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Abstract

The positions of nucleosomes in eukaryotic genomes determine which parts of the DNA sequence are readily accessible for
regulatory proteins and which are not. Genome-wide maps of nucleosome positions have revealed a salient pattern around
transcription start sites, involving a nucleosome-free region (NFR) flanked by a pronounced periodic pattern in the average
nucleosome density. While the periodic pattern clearly reflects well-positioned nucleosomes, the positioning mechanism is
less clear. A recent experimental study by Mavrich et al. argued that the pattern observed in Saccharomyces cerevisiae is
qualitatively consistent with a ‘‘barrier nucleosome model,’’ in which the oscillatory pattern is created by the statistical
positioning mechanism of Kornberg and Stryer. On the other hand, there is clear evidence for intrinsic sequence preferences
of nucleosomes, and it is unclear to what extent these sequence preferences affect the observed pattern. To test the barrier
nucleosome model, we quantitatively analyze yeast nucleosome positioning data both up- and downstream from NFRs. Our
analysis is based on the Tonks model of statistical physics which quantifies the interplay between the excluded-volume
interaction of nucleosomes and their positional entropy. We find that although the typical patterns on the two sides of the
NFR are different, they are both quantitatively described by the same physical model with the same parameters, but
different boundary conditions. The inferred boundary conditions suggest that the first nucleosome downstream from the
NFR (the +1 nucleosome) is typically directly positioned while the first nucleosome upstream is statistically positioned via a
nucleosome-repelling DNA region. These boundary conditions, which can be locally encoded into the genome sequence,
significantly shape the statistical distribution of nucleosomes over a range of up to ,1,000 bp to each side.
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Copyright: � 2010 Möbius, Gerland. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the German Excellence Initiative via the program Nanosystems Initiative Munich (NIM). WM acknowledges funding by the
Studienstiftung des deutschen Volkes and the Elite Network of Bavaria via the International Doctorate Program NanoBioTechnology (IDK-NBT). The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gerland@lmu.de

Introduction

The long DNA molecules of eukaryotic genomes are packaged

into a compact structure with the help of histone proteins [1]. The

fundamental unit of this structure, a nucleosome, comprises almost

150 base pairs (bp) of DNA wrapped around a histone octamer

[2,3]. Individual nucleosomes are typically linked by 15–70 bp of

free DNA into a ‘‘beads on a string’’ conformation, the primary

and most stable structural level of chromatin. While packaging

renders the genome compact, it also makes up to 80% of the DNA

inaccessible for protein-binding at any given time [4], potentially

hindering the molecular processing of genetic information. In

principle, accessibility might be attained dynamically, since

mechanisms are known for spontaneous unwrapping [5,6] and

diffusive sliding of nucleosomes [7], as well as active remodeling

[8]. However, numerous recent studies indicate that nature’s

solution to the accessibility issue is based, at least in part, on the

widespread use of nucleosome positioning [4,9–14]. Nucleosome

positioning essentially amounts to the opposite strategy of

constraining the mobility of nucleosomes, rendering a selected

set of DNA sites constantly accessible.

Recent experiments measuring the distribution of nucleosomes

across the genomes of several model organisms have robustly

identified three salient features [11]: (i) A significant fraction of

nucleosomes appears rather well positioned. In other words, the

nucleosome positions determined from a large ensemble of cells do

not average out to a constant density, but display many

pronounced peaks. (ii) Typically, genes have a nucleosome-free

region (NFR) upstream of their transcription start site (TSS). That

is, when genes are aligned at the TSS and with the direction of

transcription to the right, the average nucleosome density exhibits

a clear dip, about one nucleosome wide, to the left of the TSS. (iii)

Downstream of the TSS, the gene-averaged nucleosome density

displays strong oscillations, with an amplitude that decays with the

distance from the TSS. Furthermore, biochemical experiments

have firmly established that the DNA-binding affinity of histones

depends on the DNA sequence, largely due to the intrinsic

sequence-dependence in the biophysical properties of DNA, such

as its bendedness and bendability [15]. Hence, a genomic free

energy landscape for nucleosome positioning can be programmed

into the genome sequence by appropriate placement of nucleo-

some attracting and repelling sequence motifs.
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Indeed, bioinformatic and biophysical approaches that param-

eterize sequence-encoded effects on nucleosome positioning have

been remarkably successful in modeling and predicting the large-

scale genomic nucleosome occupancy [16–20], which has led to

the notion of a genomic code for nucleosome positions [16]. Yet,

the causes of the three above salient features are not yet

disentangled. In particular, a recent study on nucleosome

positioning in Saccharomyces cerevisiae [10] argued that the oscillatory

pattern in the average nucleosome organization downstream of the

TSS is qualitatively consistent with the statistical positioning

mechanism proposed by Kornberg and Stryer [21]. With this

mechanism, most nucleosomes are not individually positioned, but

a non-random relative arrangement arises collectively, from

statistical correlations induced by the interaction between

neighboring nucleosomes. The phase of such a statistical

arrangement relative to the DNA is determined by ‘‘barriers’’ on

the genome, i.e., local disturbances of the ‘‘nucleosome gas’’. A

disturbance is created regardless of whether the local effect on

nucleosomes is attracting or repelling, e.g., by sequences that

attract or repell nucleosomes or by other bound proteins [22,23].

According to this scenario, termed the ‘barrier nucleosome model’

[10,24], sequence-encoded positioning is required only for barrier

creation, whereas nucleosomes adjacent to the barriers are

positioned ‘‘for free’’, i.e., primarily via statistical correlations

and with DNA sequence playing only a minor role.

However, while the observed oscillatory pattern downstream of

the TSS is reminiscent of the pattern calculated by Kornberg and

Stryer [21], there should be a similar pattern upstream of the TSS

if statistical positioning is indeed the dominant force, since barriers

act to both sides. Also, can the observed pattern be quantitatively

explained by statistical positioning? Finally, does the precise shape

of the pattern permit conclusions on the nature of the barrier, e.g.,

whether it is caused by an attractive or repelling effect on

nucleosomes? Here, we address these quantitative questions using

the yeast data of Mavrich et al. [10] and a quantitative description

of statistical positioning, which is essentially the same as in the

work of Kornberg and Stryer [21] and equivalent to the (much

older) ‘‘Tonks gas’’ model from statistical physics [17,25–28].

Results

Quantitative barrier nucleosome model
Kornberg noted early on [24] that a nonrandom quasi-periodic

nucleosome pattern arises already from the interplay of two basic

biophysical constraints, (i) the constraint that the same DNA

segment cannot simultaneously be incorporated into two nucleo-

somes, and (ii) the constraint that nucleosomes cannot form at

‘barrier’ genome locations, e.g., those already occupied by other

proteins such as sequence-specific transcription factors. The

significance of the first constraint is that the exclusion between

nucleosomes creates correlations in their statistical distribution

along the DNA. Theoretically [26], these correlations are revealed

by a decaying oscillatory pattern in the two-particle distribution

function, r2(r), which measures the probability to find, in the

ensemble of all admissible nucleosome configurations, a nucleo-

some at a given location and another one at a distance r from it. In

other words, the knowledge of the position of one nucleosome

leads to a partial knowledge of the nucleosome positions in the

vicinity (however, this two-particle distribution function is difficult

to measure directly in experiments). The significance of the second

constraint is that barriers in the ‘‘nucleosome gas’’ pin down the

phase of the correlations, such that even the average nucleosome

density r(r) displays a decaying oscillation as a function of the

distance r from the barrier [21]. Such barriers can be created by a

variety of mechanisms; in particular, barriers can also be directly

encoded in the DNA sequence, e.g., via poly(dA:dT)-tracts that are

energetically unfavorable to incorporate into the nucleosome

structure [29]. Similarly, ‘‘road block’’ nucleosomes that are

particularly well-positioned will form a barrier for the surrounding

nucleosomes.

