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Abstract

Gene expression measurements are influenced by a wide range of factors, such as the state of the cell, experimental
conditions and variants in the sequence of regulatory regions. To understand the effect of a variable of interest, such as the
genotype of a locus, it is important to account for variation that is due to confounding causes. Here, we present VBQTL, a
probabilistic approach for mapping expression quantitative trait loci (eQTLs) that jointly models contributions from
genotype as well as known and hidden confounding factors. VBQTL is implemented within an efficient and flexible
inference framework, making it fast and tractable on large-scale problems. We compare the performance of VBQTL with
alternative methods for dealing with confounding variability on eQTL mapping datasets from simulations, yeast, mouse, and
human. Employing Bayesian complexity control and joint modelling is shown to result in more precise estimates of the
contribution of different confounding factors resulting in additional associations to measured transcript levels compared to
alternative approaches. We present a threefold larger collection of cis eQTLs than previously found in a whole-genome eQTL
scan of an outbred human population. Altogether, 27% of the tested probes show a significant genetic association in cis,
and we validate that the additional eQTLs are likely to be real by replicating them in different sets of individuals. Our
method is the next step in the analysis of high-dimensional phenotype data, and its application has revealed insights into
genetic regulation of gene expression by demonstrating more abundant cis-acting eQTLs in human than previously shown.
Our software is freely available online at http://www.sanger.ac.uk/resources/software/peer/.
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Introduction

DNA microarray technologies allow for quantification of

expression levels of thousands of loci in the genome. These

measurements enable exploring how a variable, such as clinical

phenotype, tissue type, or genetic background, affects the

transcriptional state of the sample. Recently, gene expression

levels have been studied as quantitative genetic traits, investigating

the effect of genotype as the primary variable. Studies have found

and characterised large numbers of expression quantitative trait

loci (eQTLs) [1–3], exploring their complexity [2], population

genetics [4,5] and associations with disease [6,7].

An important issue in such studies is additional variation in

expression data that is not due to the genetic state, as illustrated in

Figure 1. Intracellular fluctuations, environmental conditions, and

experimental procedures are factors that all can have a strong

effect on the measured transcript levels [2,8–10] and thereby

obscure the association signal. When measured, correct estimation

of the additional variation due to these known factors allows for a

more sensitive analysis of the genetic effect. For example, it has

been reported that additional human eQTLs can be found when

including the known factors of age, and blood cell counts in the

model [7]. It is also standard procedure to correct for batch effects,

such as image artefacts or sample preparation differences [11].

In practise it is not possible to measure or even be aware of all

potential sources of variation, but nevertheless it is important to

account for them. Unobserved, hidden factors, such as cell culture

conditions [12] often have an influence on large numbers of genes.

We and others have proposed methods to detect and correct for

such effects [9,13,14]. These studies demonstrated the importance

of accounting for hidden factors, yielding a stronger statistical

discrimination signal.

The challenge in modelling several confounding sources of

variation (Figure 1) is to correctly estimate the contribution that is

due to each one of them. There are open questions how to ensure

that only spurious signal is eliminated by methods that account for

hidden factors (see for instance discussion in [14]), and how to deal

with situations when both known and hidden factors are present.

The problem of identifying the correct causes of the signal is even

harder in the presence of additional sources of variability. For
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example, when searching for epistatic or genotype-environment

interactions, the primary effects of other known factors and hidden

factors also need to be accounted for.

The key for correctly attributing expression variability is

controlling the complexity of the statistical models for each source

of variation. For example, the number of genotypes considered in

an association scan can be enormous, and not all of them affect the

expression level of every probe. Threshold values, obtained from

likelihood ratio statistics or empirical p-value distributions, can be

used to determine the significance of individual associations,

thereby avoiding overfitting by controlling the model complexity

[4,15]. Similar measures are necessary for models of other sources

of variability such as hidden factors.

In this work we present VBQTL (Variational Bayesian QTL

mapper), a joint Bayesian framework for gene expression

variability that accounts for the signal from genotype, known

factors, and hidden factors. VBQTL is implemented within a

general framework that provides commonly used models for

sources of phenotypic variation, which can be combined as

needed. While previous attempts have been specific to a narrow set

of underlying sources, our approach is flexible and can be adapted

to a particular study design. The probabilistic treatment allows

uncertainty to be propagated between models, and yields a

posterior distribution over model parameters. Complexity control

is tackled at the level of individual models, where parameters are

regularised in a Bayesian manner.

