at least one paralog in the family, and all its

functionally annotated homologs were collected. We then asked

whether at least one of the paralogs had higher sequence similarity

than the ortholog, and then whether it had higher or lower

functional similarity. This analysis required functionally annotated

triples within gene families (i.e. the target gene, an ortholog, and a

paralog of any type); thus 1-to-many and many-to-many

orthologous relationships were included in this analysis. In cases

where multiple genes were co-orthologous to the target, the

ortholog having the highest sequence identity with the selected

target protein was used for comparison. Note that each gene

family was counted only once in this analysis, preventing families

with large numbers of lineage-specific duplications from biasing

the results. Finally, to ensure that the choice of target protein did

not unduly affect the results, we repeated the analysis 100 times,

choosing a new target protein from the 1145 unique families

containing experimentally annotated triples each time (685 with

Biological Process and 711 families with Molecular Function

annotation). Table 1 summarizes counts in the Biological Process

and Molecular Function ontologies.

Figure 1. The relationship between functional similarity and sequence identity for human-mouse orthologs (red) and all paralogs
(blue). Standard error bars are shown. (A) Biological Process ontology, (B) Molecular Function ontology.
doi:10.1371/journal.pcbi.1002073.g001

Figure 2. The relationship between functional similarity and sequence identity for human-mouse orthologs (red), inparalogs
(green), within-species outparalogs (blue), between-species outparalogs (purple). Standard error bars are shown. (A) Biological Process
ontology, (B) Molecular Function ontology.
doi:10.1371/journal.pcbi.1002073.g002

Testing the Ortholog Conjecture
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The family-based analysis showed similar trends to those

observed in previous sections. In the Biological Process category,

if the orthologous sequence was more similar to the target protein,

the ortholog had higher functional similarity to the target protein

than all of its paralogs in only 33.460.1% of the cases (mean 6

standard error). In contrast, in 82.960.4% of protein families in

which a paralogous sequence was most similar to the target

protein, it was also functionally most similar. In the Molecular

Function category, the observed difference between orthologs and

paralogs was similar: an ortholog had higher functional similarity

to the target protein than all of its paralogs in only 49.560.1% of

the cases. On the other hand, if the most similar sequence to a

target protein was a paralog, the paralog was functionally most

similar to the target protein in 71.160.5% of families.

Intra- vs. interchromosomal duplications
It is known that paralogous sequences residing on the same

chromosome are more likely to undergo non-allelic gene

conversion in mammals [37], and are therefore more likely to

maintain similar function due to concerted evolution. To

explore this possibility, we examined the relationship between

functional similarity and sequence identity for two types of gene

duplication events: (i) those where the duplicated gene remains

on the same chromosome (intrachromosomal), and (ii) those

where the duplicated gene is moved to a different chromosome

(interchromosomal). Figure 3 shows that a duplication event

that places the new gene on a different chromosome reduces a

protein’s chances of retaining the original function. Interesting-

ly, the extent of the functional divergence is statistically

significant only in the Biological Process category, suggesting

that while the biochemical function may be retained, the cellular

context in which this function is utilized for a newly copied gene

may be significantly different. Thus, gene transposition appears

to be a viable evolutionary mechanism for mixing and matching

protein molecular functions to attain more complex cellular

functionalities.

Case studies
We examined two families in further detail. (1) We compared

the functional similarity of orthologs and paralogs in the full set of

nuclear receptors in human and mouse, a well-studied group of

proteins. Out of the 48 and 49 nuclear receptors identified in

human and mouse, respectively [38], the Biological Process dataset

contained 40 (20 human and 20 mouse) receptor proteins

functionally annotated, and the Molecular Function dataset

contained 46 (23 human and 23 mouse) functionally annotated

proteins; these data include both orthologs and outparalogs, but

unfortunately no inparalogs have been annotated. We counted the

number of times either the ortholog or a paralog had higher

functional similarity with each target protein in both the Biological

Process and Molecular Function datasets (Table S1). In both

datasets, a paralog was more functionally similar than the ortholog

for the majority of the targets, and the specific paralog with the

highest functional similarity was most often an outparalog in the

same species (Table S1).