Here, we treat the average nucleosome density r(r) as a

quantitative experimental feature that can be assayed for clues

about the nature of these barriers and, more generally, about the

extent to which statistical positioning is reflected in the nucleosome

organization in vivo. This analysis must be based on a quantitative

description of statistical positioning. In statistical physics, the

interplay between interaction and entropy of particles in a one-

dimensional configuration space has long been quantified in

simple models for gas/liquid systems [25,26,30]. The classic

quantitative study of statistical positioning, by Kornberg and

Stryer [21], is also consistent with this general framework. The

simplest model is the ‘Tonks gas’ [25] where particles with a fixed

size b and a mean density �rr interact only via hard-core repulsion

that makes them impenetrable. For this model, the explicit

analytical expression for the average particle density at a distance r
(in bp) from a perfect barrier is [26]
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where H(r) denotes the Heaviside step function. This average

density is related to the above-mentioned two-particle distribution

function in an infinite system via r(r):�rr~r2(r). Eq. (1) produces the

decaying oscillatory pattern that is characteristic for statistical

positioning, see Fig. S1 for an illustration and ‘Materials and

Methods’ for a self-contained derivation and a brief discussion of the

physical mechanism underlying the density oscillation. The

wavelength of the oscillatory pattern and the characteristic length

over which its amplitude decays are both determined by the two

physical parameters of the model, i.e., the particle size b and the

average particle density �rr. Note that the expression (1) holds only for

a perfect barrier; more general situations will be considered below.

Author Summary

Within the last five years, knowledge about nucleosome
organization on the genome has grown dramatically. To a
large extent, this has been achieved by an increasing
number of experimental studies determining nucleosome
positions at high resolution over entire genomes. Partic-
ular attention has been paid to promoter regions, where a
canonical pattern has been established: a nucleosome-free
region with pronounced adjacent oscillations in the
nucleosome density. Here we tested to what extent this
pattern may be quantitatively described by a minimal
physical model, a one-dimensional gas of impenetrable
particles, commonly referred to as the ‘‘Tonks gas.’’ In this
model, density oscillations occur close to a boundary at
dense packing. Our systematic quantitative analysis reveals
that, in an average over many promoters, a Tonks gas
model can indeed account for the nucleosome organiza-
tion to both sides of the nucleosome-free region, if one
allows for different boundary conditions at the two edges.
On the downstream side, a single nucleosome is typically
directly positioned such that it forms an obstacle for the
neighboring nucleosomes, while such a barrier nucleo-
some is typically missing on the upstream side.

Quantitative Test of Statistical Positioning
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As Eq. (1) describes a nontrivial effect that arises only from

properties which the ‘‘nucleosome gas’’ shares with any other one-

dimensional gas of impenetrable particles, it can be regarded as a

‘null model’, i.e., a quantitative reference that helps to identify

relevant effects beyond the universal features for systems of this

class. With this goal in mind, we wanted to compare Eq. (1) to

patterns extracted from experiments.

Extraction of experimental nucleosome patterns
To extract the consensus distribution of nucleosomes around the

NFR at the 59 end of genes, previous studies aligned the genes at

their TSS and averaged the nucleosome distributions over all

genes [11]. This procedure is not suitable for our quantitative

analysis, since the TSS cannot be mapped to a feature in the

nucleosome gas. Instead, we used the positions of the NFR-

flanking nucleosomes as reference points for our alignments, which

permits a quantitative comparison of the averaged pattern with the

nucleosome gas model (see below).

In addition to the appropriate choice of reference point for the

alignment, it was important to process the experimental data in a

way such that it became directly comparable to the physical

density r(r). Many studies determine nucleosome positions using a

procedure of the following type [11]: First, the nucleosomal DNA

is extracted from an ensemble of cells using micrococcal nuclease

(MNase). The genomic positions of these DNA fragments are then

located using hybridization or sequencing approaches. Usually this

raw data is further processed with hidden Markov models (e.g.,

[9]) or peak detection algorithms (e.g., [31]), in order to infer the

typical or putative nucleosome positions. These typical nucleo-

some positions are then used for subsequent analysis of

nucleosome organization, including the consensus distribution

around NFRs. However, such averages over typical nucleosome

positions do not correspond to a physical observable. For

qualitative analysis, the data processing algorithms are useful

filters to enhance and highlight positioning effects. However, the

use of a single, typical position for a nucleosome eliminates any

cell-to-cell variation in the position. For our quantitative analysis,

we had to use the undistorted raw data instead (i.e., the density of

DNA reads along the genome for the sequencing approach), which

is the best available experimental proxy to the physical density

r(r), see ‘Materials and Methods’ for details. Note that our

observable, the nucleosome density, is distinct from the other

frequently used observable, the nucleosome occupancy, which

measures the probability to find a specified base pair covered by a

nucleosome.

Fig. 1 summarizes the nature of the data from a physics

perspective. As illustrated in Fig. 1A, the extracted nucleosomal

DNA originates from many cells with nucleosome positions that

generally differ from cell to cell. The experimentally observed read

density corresponds to the histogram shown in the bottom of

Fig. 1A. This histogram would be directly comparable to the

theoretical density r(r) for a nucleosome gas, if (i) the average over

the different cells is equivalent to the thermal average, (ii) a DNA

read identifies a nucleosome position uniquely and precisely, and

(iii) the average number of reads per nucleosome is known and its

fluctuations due to the random sampling are negligible. None of

these conditions is entirely satisfied. Clearly, the relevant question

(discussed in ‘Materials and Methods’) is how much this affects the

physical interpretation of the data. Since the average number of

reads per nucleosome is in fact unknown, it is already clear that

one cannot readily convert the read density to an absolute

nucleosome density, i.e., the experimental proxy to r(r) is not

normalized. Fig. 1B illustrates the second averaging procedure,

which is akin to a ‘‘disorder average’’ in statistical physics, in that it

involves averaging over an ensemble of different systems rather

than an ensemble of different states of the same system. Clearly,

each gene is intrinsically different and could display a distinct

pattern of nucleosome organization. However, as illustrated in the

bottom of Fig. 1B, the common pattern that emerges by aligning

the genes by the position of their +1 nucleosome (the first

downstream from the NFR) exposes the generic features in a large

set of genes. For individual genes, this pattern is obscured by the

noise due to the limited statistics of the data.

We performed our analysis on the data of Mavrich et al. [10].