We compare the performance of VBQTL with existing

approaches for detecting expression QTLs. A simulation experi-

ment contrasts VBQTL with common approaches that use non-

Bayesian techniques for distinguishing global hidden factor effects

from genetic effects. This study highlights differences in the

methodology to control model complexity with implications to

eQTL detection power. The necessity and difficulty to account for

variability that confounds the genetic signal is demonstrated. Results

on datasets from a human outbred population and crosses of inbred

yeast and mouse strains show that VBQTL identifies more

significant associations than alternative methods. Finally, we apply

VBQTL to perform a whole-genome eQTL scan on the HapMap

phase 2 expression and genotype data, demonstrating the scalability

of our framework to large numbers of samples and probes. We find

three times more cis eQTLs than a standard association mapping

method, suggesting more extensive genetic control of gene

expression by common variants than previously shown.

Methods

Here, we present VBQTL, a configuration of a general

framework for modelling diverse sources of gene expression

variability. The model underlying this framework assumes that

gene expression levels are influenced by additive effects from

independent sources, e.g. in the case of VBQTL these are

contributions from genotype, known factors, and hidden factors

(Figures 1, 2a). We cast the full model in a probabilistic setting,

treating its parameters as random variables.

We perform Bayesian inference in the joint model, which is

appealing for several reasons. First, it allows possible dependencies

between the different sources of variation to be captured. The effects

of the genotype, known and hidden factors are learned jointly,

taking other parts of the model into account. Propagation of

uncertainty leads to more accurate parameter estimates [16], and

avoids possible pathologies, for instance of maximum likelihood

methods [17]. Second, Bayesian inference allows different models to

be flexibly combined according to the needs of a particular study.

Many existing approaches can be cast as special cases of this general

framework, with some examples given in Figure 1. Finally, the

Bayesian approach leads itself to efficient approximate inference

schemes such as variational methods [18], rendering the resulting

algorithms applicable to large-scale and high-dimensional datasets.

Figure 1. General additive model for sources of gene expression variability. The G|J matrix Y of measured gene expression levels of G
genes from J individuals is modelled by additive contributions from components fY(m)g and observation noise Y. Here, the components capture the
signal due to primary effect of the genetic state S, known factors F and hidden factors X. Some examples of possible underlying sources of variation
are given above the model boxes. The groupings represent some standard genetic association models commonly used.
doi:10.1371/journal.pcbi.1000770.g001

Author Summary

Gene expression is a complex phenotype. The measured
expression level in an experiment can be affected by a
wide range of factors—state of the cell, experimental
conditions, variants in the sequence of regulatory regions,
and others. To understand genotype-to-phenotype rela-
tionships, we need to be able to distinguish the variation
that is due to the genetic state from all the confounding
causes. We present VBQTL, a probabilistic method for
dissecting gene expression variation by jointly modelling
the underlying global causes of variability and the genetic
effect. Our method is implemented in a flexible framework
that allows for quick model adaptation and comparison
with alternative models. The probabilistic approach yields
more accurate estimates of the contributions from
different sources of variation. Applying VBQTL, we find
that common genetic variation controlling gene expres-
sion levels in human is more abundant than previously
shown, which has implications for a wide range of studies
relating genotype to phenotype.

Bayesian Framework for Phenotypic Variability
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Also, variational learning allows an inference schedule to be

specified by the user, leading to distinct algorithms with different

computational complexity and properties (see Inference).

In the following, we present the mathematical model of

VBQTL, and an outline of the inference procedure. We then

describe alternative non-Bayesian models for expression QTL

studies used in the experiments. An in-depth treatment of the

framework including full details about the parameter estimation is

provided in Text S1.

VBQTL - a joint Bayesian model for gene expression
variability

The observed gene expression matrix Y~fyg,jg for genes

g[f1, . . . ,Gg and individuals j [f1, . . . ,Jg is modelled by the sum

of contributions Y(1),Y(2),Y(3) from the genotype, known and

hidden factor models and Gaussian noise with precisions tg for

each gene g

P(yg,j Dy
(1)
g,j ,y

(2)
g,j ,y

(3)
g,j ,tg)~N (yg,j Dy

(1)
g,j zy

(2)
g,j zy

(3)
g,j ,

1

tg

), ð1Þ

with a gamma prior on the noise precisions P(tg)~C(tg Dat,bt)

(Figure 2a). The Y(i) comprise the contribution of individual

sources to the variability in the observed expression levels, and are

themselves treated as random variables with different underlying

models.

1) Genotype effect model represents the probabilistic

variant of the standard genetic association model, where some of

the SNP genotypes have a linear effect on gene expression levels.