(2) Another example of a violation of the ortholog conjecture is

found in the mitogen-activated protein kinase kinase kinase kinase

2 (MAP4K2) family. MAP4K2 is a serine/threonine protein

kinase, expressed in lymph nodes, but also in other tissues such as

lung, brain, and placenta [39]; its detailed function, however,

remains incompletely understood. The MAP4K2 gene family

consists of 1 mouse ortholog (mMAP4K2), 3 human outparalogs

(hMAP4K1, hMAP4K3, hMAP4K5), and 3 mouse outparalogs

(mMAP4K1, mMAP4K3, mMAP4K5) (Figure S3). Of these homo-

logs, five have been experimentally annotated by functional terms

in the Biological Process category. While the human hMAP4K2

shares 94% sequence identity with its ortholog in mouse, their

functional similarity is only 5% (45 annotated terms in human, 13

in mouse). In contrast, its functional similarity with its own

outparalogs was 69% on average, including 82% similarity with

hMAP4K3, a within-species outparalog.

Addressing potential biases in the data
We analyzed multiple potential biases in the data that could

impact the conclusions of this work. They included: 1) Functional

annotation that is organism-specific, i.e. certain functions may be

studied only in humans while others may be studied only in mice.

To address this possibility we repeated our analysis using only the

subset of functions studied in both human and mouse; there was

no significant difference in the shape of the functional similarity

curves relative to that shown in Figures 1 and 2 (Figure S4). 2)

Different experimentalists may study protein functions at different

levels of specificity according to the GO, resulting in functional

annotations at very different levels of resolution. To address

different specificities/depths of protein annotation, all functional

terms deeper than the lowest maximal term depth over all proteins

in a family were removed. That is, proteins annotated with more

specific terms were generalized to the annotation depth of the

protein that was annotated using the most general terms (the root

node was excluded from the analysis). Again, the results of this

analysis showed no significant differences in the shape of the

functional similarity curves (Figure S5). Repeating our analysis

using the generic GOslim ontology also did not affect the results

(data not shown). 3) We hypothesized that proteins that were

annotated in the same publication may have higher chances of

being associated with the same functional terms, presumably due

to unique inclinations of individual researchers. To get around this

Table 1. Family-based analysis using functional similarity and sequence identity.

Biological Process Molecular Function

Paralog has higher
functional similarity

Ortholog has higher
functional similarity

Paralog has higher
functional similarity

Ortholog has higher
functional similarity

Paralog has higher
sequence identity

17.460.2 3.660.1 17.760.2 7.260.1

Ortholog has higher
sequence identity

442.460.8 221.660.8 346.860.9 339.360.9

Each field shows the average number of protein families (6standard error), out of 100 runs with randomly selected target proteins, in which the row and column
conditions were satisfied.
doi:10.1371/journal.pcbi.1002073.t001
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potential bias, we repeated our analysis while requiring that all

proteins used in homologous pairs be annotated in a separate

publication (based on the PubMed Identifier assigned to each

functional annotation in the GO database). This analysis again

showed no significant differences in trends (Figure S6). However, it

did show that there are preferences toward the same annotation

when multiple homologs were functionally annotated in the same

article: functional similarity went up 0.1–0.3 across orthologs and

paralogs for both Biological Process and Molecular Function. 4)

We were concerned that different experimental methods would

bias the set of annotation terms assigned to each gene. We

therefore compared only those protein pairs that were annotated

using the same GO evidence codes (Figure S7A). For Biological

Process, there is very little difference from the complete dataset.

For Molecular Function, there is a significant difference in the

functional similarity of orthologs, increasing from an average of

0.65 to 0.85. However, we still observe higher levels of functional

similarity for paralogs (Figure S7A). We also repeated our analyses

without including the TAS (Traceable Author Statement) evidence

code and found no qualitative difference in results (Figure S7B). 5)

Finally, we speculated that it is possible that there is a reporting

bias that may have influenced the functionally annotated

orthologs, such that the genes present in the GO database are a

non-representative subsample of all orthologous pairs between

human and mouse. For instance, it is possible that experimental

annotations for highly conserved orthologs are under-represented

in the database because it is assumed that their functions are also

highly conserved. However, the average sequence identity

between 1-to-1 orthologs used in our analyses was similar to 1-

to-1 orthologous pairs that were not functionally annotated and

were therefore not included in our analysis (0.879 vs. 0.859 for

Biological Process; 0.889 vs. 0.849 for Molecular Function). Thus,

we believe that it is unlikely that a substantial reporting bias

significantly influences the results of our analysis.