The red dots in Fig. 2 display the average read density when the

genes are aligned to the +1 nucleosome, with the direction of

transcription from left to right. Our definition of the +1

nucleosome position is the most likely position of the first

nucleosome downstream from the TSS based on the list of TSSs

and nucleosomes by Mavrich et al. [10]; see ‘Materials and

Methods’ for details. On a qualitative level, the pattern of Fig. 2

(red dots) closely resembles the consensus pattern from previous

studies (see, e.g., Fig. 2 in Ref. [11]). In particular, both display the

same salient features, i.e., the pronounced downstream oscilla-

tions, the slow decay to a constant density, the nucleosome-free

region, and the weak upstream oscillations. However, on a

quantitative level, the patterns are significantly different, and only

the pattern of Fig. 2 is suitable for quantitative comparison with a

physical model.

Our analysis leading to Fig. 2 did not include a correction for

the known sequence bias of the MNase enzyme [32,33]. However,

Fig. S2 compares the pattern of Fig. 2 with the result of an

alternative analysis that also incorporates a correction for the

MNase bias, and suggests that the MNase bias does not

significantly affect the pattern; see ‘Materials and Methods’ for

details. Another concern is that the entire set of genes contains a

Figure 1. Illustration of the nature of the available data and its
analysis. (A) Nucleosomal DNA from different cells is extracted and
sequenced. The genomic positions of the sequence reads are
determined, resulting in a genome-wide density of reads. This map
reflects the nucleosome density averaged over an ensemble of cells.
Physically, this average is akin to a thermal average. (B) To extract
typical features (and to improve the statistics) genes are aligned
according to a specific feature (here: the most likely position of the +1
nucleosome), and the read density is averaged over all genes.
Physically, this average is akin to a disorder average.
doi:10.1371/journal.pcbi.1000891.g001

Quantitative Test of Statistical Positioning
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significant fraction where the gene ends within the 2000 bp

downstream range plotted in Fig. 2, see Fig. S3A. Therefore, we

repeated our analysis on the subset of long genes with a size of

more than 2000 bp in length. Fig. S3C shows that the resulting

pattern is quantitatively very similar to that of Fig. 2. Taken

together, these results indicate that the pattern of Fig. 2 (red dots)

represents a robust quantitative signature of the nucleosome

organization near transcription start sites in yeast.

Quantitative analysis
To interpret the extracted pattern within the physical model

described above, we performed a nonlinear least-squares fit to Eq.

(1), as described in ‘Materials and Methods’. We kept the width of

the nucleosomes fixed at the value b~147 bp suggested by the

crystal structure [3], and hence the only fit parameters were the

mean nucleosome density �rr and the global normalization factor

for the data (see above). The best fit is displayed as a gray line in

Fig. 2A. To judge the quality of the agreement, it is useful to recall

that the experimental pattern is basically described by five

quantitative characteristics: the period of the oscillation, the length

scale over which the oscillation decays, the asymptotic value of the

density, and the amplitudes of the peaks and valleys in the density,

above and below the asymptotic line. Given only two fitting

parameters, the overall quantitative agreement between the

physical model and the biological data is therefore remarkably

good.

Fig. S4 shows the corresponding fit to only the set of long genes,

with a similar result. In both cases, the most apparent deviation

between the model and the data is in the shapes and the

amplitudes of the first two peaks, associated with the +1 and +2

nucleosome. We wanted to test whether this is solely a

consequence of the fact that Eq. (1) assumes a perfectly positioned

+1 nucleosome, while the data displays a small residual positional

variability for the +1 nucleosome. We therefore convoluted the

model density, Eq. (1), with the shape of the +1 peak in the data

(see ‘Materials and Methods’ for details). The corresponding fit of

this convoluted density to the data is shown in Fig. 2B (gray line).

By construction, the shape of the +1 peak now matches, but we

note that the deviation in the +2 peak disappeared as well,

suggesting that the finite positional variability of the +1

nucleosome is indeed sufficient to explain most of the deviation

between the physical model and the biological data.

Before discussing the obtained parameter values and the

robustness of the fitting procedure, we address the immediate

question that emerges from the above results: On the one hand,

the agreement between model and data is consistent with the

hypothesis that most of the nucleosomes downstream of the +1

nucleosome are statistically positioned. On the other hand, the

statistical positioning mechanism has no intrinsic bias to a

particular direction, i.e., the pattern upstream of the NFR should

be described as well by a viable physical model. However, the

upstream consensus pattern reported in previous studies displays

much less pronounced oscillations than on the downstream side

[4,10]. To test whether this is simply a consequence of the gene-to-

gene variation in the distance between the 21 nucleosome and the

TSS, which should smear out the averaged pattern, we analyzed

the statistical distribution of these distances and realigned all genes

by the position of their 21 nucleosome. The 21 position is defined

here by the first nucleosome upstream from the TSS, see

‘Materials and Methods’.

Fig. 3A displays the statistics of the +1 nucleosome positions

relative to the TSS, as derived from the nucleosome map of Ref.

[10]. While +1 nucleosomes are restricted to a region about 50 bp

downstream from the TSS [31,34], the 21 nucleosome position is

considerably more disperse. Accordingly, the distance between the

+1 and 21 nucleosomes, i.e., the gap size, also has a wide

distribution, see Fig. 3B. This distribution indeed smears out an

oscillatory upstream pattern, which is uncovered by an alignment

to the 21 nucleosome position that eliminates the gap size

variation, see Fig. 4A (blue dots). However, while this upstream

pattern does display regular oscillations, the comparison to the

superimposed downstream pattern from Fig. 2 demonstrates that

these two patterns are significantly different. A possible concern

with this upstream pattern is the frequent occurrence of another

Figure 2. Comparison of the downstream nucleosome density
pattern with the physical model. (A) The read density (red dots;
aligned to the +1 nucleosome locations and averaged over all genes) is
displayed together with the best fit by the Tonks model (gray line; least-
squares fit between base pairs 200 and 2000, parameters: b~147 bp
and 1=�rr~177 bp). (B) Same as in (A), but with the fit based on a
convoluted Tonks gas model which takes into account the finite width
of the experimental +1 peak, by convoluting the Tonks gas distribution
function with the experimental probability distribution for the +1 peak
in the range from {30 to 30 bp (parameters: b~147 bp and
1=�rr~175 bp).
doi:10.1371/journal.pcbi.1000891.g002

Figure 3. Distribution of +1 and 21 nucleosome positions. (A)
Probability distribution of the distance of the +1 and 21 nucleosomes
to the TSS, obtained as described in ‘Materials and Methods’. While the
+1 nucleosome is typically found about 50 bp downstream from the
TSS, the position of the 21 nucleosome is significantly more disperse.
(B) Probability distribution of the gap size, i.e., the distance between the
borders of the +1 and 21 nucleosomes given a nucleosome width of
147 bp.
doi:10.1371/journal.pcbi.1000891.g003

Quantitative Test of Statistical Positioning
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NFR closely upstream of the 21 nucleosome, either at the start of

a divergently transcribed neighboring gene or at the 39 end of a

gene transcribed in the same direction (39 NFRs are analyzed

further below). To address this concern, we selected only the

subset of genes with no gene start or end within 1000 bp upstream

of the TSS and compared their averaged pattern to that for all

genes. Fig. S3D shows that these two patterns are quantitatively

very similar (and clearly different from the downstream pattern),

suggesting that the adjacent NFRs located at various distances

have no significant effect on the average upstream pattern.