The genetic component of the expression level y
(1)
g,j of the gth gene

probe in the jth individual is explained by linear effects of the

genotypes of N SNPs sj~fs1,j , . . . ,sN,jg (Figure 2a, green plate):

P(y
(1)
g,j Dsj ,bg,ug,tg)~N (y

(1)
g,jDX

N

n~1

bn,g
: un,gsn,j

� �
,

1

tg

) ð2Þ

P(bn,g)~Bernoulli(bn,g Dpass) ð3Þ

P(un,g)~N (un,g D0,1): ð4Þ

The weights ug~ u1,g, . . . ,uN,g

� �
control the magnitude of the

effect of the SNP on the expression levels of genes g. The binary

variables bg~ b1,g, . . . ,bN,g

� �
determine whether the SNP effect is

significant (bn,g~true) or not (bn,g~false). The prior probability

pass of an individual association controls the complexity of the

model by influencing the a priori expected number of significant

associations; this parameter corresponds to a significance threshold

in a classical setting (Text S1).

To reduce the computational cost, inference in the association

model is approximated, only considering a single most relevant

SNP-regulator per gene, with the other bn,g forced to 0. This

bottleneck approximation ensures tractability of the joint associ-

ation model for large-scale studies (Text S1), avoiding the need to

track the covariance between effects from multiple SNPs.

2) Known factor model accounts for the effect of known

covariates F of individual samples, such as environmental

conditions, gender, or a population indicator. The linear effects

of C measured covariates in the jth individual, f j~ f1,j , . . . ,fC,j

� �
,

is taken into account using a variant of Bayesian regression

(Figure 2a, blue plate):

P(y
(2)
g,j jf j ,vg,tg)~N (y

(2)
g,jjXC

c~1

vg,c fc,j ,
1

tg

) ð5Þ

P(vg,cDac)~N (vg,cD0,
1

ac

) ð6Þ

P(ac)~C(acDaa,ba): ð7Þ

(b) (c)

(d) (e)(a) Bayesian network of VBQTL

Figure 2. Bayesian network and outline of the inference schedule for VBQTL. (a) The Bayesian network for the model of gene expression
variation used in VBQTL (see Methods). The full model combines genetic (green), known factor (blue) and hidden factor (red) models to explain the
observed gene expression levels Y. The solid rectangles indicate that contained variables are duplicated for each gene probe (g), SNP (n) or factor
(c,k) respectively. A similar rectangle for individuals (j) is omitted in this representation. The dashed rectangle indicates that the variable bn,g switches
the contained part of the graph on or off representing the existence or lack of an association. Nodes with thick outlines (sn,j , fc,j and yg,j ) are observed.
(b)–(e) Update cycle of the known factors model introduced in Section Inference. The red outline highlights the parts of the model that change in a
step, and the thick blue arrows illustrate the flow of information. Details of these updates are discussed in the text.
doi:10.1371/journal.pcbi.1000770.g002

Bayesian Framework for Phenotypic Variability
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Here, vg~ vg,1, . . . ,vg,C

� �
is the corresponding weight vector for

each gene g. The gamma prior on the inverse variance ac for

weights of each factor introduces automatic relevance detection

(ARD) [19,20], driving the weights of unused factors to 0 and

thereby switching them off. This provides complexity control of

the model by regularising the effective number of covariates.

3) Hidden factor model accounts for the effect of hidden

factors (such as unmeasured covariates and global effects) on the

gene expression levels. We use a probabilistic variant of the

classical factor analysis model for this task. We have previously

shown that this model captures hidden factors better than

alternative linear models, such as probabilistic principal compo-

nent analysis or independent component analysis [13]. Similarly to

known factors, the expression level of gene g in individual j is

modelled by linear effects from a chosen number of K hidden

factors xj~fx1,j , . . . ,xK,jg (Figure 2a, red plate).

P(y
(3)
g,j Dxj ,wg,tg)~N (y

(3)
g,jDX

K

k~1

wg,k xk,j ,
1

tg

) ð8Þ

P(wg,k Dbk)~N (wg,kD0,
1

bk

) ð9Þ

P(xk,j)~N (xk,j D0,1) ð10Þ

P(bk)~C(bk Dab,bb): ð11Þ

Note that in contrast to the known factor model, the factor

activations X~fx1, . . . ,xJg are unobserved random variables that

need to be inferred from the expression profiles. Again, the ARD

prior switches unused factors off, thereby providing probabilistic

complexity control ([13], Results).

Inference
Parameter inference in VBQTL is implemented using varia-

tional Bayesian learning [18], a generalisation of the expectation

maximisation algorithm. An approximate Q-distribution over

model parameters is iteratively refined until convergence. In each

iteration, approximate distributions of individual parameters are

updated according to a specified schedule, taking the current state

of all other parameter distributions into account (Figure 2b–e).

Choosing an approximation that factorises over individual models,

the variational update equations have an intuitive interpretation:

1. The current belief of the residual dataset for a particular active

model is calculated, taking the prediction form all other models

and the estimated noise precision into account (Figure 2b).