Microarray-based measures of functional similarity
Because all of the above analyses are based on user-reported or

curator-based determinations of function, they may still be affected

by individual researcher biases that we cannot control for. The

only way to avoid this potential problem is to obtain a measure of

function that is not dependent on an individual’s interpretation of

experiments. Therefore, we conducted a parallel analysis of the

relationship between protein similarity and functional similarity

using microarray data from 25 homologous tissues in human and

mouse [40].

We used the correlation in levels of normalized gene expression

across tissues as our measure of functional similarity (see

Materials and Methods). Our final microarray dataset included

10,863 orthologs and 21,780 paralogous comparisons of all types,

consisting of 2,014 inparalogs, 10,396 within-species outparalogs,

and 9,370 between-species outparalogs. Figure 4 shows the

relationship between functional similarity and protein sequence

identity for all pairs of genes represented in the microarray

dataset. Consistent with all of the results obtained from the GO

experimental dataset, microarray-based functional similarity

shows a generally higher similarity between paralogs than

orthologs ($70%; P,0.01; Wilcoxon test) and a strong positive

correlation with the sequence identity of paralogs but not

orthologs. Our results were not dependent on the distance

measure used to quantify functional similarity (see Materials and

Methods). In addition, we again find that within-species

paralogs—whether inparalogs or outparalogs—show the stron-

gest relationship between sequence similarity and functional

similarity.

The microarray data used here have also been utilized in a

number of previous evolutionary studies, though these studies

largely focused only on paralogs [41], only on orthologs [42], or

on comparisons between orthologs with and without lineage-

specific paralogs [43]. While these previous studies did not

present their analyses in exactly the same way as we have done,

we stress that for both paralogs and orthologs our results are in

strong quantitative and qualitative agreement with these studies.

For both the relationship between protein similarity and

functional similarity, and for the average correlation in

expression patterns, our results are consistent with previous

results; that is, nothing about the way we have conducted our

analysis has biased us toward our finding. We have largely

followed the proscriptions of these previous papers for

normalizing the microarray data and in controlling for cross-

hybridization—which all of these previous papers agree does not

appear to be an issue in these data.

Because there is no interpretation or assignment of functional

terms needed to obtain these results, we believe they strongly

support all of our previous analyses. It should also be noted that

very few of the above GO-based analyses used expression

evidence: in particular, there were only a total of 310 annotations

that used the IEP evidence code for either the Molecular Function

or Biological Process categories. Therefore, these two datasets are

largely non-overlapping and provide independent support for the

results.

Figure 3. The relationship between functional similarity and sequence identity for paralogs on the same chromosome (blue) and on
different chromosomes (red). Standard error bars are shown. (A) Biological Process ontology, (B) Molecular Function ontology.
doi:10.1371/journal.pcbi.1002073.g003
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Discussion

The accelerating pace of whole-genome sequencing coupled

with the rapid—but relatively slower—pace of functional geno-

mics projects has required commensurately fast methods for

computational annotation of genes and proteins. Because

functional studies are disproportionately concentrated in only a

handful of model organisms, the working model for computational

annotation has been transfer-by-similarity [44], a principle in

which experimentally determined functional annotation from a

characterized protein is assigned to an uncharacterized protein if

their sequence similarity is greater than some pre-specified

threshold (e.g. sequence identity, E-value). With some caveats

involving local vs. global sequence alignments (especially for multi-

domain proteins), the basic tenet of such function transfer is that

proteins that are closely related (and therefore similar in sequence)

tend to have similar functions. Several recent papers have

discussed the details of such annotation transfer, attempting to

find similarity thresholds necessary for accurate inference of

enzymatic functions [45,46]. More sophisticated prediction

algorithms, exploiting not only sequence similarity but also the

structure of functional ontologies, have also been proposed

[47,48]. The field of phylogenomics [10,13] uses evolutionary

relationships as a guide to function prediction from sequence,

preferentially transferring annotations between orthologs over

paralogs because they are believed to be more functionally similar

(the ortholog conjecture). Our study is the first to address this

assumption using experimental evidence from 12,204 unique

papers as well as an independent microarray dataset.