The difference in the up- and downstream pattern might be an

indication of positioning mechanisms beyond statistical position-

ing. Alternatively, this difference might be due to an intrinsic

asymmetry of the NFRs, caused by different molecular determi-

nants for the up- and downstream NFR boundary. Such an

asymmetry would lead to a different boundary condition for the

nucleosome gas on the two sides of the NFR. To illustrate the

possible effect of the boundary condition on the pattern in the

nucleosome gas, Fig. 4B shows the patterns for a range of

boundary conditions together in a 3D plot. Here, the different

boundary conditions are parameterized by an energy scale, e0,

which measures the strength and the sign of the local effective free

energy for nucleosome binding: Positive e0 (towards the front)

correspond to a nucleosome repellent region, i.e., nucleosomes at

positions to the left of the origin receive an energetic penalty e0. In

contrast, negative e0 (towards the back) correspond to an attractive

positioning potential that is localized to a narrow region, the width

of which is chosen here to roughly correspond to the finite peak

width of the +1 nucleosome in the data. Note that all of the

patterns contained in the 3D plot of Fig. 4B are qualitatively

similar, irrespective of the value of e0. However, they are different

on a quantitative level, and we next exploit this difference, using

the experimental pattern as a quantitative signature, to infer the

type of the boundary condition that is effectively implemented in

vivo.

In particular, it is instructive to contrast the case of a perfectly

repulsive barrier (e0??) with a perfect attractive positioning

potential (e0?{?). Our above analysis of the downstream

pattern in Fig. 2 was based on the latter case, i.e., we assumed that

most +1 nucleosomes are directly kept at particular positions on

the genome through the action of specific molecular forces. We

found that this assumption is compatible with the data. Given that

the upstream pattern does not comply with this direct positioning

scenario, we hypothesized that most 21 nucleosomes are instead

indirectly (statistically) positioned by a repulsive barrier located at

the upstream edge of the NFR. Fig. 4C displays the upstream

pattern (blue dots) together with the model prediction assuming a

perfectly repulsive barrier (gray line). Note that this prediction is

obtained with the same values for �rr and normalization factor as

inferred from the fit to the downstream pattern, i.e., it does not

Figure 4. The upstream pattern and the effect of boundary conditions on statistical positioning. (A) Comparison of the upstream pattern
in the read density (blue dots; all genes aligned to the position of their 21 nucleosome) with the (mirrored) downstream pattern of Fig. 2 (red dots).
The patterns are qualitatively similar, but quantitatively significantly different. (B) 3D plot displaying the dependence of the theoretically calculated
pattern on the boundary condition. The boundary condition is parameterized by the energy scale e0 (measured in units of kBT ), with e0w0 (light gray
shaded region) representing a nucleosome repellent region, while e0w0 (dark gray) describes an attractive potential for a nucleosome (the width of
which is chosen here to roughly correspond to the finite peak width of the +1 nucleosome in the data). Parameters are b~147 bp and 1=�rr&175 bp,
see ‘Materials and Methods’ for details. (C) Comparison of the upstream pattern (blue dots) to the Tonks model with boundary condition for a
perfectly repellent region with e0&1 (gray line; same nucleosome density and normalization as in Fig. 2A). (D) Illustration of the typical nucleosome
organization around TSSs and its origin based on the conclusions of the present study. A broad repelling region combined with a localized attractive
feature in the free energy landscape close to the TSS (top) leads to a NFR and a directly positioned +1 nucleosome (bottom). The NFR together with
the +1 nucleosome form local boundaries which statistically position the nucleosomes in the vicinity, over ranges up to *1000 bp.
doi:10.1371/journal.pcbi.1000891.g004

Quantitative Test of Statistical Positioning
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involve parameter fitting, see ‘Materials and Methods’ for details.

The agreement is surprisingly good, consistent with the interpre-

tation that the positioning of most nucleosomes in the vicinity of

the TSS is induced by a NFR that is intrinsically asymmetric: Our

quantitative comparison suggests that the upstream boundary of

the NFR is typically determined by repulsion rather than direct

positioning of the 21 nucleosome.

To put these observations on a systematic basis, we performed

simultaneous fits on both sides of the TSS, for all combinations of

boundary conditions and compared the results quantitatively on

the basis of the mean square deviation per data point, see Fig. S5,

Table S3, and ‘Materials and Methods’. The results corroborate

that the experimental pattern is best explained by the scenario

where the +1 nucleosome is directly positioned whereas the 21

nucleosome is statistically positioned by a repellent region, as

illustrated in Fig. 4D. The second best fit is obtained by the

scenario where both the 21 and the +1 nucleosome are

statistically positioned.

As Fig. S5 shows, both patterns are quantitatively well explained

with a single average nucleosome density �rr~1=180 bp for both

up- and downstream of the TSS. Indeed, we find no clear evidence

in the data that the average density of nucleosomes is different in

intergenic and genic regions (see ‘Materials and Methods’),

contrary to some observations made in other studies. We robustly

obtained density values �rr in the range of one nucleosome per 172

to 180 bp, described above and independent of the detailed choice

of the fitting method. These values are slightly (but consistently)

larger than the ‘‘nucleosome mode’’ of 165 bp inferred by

Mavrich et al. [10] by determining the typical peak to peak

distance in the experimental pattern.

Finally, it is interesting to note that NFRs have also been

reported at the 39 end of genes, although their biological

significance is obscure [10,35]. In order to see to what extent

our findings can be generalized to this class of NFRs, we also

extracted the average up- and downstream pattern for 39 NFRs by

aligning to the respective flanking nucleosomes. Fig. S6 shows

these patterns; see caption for details. We observe that on neither

side the pattern displays the strong features associated with the

direct positioning scenario. Instead, both 39 patterns resemble the

59 upstream pattern, which is superimposed for comparison in Fig.

S6. This suggests that the 39 NFR is typically only a repulsive

region, and hence less structured than the typical 59 NFR.

Discussion

The recent genome-scale identification of nucleosome positions

revealed that a large fraction of nucleosomes are non-randomly

positioned, that a large fraction of genes have a nucleosome-free

region (NFR) at their promoters, and that the NFRs are flanked by

salient oscillatory patterns in the nucleosome density [9,10]. Here,

we performed a quantitative analysis of the average up- and

downstream patterns, to reveal hidden information about factors

that affect nucleosome positioning in promoter regions. To this end,

we reanalyzed previously published yeast data [10] in a physical

way. We found that the up- and downstream patterns differ

significantly, but both are quantitatively consistent with a minimal

model where nucleosome positioning is effected only from the

location of the NFRs, but radiates over a range of up to *1000 bp

to each side via the statistical positioning mechanism. Within this

model, the difference in the average up- and downstream patterns is

explained as an intrinsic asymmetry of the NFRs, which leads to

different boundary conditions for the ‘‘nucleosome gas’’ on the two

sides, see Fig. 4. In contrast, we found no evidence of such an

asymmetry for 39 NFRs at the end of genes.

That statistical positioning in the vicinity of barriers is a

mechanism capable of producing a non-random nucleosome

arrangement has long been established theoretically [21] and

experimentally [22]. Statistical positioning of nucleosomes around

promoter regions has been proposed several years ago [9], while

testing of this hypothesis has started only very recently [10,36–38].