2. The parameters of the active ith model are updated based on

their previous states and the new residual dataset (Figure 2c).

3. The distribution of the model contribution Y(i) is recalculated

using the updated parameter values. The global noise

precisions tg are updated (Figure 2d) based on the first and

second moments of all the contributions.

4. The same procedure is in turn applied to the remaining models

in the schedule (Figure 2e) until convergence.

This iterative procedure, performing updates of local parameter

distributions in turn, can be interpreted as a message passing

algorithm, where sufficient statistics of parameter and data

distributions are propagated across the graphical model [21].

The initial values of parameters are determined from maximum

likelihood solutions. A random initialisation via sampling from the

prior is possible as well; we have not explored the implications of

this alternative here. Details on inference and the individual

parameter update equations are given in Text S1.

In experiments, we compare two alternative inference schedules

of VBQTL. In iterative VBQTL (iVBQTL), the model parameters

are learned using several iterations through all model components,

first updating the genetic model, then known and hidden factors

(Text S1). An important property of iVBQTL is that hidden

factors are estimated jointly with the genetic state and known

factors. This choice of schedule and the iterative learning help to

ensure that variability that is due to genetic associations is not

explained away by other parts of the model (Results).

In cases where neither known nor hidden factors are correlated

with the genetic state, their effect can be learned independently

without running the risk of explaining away meaningful associa-

tion signal. This motivates fast VBQTL (fVBQTL), which

performs a single update iteration of the full model, first inferring

the contribution from the known and hidden factors, and then

from the genetic state. This simpler schedule can save significant

computation time, since the factor effects can be precalculated,

and only a single iteration of the computationally more expensive

genetic association model is needed. In cases where the genetic

state is approximately orthogonal to the known and hidden

factors, this cheaper approximation performs equally with

iVBQTL for finding genetic associations (Results).

Alternative methods to account for confounding
variation in expression QTL studies

We compared VBQTL with previous methods that account for

confounding variance in the context of expression QTL mapping.

Similarly to VBQTL, they model known and hidden factors in the

expression levels. The differences between the alternative methods

are in the hidden factor model used, which in turn vary in the

complexity control approach employed as highlighted below. Thus

these alternative models are named after the hidden factor

estimation method.

N Standard model explains the expression variability solely by

the effects of known factors and SNP genotypes, without

accounting for the hidden factors.

N PCA uses principal component analysis to detect hidden

factors. In general, PCA can explain all the variability in the

data. Complexity is controlled by specifying the number of

components to use as a parameter.

N PCAsig is an extension of PCA to account for hidden factors.

In this model, complexity control is achieved via significance

testing of eigenvalues, retaining only components that explain

more variance than expected by chance at a specified

significance cutoff (Text S1).

N SVA model controls complexity similarly to PCAsig, and also

accommodates a per-gene noise model and explicitly allows for

sparse non-orthogonal components [9].

For a quantitative evaluation of the performance of each

method, we considered the resulting residuals of the estimated

effects from known and hidden factors. To detect eQTLs we

applied standard statistical tests employing a linear model on the

SNP genotype on these residual datasets (Text S1). For iVBQTL

and fVBQTL, we inferred the posterior parameter distributions,

and subtracted off the estimated effect of known and hidden

Bayesian Framework for Phenotypic Variability
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factors. For other methods, we first subtracted off the standard

linear regression fit of the known factors, and then learned and

subtracted off the hidden factor effects on the residuals. All these

alternative methods are also implemented in the general

framework; for details see Text S1.

While VBQTL shares basic assumptions with these alternatives,

there are a number of differences. First, it is a probabilistic model

that operates with uncertainties in the parameter estimates as

explained above. Second, the hidden factor model allows for non-

orthogonal components, and provides probabilistic complexity

control based on ARD. Third, the iVBQTL schedule takes the

genetic signal into account when estimating the hidden factor

effect. Finally, the VBQTL model estimates a global gene-specific

noise level, while the non-Bayesian models either estimate noise

levels implicitly (SVA) or assume noise-free observations (PCA,

PCAsig).

Results

Simulation study highlights performance differences due
to complexity control approaches

We employed a simulated dataset to highlight the differences

between alternative approaches to account for global factors in

eQTL finding. Our synthetic expression data combines linear effects

from genetic associations (eQTLs), known, hidden, and genetic

global factors, and gene-specific noise (Text S1). We used three

known and seven unknown global factors whose influence varies

significantly to simulate effects with a range of magnitudes. These

factors are meant to represent sources of confounding variation that

are encountered in the study of the real datasets. We also introduced

three global genetic factors giving rise to trans eQTL hotspots,

mimicking the action of a genetic variant in a transcriptional

regulator (e.g. transcription factor or pathway component). Such loci

have been observed in several eQTL mapping studies [1,3]. We

designated three genes with a simulated eQTL as such regulators,

and simulated correlated expression levels for 15% of the genes for

each. While the specific simulation scenario may be biased in the

comparative performance of different methods, its underlying linear

model is shared by all the considered approaches, and it gives

intuition for the results on real datasets discussed later.