The evolution of gene function
Our results strongly suggest that the ortholog conjecture is not

correct between human and mouse: given equivalent levels of

protein divergence (or even slightly higher divergence), paralogous

genes from the same species (either human or mouse) are better

predictors of function than are orthologs from the other species. A

similar result was previously obtained among yeast, fly, and worm

when comparing conserved protein-protein interactions between

homologs within the same species and homologs from different

species (although this study did not distinguish among orthologs,

inparalogs, and outparalogs [49]). We ensured that our analyses

were not affected by a large number of possible biases. We

considered biases due to the ontology terms used in human and

mouse, the depth of annotation terms used, whether homologs

were studied in the same or different publications, biases due to

differences in experimental procedures, and even biases in the

user-defined interpretation of function. We found several interest-

ing biases in the data—notably, that functions of homologs of any

kind reported in the same publication or using the same

experimental technique were more likely to be similar than a

random pair of homologs of equal protein divergence—but none

of these biases affected the qualitative patterns found in our data.

In addition to a general lack of support for the ortholog

conjecture, our analyses revealed several surprising patterns. One

of the most surprising is the lack of any discernible relationship

between protein similarity and functional similarity for orthologs,

whether considering Biological Process or Molecular Function

annotations (Figure 1). Average functional similarity for orthologs

is between 60–70%, regardless of level of divergence. Even for

orthologous proteins approaching 100% identity, there is still

relatively little overlap in annotation. While this fact may at first

seem surprising, it is important to consider how individual

experiments are conducted. Almost never are single genes (or

proteins) from both mouse and human isolated and then

compared in the same in vitro assay. Instead, the vast majority of

experiments included in our dataset are conducted in vivo (e.g.

knockouts, genetic crosses), in situ (e.g. tissue-specific expression), or

in vitro but with species-specific conditions and/or interactors (e.g.

yeast two-hybrid). Function is therefore assessed in the context of

individual organisms, not in a common laboratory setting.

The importance of cellular and organismal context in defining

protein function may go a long way toward explaining many

aspects of our results, including the lack of a relationship between

functional and sequence similarity for orthologs, the presence of

this relationship for paralogs, and the differences between different

types of paralogs (in-/outparalogs). We propose that the key to

understanding the rate at which protein function evolves is not

how quickly the protein sequence itself evolves, but rather the rate

at which its cellular context—including directly and indirectly

interacting molecules—evolves. To further explain this hypothesis,

note that all of the orthologous pairs studied here are the same age:

that is, they all share a last common ancestor at the split between

the human and mouse lineages, regardless of their level of

sequence identity. Unlike orthologs, the paralogs studied here

shared common ancestors at many different times in the past, with

some paralogs having split only a few million years ago while

others split .100 million years ago. We propose that this

difference in divergence times is the key to understanding the

Figure 4. The relationship between the correlation in gene expression across 25 tissues (as measured by microarray) and sequence
identity for (A) human-mouse orthologs (red) and all paralogs (blue), and (B) human-mouse orthologs (red), inparalogs (green),
within-species outparalogs (blue), between-species outparalogs (purple). Standard error bars are shown.
doi:10.1371/journal.pcbi.1002073.g004
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difference in relationships between functional and sequence

similarity. The orthologs all share the same age—and therefore

the same average functional similarity—but the paralogous pairs

are of many different ages—and therefore different functional

similarities.

Why should proteins of the same age share the same level of

functional similarity? While there is no direct role for ‘‘time’’ in

evolution that is not tied to mutation, we suggest that what time

represents here is the evolution of the cellular context: the sum of

the evolutionary changes over all of the directly and indirectly

interacting molecules. If this context evolves at a steady rate (i.e.

the average amount of functional change among all of the

interacting molecules remains relatively constant), then protein

function will appear to evolve at a steady rate, a rate largely

disconnected from the level of an individual protein’s sequence

divergence. Several pieces of evidence support this conjecture.