The first study [10] presented qualitative evidence for statistical

positioning, but was limited by its approach relying on consensus

nucleosome positions and TSS alignments. However, that study

also performed a thorough statistical analysis of the DNA sequence

around promoters, and found that sequence elements known to be

involved in nucleosome positioning (dinucleotide patterns and

poly(dA:dT) stretches) are concentrated to the NFR and the

positions of the 21 and +1 nucleosomes, and are significantly less

frequent up- and downstream from this region. This finding is

consistent with our conclusions drawn from the quantitative

analysis of the nucleosome patterns. Additionally, our analysis

suggests that the sequence elements around the position of the 21

nucleosome are either not sufficiently widespread or not

sufficiently effective to directly position the 21 nucleosome in

the average pattern. This is not unlikely given that other

mechanisms than direct sequence specificity are needed to obtain

the precise positioning of the +1 nucleosome in vivo [39].

Two additional studies on statistical positioning in genic regions

appeared after our work was completed [36,37]. These studies did

not consider alignments to TSSs or +1 nucleosomes, but instead

ranked genes by the distance between their first and last

nucleosome, revealing a striking organization of the local minima

in the nucleosome occupancy. This organization was found to be

consistent with a Tonks gas that is constrained by repelling barriers

from both sides. This analysis, with its focus on the genic regions

and the positions of the minima, is complementary to ours, which

focused on the quantitative shape of the average density, in

particular also in the upstream intergenic region, and analyzed the

difference between the up- and downstream pattern.

Taken together, our and the existing studies of statistical

positioning support the view that long-range correlations in

nucleosome positions produced by localized features in the

effective free energy landscape for nucleosome binding are an

important determinant of the genome-wide nucleosome organi-

zation. Indeed, for yeast, where TSSs are typically spaced

v2000 bp apart (Fig. S3B), statistical positioning from features

encoded only at the TSSs is sufficient to obtain non-random

positioning for most nucleosomes. The physical origin of statistical

positioning is an interplay between the mutual exclusion and the

positional entropy of nucleosomes. While this mechanism does not

‘‘glue’’ nucleosomes to specific locations on the DNA, it does effect

that, on average, nucleosomes favor certain positions over others.

It can therefore make specific (binding) sites on the DNA more (or

less) accessible for proteins. Moreover, it may also cause a bias for

mutation processes, thereby creating a position-dependent muta-

tion rate [40] and possibly long-range DNA sequence correlations.

The approach taken in the present study may be classified as a

‘‘reverse approach’’, which starts from the observed distribution of

nucleosomes along the genome and ultimately seeks to determine

from it the underlying free energy landscape for nucleosome

binding (see ‘Materials and Methods’ for a discussion of the

assumptions leading to the concept of an effective free energy

landscape). Here, this approach has led to the typical form of local

features in the landscape that is depicted in Fig. 4D. Note that by

construction, our approach has two important limitations:

First, it cannot pinpoint the molecular mechanisms responsible

for creating the features in the effective free energy landscape. For

instance, our findings are equally compatible with sequence-
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determined depletion like in the HIS3-PET56 promoter [23],

chromatin remodeler induced nucleosome organization like in the

POT1 promoter in its repressed state [41], or with varying

promoter architecture in response to transcriptional perturbation

[35,42]. Disentangling the molecular mechanisms on a genomic

scale, requires the use of the complementary ‘‘forward approach-

es’’ based on bioinformatic methods (see, e.g., [16,18–20]) or

biophysical modeling (e.g., [17,43]) to predict nucleosome

positions from sequence.

Second, since reverse approaches rely on good statistics, our

study is presently limited to the study of average patterns, obtained

from a large number of different genes. Of course, many genes

could have additional features in their free energy landscape at

various positions. Again, these features could be directly encoded,

by the intrinsic specificity of the DNA-histone interaction

[15,16,44], or in trans, via competition with other specific DNA-

binding proteins, biochemical histone modifications [12,45], or

chromatin remodeling [8]. Such additional features do not

necessarily affect the average pattern. However, our study firmly

establishes the simple physical model of a Tonks gas with

‘‘programmable’’ boundary conditions as an excellent quantitative

‘null model’ for nucleosome positioning, which can be used as a

reference point to identify specific positioning effects as deviations

from it. Such a reverse approach on a gene-by-gene basis will likely

be very fruitful once data with sufficient statistics and precision

becomes available.

Materials and Methods

Read density as proxy for nucleosome density
The data of Mavrich et al. [10] is the basis for our analysis.

Mavrich et al. extracted nucleosomal DNA from yeast cells and

sequenced the DNA stretches obtaining a list of reads which they

aligned to the Saccharomyces cerevisiae genome. Nearly perfect

alignments resulted in a list of reads with start and end coordinates

on the Watson or Crick strand, which we obtained from the

authors. Assuming a nucleosome width of 147 bp we merged

the information from both strands and assigned to each read the

putative location of the midpoint of the original nucleosomal

DNA sequence (see ‘‘Supplementary Information’’ of Ref. [31]).

Originally, some reads were aligned to multiple positions on the

genome giving them an artificially high weight. Therefore, we

counted the number of alignments for each read (number of reads

with same read identifier) and weighted the reads by the reciprocal

number of their occurrence. For example, if alignment to the yeast

genome resulted in 5 hits, each alignment was weighted by a factor

1=5. The frequency of reads vs. location on the genome defines the

read density map serving as our proxy for nucleosome density and

is denoted by Sreads below. A small region of the read density map

is sketched in Fig. 1A and Fig. S2A.

Genes, +1 nucleosome positions and alignments
Our list of start and end sites of genes is based on the list of

transcribed regions and open reading frames as reported in

‘‘Supplementary Research Data’’ of Ref. [10] (file Supplementary_

Table_S2.xls). We combined the start sites of transcribed regions

(class: pol II, subclass: mRNA) and the end sites of open reading

frames (class pol II, subclass: ORF) with same ‘feature ID’ to one

‘gene’ with a total of 4792 genes. See Figs. S3A and B for statistics of

length of the genes and distances between TSSs.

We used alignments of the read density map to the positions of

nucleosomes surrounding the nucleosome free region (NFR) at the

TSS for a quantitative test of statistical positioning. Since the read

density map we used for our analysis does not allow direct

annotation of individual nucleosomes, we had to employ the list of

identified nucleosomes from the ‘‘Supplementary Research Data’’

of Ref. [10] (file Supplementary_Table_S1.xls). We used the

definition of the +1 nucleosome as the first nucleosome at or

downstream from the transcription start site (TSS) while the 21

nucleosome is defined as the first nucleosome upstream from the

TSS. The probability distributions of the +1 nucleosome’s

distance to the TSS are peaked at some distance from the TSS

(Fig. 3A) such that a slightly different definition of the +1
nucleosome has no significant effect on the results. Next, we

aligned the read density map to the position of these nucleosomes

and averaged (Fig. 2 and Fig. 4A).

To test the influence of gene starts and ends close to the +1
nucleosomes of interest, we additionally created alignments using

only genes larger than 2000 bp (Fig. S3C) and using those genes

without gene start or end sites within 1000 bp upstream from the

TSS (Fig. S3D).