Complexity control determines the accuracy of the hidden

factor model. We assessed the ability of the considered methods

to recover the simulated confounding variability. For those

approaches that do infer hidden factor effects, we varied the

corresponding complexity control parameters to investigate the

influence on performance. For methods that take the number of

components in the hidden factor model as a parameter (PCA,

VBQTL), performance for one to 50 hidden factors was compared.

For significance-testing based methods, we considered different

significance cutoffs a in the range ½0:01,0:5�.
iVBQTL correctly captured the non-genetic global factor effects

(Figure 3a), as it is the only method that models the genetic signal

(a) Non-genetic global factor effect 
estimation error

(b) Total global factor effect 
estimation error

(c) Immediate (cis) eQTLs (d) Downstream (trans) eQTLs

Figure 3. Sensitivity of recovering simulated hidden factor effects and eQTLs for Bayesian and non-Bayesian methods. (a) Mean-
squared error in estimating only the hidden factor contribution. Methods that do not explicitly retain the genetic factors explain them away as hidden
global factors, resulting in high error comparable to not accounting for hidden factors at all (Standard). (b) Mean-squared error in estimating the
contribution from hidden and genetic factors. (c) Sensitivity of recovering immediate SNP associations. (d) Sensitivity of recovering downstream
associations. Seven hidden factors and three transcription factor effects were simulated. For eQTL sensitivity, standard eQTL finding on simulated
data (Standard) and same data without the hidden effects (Ideal) are included as comparisons. PCAsig and SVA identified a constant number of
hidden components (marked with a diamond shape), thus only a single result (dashed line) is given.
doi:10.1371/journal.pcbi.1000770.g003

Bayesian Framework for Phenotypic Variability
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when learning hidden factors. All other methods treat the

simulated transcription factor contributions as confounding

variation and explain them away. This can be a desired effect

when the genetic signal is not of primary interest, or a serious

shortcoming when downstream eQTLs are sought.

Complexity control settings determined the performance of

capturing the simulated global effects on expression levels. PCA

was most accurate when the number of hidden factors was set to

10, since seven hidden factors and three transcription factors were

simulated. For larger number of components PCA overfitted, and

started explaining away genetic signal, resulting in the increase in

error. For a small number of components, transcription factor

effects were explained away first, which increased the error in

estimating the hidden factors alone. However, the estimates of the

total global effects improved. PCAsig and SVA found 6 and 7

significant hidden factors for the wide range of significance cutoffs,

a[ ½0:01,0:5�, respectively. They failed to detect some of the

weaker hidden effects that continued to mask the genetic signal,

and underfitted the data. Their performance was similar to PCA

with the matching number of components. While the significance-

testing based complexity control prevents these approaches from

overfitting, only a single outcome is observed for a wide range of

parameter settings, with the models settling to a rigid suboptimal

solution. fVBQTL achieved the most accurate estimation of global

variation. Notably, unlike PCA, its performance did not degrade

for large numbers of hidden factors in the model, exhibiting good

complexity control in this scenario.

Hidden factor effect estimation accuracy is mirrored in

eQTL finding sensitivity. We determined the sensitivity and

specificity of the considered methods for detecting the immediate

and downstream simulated genetic associations. The significance

of an eQTL was tested using a two-sided t test on the correlation

coefficient with a 0:1% Bonferroni corrected per-gene false

positive rate in the genetic association model. The results when

calling eQTLs using regression on ranks, or permutations to

establish the empirical null distribution of LOD scores were almost

identical (Figure S1). As a benchmark, the comparison includes

eQTL finding using the standard method on both raw expression

data (Standard), and an ideal case, where the simulated hidden

factor effects are removed, but the simulated genetic factors

maintained (Ideal).

The accuracy of the hidden factor effect estimation mirrored the

immediate eQTL finding sensitivity (Figure 3c). The specificity

was consistent with the chosen false positive rate for all methods

(data not shown). fVBQTL and iVBQTL recovered more true cis

eQTLs compared to other methods, approaching the performance

of the ideal case, mirroring the accuracy of estimating hidden

factor effects. PCA overfitted when the number of components

used was greater than the true number of ten simulated global

factors, explaining away genetic signal. While the PCA error for

detecting global effects increased only marginally, the decrease in

sensitivity for identifying eQTLs was severe. The overfitting in

case of PCA, and underfitting in case of PCAsig and SVA both

resulted in a loss of sensitivity to find the simulated cis associations.

fVBQTL and iVBQTL did not suffer from either deficiency,

capturing nearly all the associations possible in the ideal case.