First, our results above show that even orthologous proteins that

are 100% identical have different functions. Since it is obvious that

the proteins themselves have not changed, the change must be due

to regulation or downstream effects of these molecules. For

example, Liao and Zhang [50] found that .20% of genes that are

essential for viability in humans are not essential in mouse. It is

unlikely that changes to the proteins themselves have made them

essential or not, but rather that their context in cellular and

organismal networks has evolved [50]. Second, we find a weak

relationship between synonymous sequence identity—a good

measure of divergence time [51]—and functional similarity for

paralogous pairs (Figure S8). This supports the idea that time is a

key factor in the evolution of protein function. Finally, we again

note that there is higher functional similarity among inparalogs

and within-species outparalogs than there is for either orthologs or

between-species outparalogs. Because both inparalogs and within-

species outparalogs are present in the same organism, it is highly

likely that they share a much more similar cellular context. And

because this context is highly similar, the functions of these

proteins are also likely to be more similar. Our conclusion is that

the most important aspect of functional similarity is not sequence

similarity, but rather contextual similarity. A straightforward

experiment to test this proposal would involve collecting functional

data for orthologous pairs of different ages to see whether there is

the predicted relationship between sequence identity and func-

tional similarity. We would expect to see the same pattern in any

pair of orthologs considered, of any age (cf. [49]).

Some researchers may be concerned that the function being

measured here is not independent of the organism, and is therefore

not appropriate for testing the ortholog conjecture. Of course it is

possible that if measured in a common in vitro environment

orthologous proteins really would be more functionally similar

than paralogous proteins—after all, studies of rates of protein

sequence evolution suggest an increased rate of sequence change

among paralogs [20–23]. However, this is not the manner in

which the vast majority of functional data is collected, and would

therefore be little solace in applying the ortholog conjecture to real

data.

Implications for protein function prediction
The results of our study suggest that neither sequence similarity

nor identification of orthologous assignments alone can be

considered an accurate predictor of protein function. We find

that orthologous proteins between human and mouse share a

constant level of functional similarity over a wide range of (global)

sequence identities, while the functional similarity between

paralogs is dependent on the type of paralogy, level of sequence

identity, relative chromosomal location of duplicated genes, and

organismal context. We find that sequence identity thresholds as a

means of function transfer are generally applicable only to within-

species paralogs. Moreover, these thresholds depend on the type of

paralogy and a specific duplication event, with inparalogs typically

having lower thresholds for similarly accurate functional transfer

than outparalogs. On the other hand, in the absence of within-

species paralogs, our data indicates that orthologs and between-

species outparalogs are similarly accurate in predicting protein

function. In general, however, such relationships cannot be

deemed ideal for function transfer of GO terms, as the average

accuracy of predictions using orthologs and between-species

outparalogs were consistently lower than 0.70 (Figure 1). Though

many computational methods use only orthologous genes for

function prediction, for methods that can be tuned to exploit

different types of evolutionary relationships (e.g. SIFTER; [18])

our results can be used to improve prediction accuracy.

Functional annotation of genes with unknown function is often

carried out by researchers working on particular proteins. In these

cases—far from being an automated process of ortholog

identification and functional transfer—individual researchers

may examine the function of many closely related homologs

before making decisions about functional annotations, or even

before designing experiments. If they are available, researchers

may be using the functions of both orthologs and paralogs to guide

their own functional annotations. When inparalogs are available

and happen to have the highest sequence identity, these genes may

actually be the ones having the largest influence on the functional

annotations in common databases; such a process of individual

functional inference would create a pattern much like the one we

observe. While our analysis of microarray data is consistent with

the high functional similarity of within-species paralogs and is free

from individual researcher or curator bias, we cannot rule out the

possibility that such bias exists in widely used databases. However,

such biases are likely to only apply to organisms already being

studied by a large community of researchers in molecular biology.

Many new genomes are being sequenced solely for the

evolutionary or environmental importance of a species, and are

therefore unlikely to have much prior data on gene and protein

function. In these cases, our results suggest that functional transfer

need not be dependent on the identification of orthologous genes

in a model organism.

There are 31,479 proteins in the Swiss-Prot database with

experimentally characterized function and 40,951 proteins in the

Gene Ontology database (data as of February 1, 2010). The

functions of this relatively small group of proteins have been

transferred to a much larger number of homologous proteins and

propagated across biological databases, often with gross inaccu-

racies [52]. Inaccurate functional annotation via computational

methods can influence a wide variety of biological conclusions: for

instance, any analysis looking for enriched or over-represented

GO terms. We suggest that such studies should be cautiously

interpreted until the prediction of protein function reaches the

sensitivity and specificity necessary for accurate functional

inference.