An alternative proxy for nucleosome density
The read density map we derived does not include any

correction for sequence bias of micrococcal nuclease (MNase). To

test for the importance of such a correction, we performed an

alternative analysis towards a nucleosome density around the +1
nucleosomes. To that end, we exploited the list of nucleosomes as

identified by Mavrich et al.: Based on the reads aligned to the yeast

genome, these authors identified individual nucleosomes using a

peak detection algorithm after correcting for MNase bias (see

‘‘Supplementary Information’’ of Ref. [31]). The emerging list of

nucleosomes also includes the standard deviation (measure of

fuzziness) for each nucleosome (‘‘Supplementary Research Data’’

of Ref. [10], file Supplementary_Table_S1.xls). Interpreting the

nucleosome’s standard deviation as a cell to cell variation (instead

of an experimental error), we represented each nucleosome with

assigned standard deviation larger than 3 by a Gaussian

distribution with standard deviation given by the nucleosome’s

standard deviation. This results in an alternative proxy
P

peaks for

the nucleosome density as sketched in Fig. S2B. Both proxies for

nucleosome density, the one based on the raw data (reads) and the

one based on processed data (individual nucleosomes), significantly

differ locally (compare Figs. S2A and S2B). The corresponding

alignments to the +1 and 21 nucleosomes, however, are pratically

identical (Fig. S2C) having accounted for genome-wide normal-

ization (997655 reads correspond to 52918 nucleosomes). This

indicates that MNase bias correction as performed by Mavrich et al.

is not essential for our analysis.

As a side-remark note that the proxy
P

peaks at first sight should

represent nucleosome density without any further normalization.

However, repeating parts of our fitting analysis (see below) withP
peaks instead of

P
reads revealed that a fit to the Tonks gas model

is only possible if we allow for a normalization factor significantly

different from unity (&0:8), suggesting that the proxy
P

peaks

underestimates the number of nucleosomes. A possible explana-

tion is that up to 20 percent of the nucleosomes were missed by the

peak detection filter applied by Mavrich et al.. This explanation

appears likely, since not all of the yeast nucleosomes are well

positioned, i.e., a significant portion of nucleosomes will not lead

to a clear peak in the distribution, given the average over many

cells that is taken in the experiment.

Model details and assumptions
Tonks gas. Our one-dimensional gas description of statistical

nucleosome positioning uses a continuous genome coordinate x,

whereas in reality nucleosome positions only take on discrete

values, in steps of single base pairs (bp). The continuum limit is
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convenient and justified as long as the average distance between

particles, i.e., the linker length, is relatively large compared to the

discretization step (the average linker length is typically in the

range of 15–70 bp, depending on the organism). The statistical

physics of a gas of finite-sized particles in a one-dimensional

continuous state space has long been worked out in detail [25–27],

but for a self-contained presentation we derive the explicit form of

the oscillatory pattern using a simple physical argument. To this

end we consider the two-particle distribution function r2(x,x’)
which measures the probability that a particle is found at x and

another particle is found at x’. Mathematically,

r2(x,x’)~
X
i,j=i

d(xi{x)d(xj{x’) ,

where S . . . T denotes the average over all possible configurations

and d(x) denotes the Dirac delta function. In the thermodynamic

limit, where the number of particles, N , and the length of the

interval, L, are both large (given an average density �rr~N=L) and

for x and x’ far away from the boundaries, r2(x,x’) does not

depend on x and x’ independently, but is only a function of the

distance, r2(x,x’)~r2(r) with r~Dx{x’D. To obtain r2(r)
explicitly, first note that, with regard to the spaces between

particles, a Tonks gas of N particles with width b in an interval of

length L is equivalent to a one-dimensional gas of point-like

particles in an interval of length L{Nb (for clarity, consider

periodic boundary conditions). In the bulk, these point particles

are randomly distributed, such that the gap size between

neighboring particles has an exponential distribution p1(r)~
exp ({r=d)=d with mean d~(L{Nb)=N. For this gas, the

probability pk(r) of finding the k-th neighbor particle at distance r
is equivalent to the probability that the sizes of k neighboring gaps

sum up to r. Since the gap sizes are independent, pk(r) can be

expressed as a convolution of p1(r) distributions and the Laplace

transform p̂pk(s) factorizes, p̂pk(s)~(p̂p1(s))k. Inverse Laplace

transformation yields

pk(r)~
rk{1 exp ({r=d)

dk:(k{1)!
,

which is also referred to as the Erlang distribution. The

corresponding function for the original Tonks gas is then

obtained by reintroducing the particle width b. This only

amounts to shifting the distance r in pk(r) by kb and assuring

that the resulting function is identical to zero for rvkb by use of

the Heaviside step function H(r). The probability of finding the k-

th particle at a distance r then becomes

pk(r{bk)H(r{bk)~ : qk(r)=�rr,

where we introduced the function qk(r) and used d:1=�rr{b. The

two-particle distribution function is obtained by multiplying the

density of the first particle, �rr, with the probability to find any

particle at distance r, regardless of k, which amounts to the sum

r2(r)~
X?
k~1

qk(r):

The first few terms qk(r) are displayed together with the total sum

r2(r) in Fig. S1A using typical parameters for nucleosomes. Note

that the density r(r) of particles close to a boundary particle with

perfectly fixed position is simply r2(r)=�rr. Thus, qk(r)=�rr is the

probability of finding the k-th particle at a distance r from the

boundary. It is interesting to observe that the distance between the

maxima of the oscillatory pattern shown in Fig. S1A differs from

1=�rr. This difference is significant only at smaller densities as

plotted in Fig. S1B. Note, however, that the average position of the

k-th particle does not coincide with the maxima of qk(r) or the

maxima of r(r), but is simply k=�rr.

Physically, the oscillations of r2(r) and equally of r(r) are a

signature of a collective effect, which results from an interplay

between the excluded volume interaction and entropy. Very close

to a given particle (rvb), there is a ‘‘depletion layer’’ which no

particle midpoint can access, hence r2(r)~0 for rvb. Then, only

the leftmost particle can access the first layer bvrv2b. The

further this first particle moves to the right, the further it

compresses the remainder of the gas. In reaction, the gas exerts a

pressure onto the first particle to stay close to the boundary

particle, and hence r2(r)~q1(r) decays within the first layer.

However, in the second layer (2bvrv3b), both q1(r) and q2(r)
contribute and r2(r) increases again. Finally, an oscillatory pattern

of r2(r) emerges from summing the individual peaked functions

qk(r) (which are non-zero for rwkb only and decaying for large r).

The peaks in r2(r) wash out with increasing r since the individual

qk(r) become broader and more k values contribute. The limiting

value of r2(r) is �rr2, i.e., the square of the mean density. With

increasing mean density (�rr?1=b), the individual qk(r) become

sharper and overlap less; oscillations in r2(r) become more

pronounced and range further.