All methods except iVBQTL and standard method explained

away simulated trans eQTL hotspots (Figure 3d). This is due to the

global factor effect estimation accuracy, where iVBQTL alone

refrained from explaining the hotspots away as a global factor.

The standard method found nearly all the original trans

associations, actually outperforming methods that explain away

confounding variability. Thus, in cases where there is true genetic

signal with widespread downstream effects, its contribution needs

to be taken into account to retain its relation to genotype, and

avoid attributing it to a confounding global cause. This is

straightforward in our framework, and is demonstrated by the

good performance of iVBQTL in this scenario. iVBQTL retained

the original associations, while explaining away non-genetic causes

of expression variability, thus adding power to detect the weaker,

masked eQTLs. This effect is also observed in the study of crosses

of inbred strains below.

Taken together these results suggest that it is important to

account for the confounding sources of variation in expression

levels, while keeping the signal of the genetic state. Correct

complexity control is required to avoid over- and underfitting in

order to achieve optimal sensitivity for detecting true genetic

associations.

VBQTL finds additional expression QTLs in real datasets
Next, we compared the same methods for expression QTL

finding on yeast [2], mouse [3] and human [4] datasets. These

represent common study designs of an outbred population

(human), and a population of crosses between inbred strains

(yeast, mouse). We considered 5, 15, 30, and 60 hidden factors for

PCA and VBQTL, and 0:01,0:1, and 0:3 as significance cutoffs for

SVA and PCAsig. Expression QTLs were detected using a two-

sided t test analogously to the simulation scenario. Again, results

for alternative genetic association tests were similar (Figures S2,

S3, S4).

Accounting for hidden factors helps to detect additional

cis eQTLs in an outbred population. We applied the

considered methods on the genotype and expression data from

90 individuals of the CEU (CEPH from Utah) HapMap phase 2

samples [4,22]. The data consisted of genotypes of 55,000 SNPs

and expression levels of 618 probes from chromosome 19 (results

for three more chromosomes were similar, data not shown). The

expression levels were measured in EBV-transformed lympho-

blastoid cell lines of healthy individuals. The gender covariate was

included as a known factor for all methods. We did not consider

probes with overlapping SNPs. Following [4], an association was

called to be in cis when the SNP was within 1Mb from the probe

midpoint and in trans otherwise.

The standard method found the least gene probes with a cis

association (20, Figure 4c), suggesting that strong confounding

sources of variation are present in this dataset. The number of

identified probes with a trans association was not significantly

higher than expected by chance at the chosen FPR, which is in

line with previous results [4], and suggests little intrachromosomal

trans regulation.

PCA, the simplest method for accounting for hidden factors,

found additional associations when up to 30 principal components

were used, but substantially fewer for 60 components. This is

expected, since there are no more than 90 degrees of freedom in

this dataset, and 60 principal components accounted for over 94%
of the variance (Table S5), and hence PCA is likely to explain

away part of the genetic association signal for large numbers of

components.

The significance-testing based methods, SVA and PCAsig both

found additional associations compared to the standard method. It

is remarkable that both found a constant number of significant

hidden factors for the wide range a[f0:01,0:1,0:3g of significance

cutoffs considered, again exhibiting rigid complexity control. The

performance of SVA with the 12 hidden factors found is close to

performance of PCA with 15 components (both find 38 probes

with an association). Similarly, PCAsig with the 7 significant

components performs comparably to PCA with 5 components (37

vs. 35 probes with an association). This shows the intrinsic

Bayesian Framework for Phenotypic Variability
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similarity of these methods to PCA, as was also observed in the

simulation scenario.

fVBQTL and iVBQTL found more probes with an association

(55 and 54) than all other methods, representing an almost

threefold increase in the number of genes with a cis eQTL.

Complexity control assured that the performance saturated for

large enough number of factors and did not degrade as for PCA.

None of the estimated hidden factors was significantly correlated

to a SNP genotype, suggesting that individual genetic variants do

not have global effects on many gene expression levels in this

dataset.

It is important to note that the model performance depends on

two aspects. First, the model complexity control, regulating the

amount of variance explained, is important to ensure that genetic

signal is not attributed to hidden factors. Overfitting in case of

PCA for a large number of components is an example of such an

effect. Second, while alternative hidden factor models explained

similar amounts of variance, their performance differed due to the

underlying model. For example, PCA and fVBQTL both

explained about 70% of variance in the observed expression levels

(Table S5), yet fVBQTL identified additional associations. These

findings are consistent with the simulation study results, and

suggest that the additional associations found with Bayesian

models are due to differences in the underlying model and

complexity control.