Finally, it must be mentioned again that our study has only

addressed protein functions in two organisms, human and mouse.

A fuller picture of the accuracy of protein function prediction

would include many pairs of species from across the tree of life (see

[49] for similar results from comparisons among yeast, fly, and

worm). However, our study includes human and mouse: if the main

purpose of biomedical research into model organisms is to

understand the function of genes and proteins in humans, then

we might expect these studies to be predictive of function in

humans. While our results certainly show that mouse proteins are
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predictive of the function of human proteins (Figure 1), they also

strongly suggest that the best model organism is ourselves.

Materials and Methods

Comparative genomics data
Ensembl Compara (release 49, March 2008) gene trees were

used to identify all homologous human-human, mouse-mouse, and

human-mouse gene pairs. Though there are many methods and

databases available for identifying homologous relationships, they

provide qualitatively similar results [53]. Ortholog assignments:

Ensembl homology descriptions ‘‘ortholog 1:1’’ and ‘‘apparent

ortholog 1:1’’ were used to annotate orthologous pairs. The

apparent orthologs were treated as 1-to-1 orthologs since this

description can result from a situation where a gene duplication is

actually followed by gene losses in both lineages, but more often

occurs because of an incorrect tree topology and incorrect

duplication node labeling [33]. Paralog assignments: all between-

species paralogs were treated as outparalogs. To distinguish

inparalogs from outparalogs among the within-species paralogs,

we examined the branch on the tree where the gene duplication

took place to determine if the duplication occurred subsequent to

the human-mouse speciation event. While the Compara dataset

does not include bootstrap values for each node in the gene tree,

incorrect trees will only conflate orthologs with between-species

outparalogs and inparalogs with within-species outparalogs

(because species assignments will never be mistaken). Though we

cannot control for each type of error, the fact that within-species

gene pairs cannot be confused with between-species gene pairs (of

any kind) means that our main results are robust to the exact tree

topologies. In total, our dataset consisted of 26,467 gene trees

containing 22,137 human and 22,039 mouse genes (Dataset S1).

Protein function data
Biological Process and Molecular Function protein function

information was retrieved from the Gene Ontology (GO)

database. Only the curated GO term annotations were used in

the analysis. These include all experimentally inferred annotations:

inferred from direct assay (IDA), expression pattern (IEP), genetic

interaction (IGI), mutant phenotype (IMP), and physical interac-

tion (IPI) evidence codes. We also included the traceable author

statement (TAS) and inferred by curator (IC) evidence codes.

Since both the Biological Process and Molecular Function

ontologies are represented by directed acyclic graphs (DAGs),

the original functional terms were propagated towards the root of

each DAG (with the root node excluded) thus producing a

complete set of terms for each protein. The GO seqdblite database

(release 2009-01-18) was used for term propagation. In total, 4,854

human and 4,089 mouse proteins had functional annotation in at

least one GO DAG. This reduced the number of gene trees with at

least two functionally annotated genes to 2,448; the total number

of ortholog pairs is 2,579, inparalog pairs is 597, within-species

outparalogs is 11,334, and between-species outparalogs is 9,840

(Dataset S1).

Microarray data
Microarray data presented in Su et al. [40] was retrieved from

the Gene Expression Omnibus, accession GSE1133. The data

were collected on three different microarray platforms, two from

human and one from mouse. The two platforms from human,

GPL96 and GPL1074, consist of expression values in 78 tissues for

22,283 and 11,391 probesets respectively. The mouse platform,

GPL1073, consists of expression values in 61 tissues for 31,373

probesets. 25 of these tissues are common between human and

mouse and were used here. In order to create an updated mapping

between probesets and genes, individual probe sequences (there

are 16 per probeset) were searched against Ensembl transcripts

using exact matches returned from BLAST. Only probesets that

perfectly matched a gene’s sequence and did not have probes

matching any other gene were considered. When multiple

probesets uniquely matched to the same gene, the values were

averaged after normalization to give a single genic expression

value.