Different boundary conditions. Eq. (1) provides an analytic

expression for the particle density close to a perfect boundary. This

expression can in fact be interpreted and utilized in two different

ways: (i) The origin, r~0, can be interpreted as the location of a

perfectly positioned nucleosome, which then acts as a perfect

boundary for the neighboring nucleosomes. (ii) The origin can be

the location of a barrier of another type, e.g., a nucleosome-

repelling DNA sequence or bound transcription factors and only

the series of peaks for rw0 correspond to nucleosomes. The

difference amounts to a horizontal shift: in the former case the

r~0 point of the theoretical pattern must be aligned with the first

nucleosome, whereas in the latter case the k~1 peak must be

aligned with the first nucleosome. This simple shift switches

between the two opposite extremes in the range of possible

boundary conditions, i.e., perfect direct positioning vs. pure

indirect positioning against a perfect barrier. For our quantitative

data analysis we limited ourself to these two extreme cases (see

‘Procedure for quantitative analysis’ below), however in Fig. 4B we

also explored the effect of more realistic conditions where neither

perfect attraction of a nucleosome to a single point on the genome

occurs (e.g., note the finite width of the peak associated with the +1

nucleosome in Fig. 2) nor perfect repulsion. To generate Fig. 4B,

we numerically determined the particle density close to a broad

repellent region of varying strength, and also close to a narrow

attractive region of varying depth and finite width (binding energy

here is defined to act on the particle midpoint). We computed the

density for a grand-canonical ensemble, using a recursion relation

of the same type as described in Ref. [43], and with the chemical

potential adjusted such that an average inter-particle spacing of

1=�rr&175 bp was obtained.

Model assumptions. As stated in the main text, our

application of the Tonks gas model to the nucleosome data is

based on a number of simplifying assumptions. For instance, we

assumed that the variation in nucleosome position indicated by the

distribution of reads is a true reflection of the cell-to-cell

variability. In practice, the nucleosome positions inferred from

the reads have some (unknown) experimental error. However, a
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posteriori our assumption appears reasonable, due to the

quantitative agreement of model and data, which suggests that

the decaying oscillations genuinely reflect the many-body physics

of the Tonks gas – such an agreement is not expected if the

variation were merely experimental error. Another assumption,

shared with basically all models for nucleosome organization, is

the equilibrium assumption made by associating the nucleosome

distribution with a static free energy landscape. In vivo,

transcription, DNA replication, and active remodeling processes

regularly translocate and evict nucleosomes, and it is questionable

to what extent these processes can be captured by a static free

energy landscape. Though little is known about the kinetics of

chromatin reorganization, we can consider some simple scenarios

to illustrate that this assumption may not be as bad as it seems: For

instance, remodeling enzymes that merely increase the mobility of

nucleosomes, without preference for a certain direction or

position, would only speed up the equilibration in a free energy

landscape, but not affect its shape. If the remodelers do have any

sort of bias, but work rapidly, their effect can be included into a

modified free energy landscape. Other passive (competitive

binding) and active (repositioning) processes can similarly be

included in an effective free energy landscape, as long as their

kinetics is rapid on the timescale of interest. Remodelers may also

modify the interaction potential between the nucleosomes, beyond

the simple hard-core repulsion of the Tonks model. Other effects,

including transient unwrapping of the nucleosomal DNA [5,6,27]

and geometric constraints in higher order structures may modify

the interaction between nucleosomes as well. In statistical physics,

more complicated interactions between particles in one

dimensional gases have been considered [30], however due to

the good agreement between the data and the simple Tonks

model, we did not consider generalizations in this direction.

Procedure for quantitative analysis
To systematically compare the quantitative model to the +1

nucleosome alignments of the read density (i.e., our proxy
P

reads

for nucleosome density), we performed least squares fits using the

function

f (r)~l:r(r{Dr), ð2Þ

where l is a normalization factor, Dr tests for a possible horizontal

offset in the data, and the function r(r) from Eq. (1) contains the

parameters �rr and b. In all our fits, the nucleosome width was kept

fixed at b~147 bp. We used the offset parameter Dr also to

distinguish between the two opposite boundary conditions

considered for our fits: As explained above, Dr~0, corresponds

to the direct positioning scenario where the first nucleosome is a

fixed barrier for the neighboring nucleosomes, while a shift by one

nucleosome width corresponds to the statistical positioning

scenario where the boundary is not a nucleosome, but another

repellent feature on the genome. (In the latter case, the different

genes should in principle be aligned to the location of the

boundary, but since this is not possible, our alignment to the first

nucleosome is the best alternative.) For each of our fits, one of

these two scenarios is imposed by choice of the starting value for

Dr, since each scenario corresponds to a deep ‘‘basin’’ in the least-

squares score function. As can be seen from the Tables in the

Supporting Material, each best-fit value for Dr either clearly

corresponds to the direct positioning scenario, Dr&0, or to the

indirect positioning scenario, {1=�rrvDrv{b. We performed fits

to 21 nucleosome alignment data in the same way as for +1

nucleosome alignment data, except that we mirrored the data at

the origin. For the fits, we used the data in a range from 200 to

2000 bp downstream from the +1 nucleosome and upstream from

the 21 nucleosome, respectively. Altering the fitting range to 200–

1200 bp had no significant effect on the results. To ensure best

possible parameter estimates, we performed each fit 300 times

from a wide range of starting parameters. Best fits are shown in

Figs. 2A, S4, and 3C (where a peak at Dr has been added where

applicable to indicate the directly positioned nucleosome, i.e., for

the case Dr&0). The corresponding parameter estimates are

displayed in Table S1 where d denotes the squared deviation per

data point between data and model.

The parameter estimates from fits to the +1 nucleosome

alignment are robust against variations in details of the fitting

procedure: (i) Fitting to the average over all genes yields almost the

same parameter estimates as a fit to an average where only genes

larger than 2000 bp are considered. For the latter, nucleosome

density is estimated slightly higher due to the slightly further

ranging oscillations (Fig. S3C), but it does not significantly differ

from the estimate obtained from the alignment including all genes

(see Figs. 2A and S4, Table S1). (ii) Randomly partitioning the set

of 4792 genes over which the average is performed into four

subsets and repeating the fitting analysis yielded almost identical

results, see Table S2. (iii) To account for the effect of the residual

cell-to-cell variation in the position of the +1 nucleosome, we also

performed a fit using a ‘convoluted Tonks model’, where Eq. (2)

(with Dr~0) was convoluted with a probability distribution

function corresponding to the experimental nucleosome density

in the range of +30 bp around zero. The first peak downstream

from the +1 nucleosome, corresponding to the +2 nucleosome, is

much better characterized by this fit (compare Figs. 2A and B)

suggesting that cell-to-cell variation of the +1 nucleosome’s

position is reflected in cell-to-cell variations of the downstream

nucleosomes. Yet, parameter estimates are very similar to those

obtained from the fit without convolution (Table S1) indicating

that including this effect is not essential when fitting the Tonks gas

model to the data in the range of 200 to 2000 bp as we do

everywhere else in this study.

For the fit to just the 21 nucleosome alignment, we used the

parameter estimates for nucleosome density �rr and normalization l
obtained from the fit to the +1 nucleosome alignment. Thus, the

only remaining fit parameter here was the offset Dr (Table S1),

which was started at values Drv{b. In order to systematically test

alternative scenarios (e.g., direct positioning of the 21 nucleosome

and indirect positioning of the +1 nucleosome), we performed

simultaneous fits to both the +1 and 21 alignment data for each of

the four possible boundary conditions. Fits were carried out

analogously to the procedure described above, but with the l and

�rr parameters constrained to take the same values on both sides.

Fig. S5 displays the results, Table S3 shows the parameter estimates.

Regarding the mean squared deviation per data point d, scenarios C

and D are similar, while scenarios A and B are less probable. In both

eligible scenarios, the 21 nucleosome is indirectly positioned. In the

best fit scenario C the +1 nucleosome is directly positioned.