Accounting for hidden factors adds power to detect cis

associations in crosses between inbred mouse and yeast

strains. Next, we applied the methods to two datasets of inbred

strain crosses. The yeast expression dataset [2] (GEO [23]

accession GSE1990 with genotypes provided by authors)

contained 7084 expression measurements and 2925 genotyped

loci in 112 crosses of segregating yeast strains. The mouse

expression data [3] consisted of 23,698 expression measurements

for 111 F2 mouse lines, and genotypes at 137 genetic markers. An

association was called to be in cis if the probe and the genotyped

locus were from the same chromosome, and in trans otherwise.

The relative performance of different methods was similar to

their ability to detect cis eQTLs in the outbred population dataset

(Figures 4a, 4b). The absolute performance gain was significantly

lower for all methods, however. This finding suggests that the

genetic signal is stronger compared to confounding sources of

variation, which is not unexpected from the study design. All

factor methods identified additional associations compared to the

standard method. PCA overfitted for larger numbers of principal

components used, explaining away genetic association signal. SVA

and PCAsig found the same number of significant hidden factors

for a range of significance cutoffs considered, exhibiting little

flexibility. Again, their performance was similar to extrapolation of

PCA results with matching numbers of effective components.

fVBQTL and iVBQTL found additional genetic associations in cis

compared to the standard model and other methods for

accounting for confounding variance, as observed in simulations

and human dataset. Summary statistics for the method perfor-

mance can be found in Table S6 and S7 respectively.

Iterative learning with iVBQTL overcomes difficulties in

detecting trans associations for crosses of inbred

strains. All methods found additional trans associations in

mouse, but fewer than the standard method in yeast (Figure 4d,

(a) Yeast cis eQTLs

(e) Mouse trans eQTLs

(c) Human cis eQTLs

(d) Yeast trans eQTLs

(b) Mouse cis eQTLs

Figure 4. Number of probes with an eQTL found as a function of maximum number of hidden factors for three previously
published datasets. Significance-testing based methods (PCAsig, SVA) identified the same number of factors for a wide range of cutoff values
(a[ ½0:01,0:3�), thus only a single count is given (dashed lines), together with the number of factors found (diamond shape). Other methods were
applied with a maximum number of 5, 15, 30 and 60 hidden factors.
doi:10.1371/journal.pcbi.1000770.g004
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4e). In yeast, the more variance was explained by the hidden

factors, the fewer trans eQTLs were found, suggesting that the

global determinants of gene expression variation were correlated

with the genetic state. Indeed, the inferred hidden factor levels

were correlated with genotypes of ‘‘pivotal loci’’ that are associated

with expression levels of hundreds of genes.

The effect of pivotal loci has been observed before, and

interpreted in different ways [9,14]. It could be that the additional

variation is artefactual, and correlated to the genetic state by

chance. In this case, all the original trans associations are spurious.

The alternative explanation is that the genotype of these loci have

real downstream effects on the expression profiles of the genes. In

this case the variance is not confounding the genetic signal, but in

fact is a part of it, and hence should not be explained away.

Previous methods do not provide consistent ways of dealing with

this issue. The SVA authors also suggest to remove the effect of the

primary variable first. However, the authors do not consider

accounting for the genetic effect in their application to the same

yeast dataset [9]. In a second study [14], the application of a

correction procedure also explains away trans associations. We

provide a principled approach for dealing with this situation and

show its merit. The iVBQTL scheduling takes the genetic state

into account while learning the hidden factors, and as a

consequence is more sensitive to genetic associations.

Application of VBQTL recovers three times more probes
with a cis eQTL in a whole-genome scan of HapMap
phase II data

Motivated by the results of the initial study of a single human

chromosome, we applied fVBQTL, learning 30 hidden factors, to

the 10,000 most variable expression probes of the HapMap 2

dataset. We searched for cis eQTLs in the original expression data

(standard eQTLs) as well as the residuals of fVBQTL (VBeQTLs),

using a 2-tailed t test with 0:1% Bonferroni-corrected per-gene

FPR to assess the significance of association.

On the CEU population, we found 1051 genes with a VBeQTL

at false discovery rate (FDR) of 0:9%, and 382 genes with a

standard eQTL at FDR of 2:6% (Figure 5). This result

corresponds to nearly a threefold increase in the number of genes

with an association, and is consistent across chromosomes. A

similar increase in the number of associations was found for other

populations (Table S1).