Expression data was normalized within each platform individ-

ually. Expression values were first normalized within each

individual tissue using the z-score method, forcing expression

values within a tissue to have a mean of 0 and a standard deviation

of 1. After expression values were normalized within a tissue, they

were again normalized for individual probesets across tissues,

forcing expression values for a single probeset to have a mean of 0

and a standard deviation of 1 across tissues. Specifically, if we

represent the expression value of a probeset i in a tissue j as sij, we

can define the tissue-normalized expression value, tij, as:

tij~
sij{mj

sj

,

where mj and sj are the mean and standard deviation of expression

values in tissue j. The final normalized expression value for a

probeset i in tissue j, nij, is defined as:

nij~
tij{mi

si

,

where mi and si are the mean and standard deviation of ti? values

for gene i in all tissues. After these two steps of normalization, we

averaged probesets that match to the same gene and then

averaged duplicate samples for the same tissue.

In total, we were able to obtain expression data for 15,907

human genes and 15,552 mouse genes. This reduced the number

of gene trees with at least two functionally annotated genes to

7,495; the total number of data pairs used for orthologs is 10,863,

for inparalog pairs is 2,014, for within-species outparalogs is

10,396, and for between-species outparalogs is 9,370 (Dataset S2).

Calculation of similarity
We calculated protein sequence identity by using Needleman-

Wunsch alignments of protein sequences with the BLOSUM62

scoring matrix (gap opening penalty = 11; gap extension penalty

= 1). We divided the number of matching residues by the length of

the alignment. For the calculation of dN/dS and dS, we used the

Goldman and Yang method [54].

To calculate functional similarity for the GO data, let T(p) be a

set of propagated GO terms for protein p and T(q) be a set of

propagated GO terms for protein q. Then, the functional similarity

fs(p, q) between p and q was calculated as:

fs(p,q)~
jT(p)\T(q)j

2:jT(p)j z
jT(p)\T(q)j

2:jT(q)j :

This formula can be interpreted as the average of the fraction of

correctly predicted functional terms in p when protein q is used to

predict p’s function (by transfer of all its terms), and the fraction of

correctly predicted functional terms in q when protein p is used to

predict q’s function [55]. This measure of functional similarity is

known as the Maryland bridge coefficient and is highly correlated
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with the Jaccard coefficient—the size of the intersection over the

size of the union between two sets [56]. Clearly, 0#fs(p,q)#1, with

0 corresponding to proteins with disjoint sets of functional terms

and 1 corresponding to proteins with identical sets of terms.

Functional similarity of 0 may occur because we removed the root

node from each ontology.

To calculate functional similarity for the microarray data, we

used the Pearson correlation coefficient (the Euclidean distance

provided similar results). The correlation coefficient corr(p, q)

between genes p and q (in a somewhat abused notation where p

and q represent both genes and their indices in microarrays) for

normalized data was calculated as:

corr(p,q)~

P
j [T (npj{mp):(nqj{mq)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j [T (npj{mp)2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j [T (nqj{mq)2
q

where T is the index set of tissues being considered, npj is the

normalized expression for gene p in tissue j, and mp is the mean

expression level for gene p over all tissues in T.

Supporting Information

Figure S1 Different types of homology relationships among

genes. A) The figure shows four hypothetical genes in humans

(H1–H4) and two in mouse (M1–M2). There are four types of

homologs shown: 1) M1 is an ortholog of H1, H2, and H3 because

their last common ancestor is a speciation event (one-to-many

orthology). 2) H1 is an inparalog of H2 and H3, with respect to the

human-mouse split, because their last common ancestor is a

duplication event more recent than the human-mouse split. 3) M1

is a within-species outparalog of M2 because they are related by a

duplication event that occurred before the human-mouse split. 4)

M1 is also a between-species outparalog of H4 because they are

related by a duplication event before the human-mouse split (and

in different genomes). B) The figure shows two hypothetical genes

in humans (H1 and H2) and two in mouse (M1 and M2). There

are three types of homologs shown: 1) M1 and H1 are one-to-one

orthologs, as are M2 and H2. 2) M1 is a within-species outparalog

of M2 because they are related by a duplication event that

occurred before the human-mouse split, as are H1 and H2. 3) M1

is a between-species outparalog of H2 because they are related by

a duplication event before the human-mouse split (and in different

genomes), as are H1 and M2.