Comparison of average nucleosome densities
In our systematic fitting procedure described above, we assumed

the same average nucleosome density up- and downstream from the

NFR. This must be justified by comparing the average density in

intergenic regions to that in genic regions. To estimate their ratio,

we used the proxies for nucleosome density described above, i.e., the

read density (
P

reads) and the representation of nucleosomes by

Gaussians with appropriate width (
P

peaks). To exclude the

influence of the 59 NFR, which is mostly located within intergenic

regions, we excluded the NFR regions. Using proxy
P

reads we

obtained a ratio of 1.00 for the density in intergenic to the density in
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genic regions, whereas a ratio of 0.85 resulted from using
P

peaks.

We conclude that there is no clear indication of a density bias

between intergenic and genic regions (apart from the existence of

NFRs). We therefore assumed equal average density up- and

downstream from the TSS for the fitting procedure.

Supporting Information

Figure S1 Characteristics of the Tonks gas two-particle

distribution function. (A) Two-particle distribution function r2(r)
for a particle size of b~147 and an average particle spacing

1=�rr~178. The first few individual terms qk(r) contributing to

r2(r) are superimposed. (B) Distance between the individual peaks

in r2(r) as a function of �rr for b~147. For dense packing, the first

few maxima are equidistantly spaced by 1=�rr. Note that the first

peak is always located at r~b, regardless of the particle density.

Found at: doi:10.1371/journal.pcbi.1000891.s001 (0.32 MB PDF)

Figure S2 Comparison between two proxies for the nucleosome

density. (A) Section of the read density map (
P

reads) based on

sequence reads reported by Mavrich et al. [10]. (B) Section of

nucleosome density estimate based on the list of nucleosomes

identified by Mavrich et al. (
P

peaks): Each nucleosome is

represented by a Gaussian with mean and standard deviation

corresponding to the values reported. (C) Alignment of both

nucleosome density proxies (red dots for
P

reads, green dots forP
peaks) to +1 nucleosome positions and averaging over all genes

leads to nearly identical results. To account for the unknown

normalization, we scaled the read density map such that the

genome-wide number of reads equals the genome-wide number of

identified nucleosomes.

Found at: doi:10.1371/journal.pcbi.1000891.s002 (0.46 MB PDF)

Figure S3 Distribution of gene start and end sites and effects on

alignments. (A) Probability distribution (black) and cumulative

distribution (red) for the length of genes. Typical sizes of genes are

about 1000 bp, but about nearly a third is larger than 2000 bp.

(B) Same distributions for the distance between neighboring TSSs.

Distances are in general comparable to the size of genes, but a

number of TSSs are very close to each other. (C) Alignment of

read density to +1 nucleosome and average over all genes (red

dots) and those 1269 genes being larger than 2000 bp only (gray

dots). The averages are very similar, but close inspection shows

that amplitudes are slightly larger and oscillations range further

when considering large genes only. (D) Alignment of read density

to 21 nucleosome and average over all genes (blue dots) and those

952 genes where no gene starts or ends were found within 1000 bp

upstream of the TSS (gray dots). The averages are very similar, but

amplitudes are slightly smaller when considering those genes

without other gene starts or ends upstream only.

Found at: doi:10.1371/journal.pcbi.1000891.s003 (0.52 MB PDF)

Figure S4 Best fit of Tonks gas model (gray line) to +1

nucleosome alignment of read density including genes larger than

2,000 bp only (red dots). Visual inspection yields good agreement

between model and data, comparable to the analogous fit to the

data including all genes (Fig. 2A, see also Fig. S3C). For estimated

parameters see Table S1.

Found at: doi:10.1371/journal.pcbi.1000891.s004 (0.41 MB PDF)

Figure S5 Best simultaneous fits (gray lines) to 21 and +1

nucleosome alignments of read density (blue and red dots,

respectively) given the four possible boundary conditions (both the

+1 and 21 nucleosome may be directly or indirectly positioned) with

nucleosome density and normalization being equal for both

alignments (see ‘Materials and Methods’ for details). Regarding the

mean squared deviation per data point, scenario C describes the data

best, i.e., the scenario where the +1 nucleosome is directly positioned

while the 21 nucleosome is indirectly positioned (Table S3).

Found at: doi:10.1371/journal.pcbi.1000891.s005 (1.00 MB PDF)

Figure S6 Nucleosome organization around the 39 end of genes.

(A) Sketch of a typical nucleosome organization around both the

59 and 39 ends of genes. Throughout this study, the focus is

primarily on the 59 NFR with its flanking 21 and +1 nucleosomes.

The nucleosomes flanking the 39 NFR are here referred to as the

39 end 21 nucleosome and the 39 end +1 nucleosome. We

determined the positions of 39 end +1 nucleosomes in analogy to

the 59 end +1 nucleosomes: The 39 end 21 nucleosome is defined

as the nucleosome at or first nucleosome upstream of the ORF end

while the 39 end +1 nucleosome is the first nucleosome

downstream. (B) Alignment of read density to the 39 end 21

nucleosome (left) and 39 end +1 nucleosome (right), respectively

(green data points). For comparison, the alignment to the 59 end

21 nucleosome is also shown (blue data points, from Fig. 4,

mirrored on the right). Overall, a good agreement is visible

between the alignments to the nucleosomes flanking the 39 NFR

on both sides and the alignment to the 59 end 21 nucleosome.

This indicates that at the 39 end the nucleosomes are only

statistically positioned against a repulsive barrier, which we found

to be the most likely scenario for the pattern upstream of the 59

NFR. (Note the small bump in the read density within the

nucleosome depleted region, just downstream of the 39 end 21

nucleosome and upstream of the 39 end +1 nucleosome; it

indicates that the identification of 39 NFRs is not perfect or a

certain fraction of genes does not display a 39 NFR.)

Found at: doi:10.1371/journal.pcbi.1000891.s006 (0.42 MB PDF)

Table S1 Parameter estimates from independent fits of Tonks

gas model to +1 nucleosome alignments of read density based on

Equation (2) (density �rr, normalization l, offset Dr, squared

deviation per data point d). Numbers in parentheses indicate

values that were set fixed rather than estimated from the fit. See

‘Materials and Methods’ for details.

Found at: doi:10.1371/journal.pcbi.1000891.s007 (0.03 MB PDF)

Table S2 Parameter estimates (density �rr, normalization l, offset

Dr, squared deviation per data point d) from fits of Tonks gas model

to +1 nucleosome alignments of read density using subsets of genes

only. Four times (partitioning A–D), the set of 4792 genes was divided

into four equal-sized subsets (subset 1–4) before fitting. Estimated

parameters are very similar; see ‘Materials and Methods’ for details.

Found at: doi:10.1371/journal.pcbi.1000891.s008 (0.03 MB PDF)

Table S3 Parameter estimates for simultaneous fits of Tonks gas

model to +1 nucleosome alignments of read density. Both

normalization l and nucleosome density �rr are constrained to be

equal for both alignments. Drz1 and Dr{1 are independent

parameters accounting for different boundary conditions. Regard-

ing the mean squared deviation per data point d, scenario C

describes the data best, i.e., the scenario where the +1 nucleosome

is directly positioned while the 21 nucleosome is indirectly

positioned (Fig. S5). See ‘Materials and Methods’ for details.

Found at: doi:10.1371/journal.pcbi.1000891.s009 (0.04 MB PDF)
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