(PDF)

Figure S2 The relationship between functional similarity and

dN/dS calculated using the Goldman and Yang method. A)

human-mouse orthologs (red) and all paralogs (blue). B) human-

mouse orthologs (red), inparalogs (green), within-species (W-s)

outparalogs (blue), between-species (B-s) outparalogs (purple).

Counts of gene pairs in each bin are listed below each figure.

Note that estimates of dS (and therefore dN/dS) are inaccurate for

long divergence times due to multiple substitutions at the same

site; this likely affects the values for outparalogs.

(PDF)

Figure S3 The phylogenetic relationships between functionally

annotated members of the MAP4K family, and counts of

overlapping and non-overlapping GO terms for the target protein

human MAP4K2 (red circles) and each of its homologs (blue

circles). Tree branch lengths are not drawn to scale.

(PDF)

Figure S4 The relationship between functional similarity and

sequence identity using only the subset of GO terms assigned to at

least one human and at least one mouse protein. A) human-mouse

orthologs (red) and all paralogs (blue). B) human-mouse orthologs

(red), inparalogs (green), within-species (W-s) outparalogs (blue),

between-species (B-s) outparalogs (purple). Counts of gene pairs in

each bin are listed below each figure.

(PDF)

Figure S5 The relationship between functional similarity and

sequence identity using a constant GO term annotation depth for

all members of the gene family. For each family, the maximum

depth of annotation (measured as the distance from the root node)

for each protein was calculated, and then the minimum of the

individual maximum annotation depths was found. All GO terms

below this minimum were removed for all proteins in the family.

A) human-mouse orthologs (red) and all paralogs (blue). B) human-

mouse orthologs (red), inparalogs (green), within-species (W-s)

outparalogs (blue), between-species (B-s) outparalogs (purple).

Counts of gene pairs in each bin are listed below each figure.

(PDF)

Figure S6 The relationship between functional similarity and

sequence identity excluding all GO term annotations derived from

the same publication (based on PubMed ID) for both members of

the homologous protein pair. During annotation, the same GO

term can be assigned to a protein by two or more distinct PubMed

IDs. In these cases, GO term annotations were not considered to

have come from the same publication if different PubMed IDs

could be assigned to the annotations for each member of the pair.

A) human-mouse orthologs (red) and all paralogs (blue). B) human-

mouse orthologs (red), inparalogs (green), within-species (W-s)

outparalogs (blue), between-species (B-s) outparalogs (purple).

Parts C) and D) show the same relationship using only GO term

annotations derived from the same publication (based on PubMed

ID) for both members of the homologous protein pair. Counts of

gene pairs in each bin are listed below each figure.

(PDF)

Figure S7 The relationship between functional similarity and

sequence identity using only protein pairs annotated with GO

terms assigned by the same evidence code. All experimental (IDA,

IEP, IGI, IMP, IPI), curator inferred (IC), and traceable author

statement (TAS) evidence codes are included. A) human-mouse

orthologs (red) and all paralogs (blue). B) human-mouse orthologs

(red), inparalogs (green), within-species (W-s) outparalogs (blue),

between-species (B-s) outparalogs (purple). Parts C) and D) show

the same relationship using all experimental and curator inferred

evidence codes, but excluding traceable author statements (TAS).

Counts of gene pairs in each bin are listed below each figure.

(PDF)

Figure S8 The relationship between functional similarity and dS

calculated using the Goldman and Yang method for inparalogs

only.

(PDF)

Table S1 Functional similarity within the nuclear receptor

family in human and mouse. Of the total number of annotated

proteins with both an ortholog and a paralog, the counts show the

number in each category. Paralogs with higher functional

similarity are further distinguished by whether the within-species

or between-species outparalog was most similar.

(DOC)

Dataset S1 Measures of functional similarity, sequence similar-

ity, and homology relationships between proteins, as well as GO

codes associated with each protein used in the study.

(TXT)
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Dataset S2 Correlation in gene expression profiles between

proteins, tissues used from the human and mouse array

experiments, mappings of probesets to genes, as well as normalized

expression values for each gene.

(TXT)
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