We repeated this genome-wide experiment on pooled popula-

tions. Due to the increased sample size, it was possible to detect

additional associations. We found 2696 genes with a VBeQTL

compared to 1045 genes with a standard eQTL at the 0.1% FPR

(Figure 6a). The VBeQTLs in the pooled sample cover 27% of all

the considered probes, suggesting that the number of human genes

whose expression levels are affected by common cis-acting genetic

variation may be significantly higher than previously shown

[24,25]. This additional abundance of associations suggests that

detection of cis eQTLs has not been saturated and larger sample

sizes may lead to evidence of even more extensive cis regulation by

common polymorphisms.

Exploratory results indicate additional power to find trans

eQTLs without explaining away eQTL hotspots (Text S2). These

should be interpreted with caution due to very stringent multiple

testing corrections, however.

Additional associations are due to increased sensitivity
It is important to demonstrate that the additional associations

found after removing the learned non-genetic factors are

biologically meaningful. We provide evidence that the additional

associations found in HapMap phase 2 data are real in three ways.

First, we investigated how many of the genes with a VBeQTL in

each of the three populations individually were replicated using

the standard method on a pooled data set containing all

populations. Note that this will only validate weak associations

that occur in multiple populations – we would not expect weak

population-specific associations to be replicated in the pooled data

set. However, we expect many of the associations to be replicated

in multiple populations [24]. A total of 63% of all and 46% of the

additional associations found in the CEU population were

recovered using the standard method in the pooled population

(Figure 6b). The remaining additional associations may be

explained by even weaker signals that were recovered by applying

fVBQTL, or as population-specific effects that do not stand out in

the pooled sample. Analogous overlaps were found when

excluding the CEU population from the pooled analysis (Table

S3).

Second, we evaluated to what extent the additional genes with a

VBeQTL in a single population were replicated in other

populations. For instance, 56% of genes with a CEU VBeQTL

were replicated on the YRI population (Figure 6d), and 68% on

the CHB+JPT population (Figure 6e). These overlaps are

consistent with overlaps of standard eQTLs, and are similar for

other populations (Table S2), and alternative methods accounting

for hidden factors.

Finally, we validated that the locations of the novel associations

are distributed similarly to the original ones. We analysed the

Figure 5. Fraction of tested genes with a cis association in individual chromosomes and overall false discovery rate for the HapMap
CEU population (FPR = 0:1%).
doi:10.1371/journal.pcbi.1000770.g005
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distribution of the position of additional cis associations around the

gene start along with the association LOD scores. The additional

VBeQTLs have very similar characteristics to the standard

eQTLs, being concentrated around the gene start (Figure 6c, 6f),

in line with previous results [24].

Interpretation of learned hidden factors
The hidden factor models hypothesise a set of unobserved non-

genetic factors that influence the measured gene expression levels.

To gain insights into their interpretation we considered correla-

tions to known effects such as gender, population or environment,

and the sets of genes most influenced.

We applied fVBQTL to expression data from individuals of all

three HapMap populations, and tested for correlation between the

inferred hidden factors and the population and gender indicator

variables. The resulting correlation coefficients (Table S4) indicate

that many of the learned latent causes are correlated with

population and that one is strongly correlated with gender. This

implies that the hidden factor model can recapture variance in the

gene expression levels due to true underlying properties of

individuals. However, none of the global factors learned in one

population was correlated with a single SNP genotype.

A recent study in yeast looked for changes in eQTLs when

segregating strains were grown in different media [26]. We applied

fVBQTL to the expression data of this study (GEO accession

GSE9376), without including any information about the growth

condition. The first hidden factor learned was highly correlated

with the indicator variable for the growth condition (r2~0:96),

demonstrating that the VBQTL model can successfully recover an

environmental effect if it is present.

The global factors identified can be further analysed for

biological signals, looking for GO term over-representation in

the genes that they affect. We used the ordered GO profiling

method [27] to find significantly enriched GO categories for 30

genes most affected by each factor. Recent results [28] show that

related linear Gaussian models find biologically relevant factors in

the yeast expression dataset. We replicated these findings with our

model, yielding factors enriched in biological functions, including

sugar, alcohol and amino acid metabolic processes. Similar

analysis in human and mouse did not show significant over-

representation of GO categories, providing no evidence that the

main axes of variation in the expression levels for these

experiments are due to common biological function. This could

be due to poor annotation of the genes, gene features not related to

biological function, or more technical sources of global variation,

such as cell culture conditions [12].

Discussion

We have presented VBQTL, a probabilistic model to dissect

gene expression variation in the context of genetic association

studies. The model is implemented in a Bayesian inference

framework that allows uncertainty to be propagated between

different parts of the model, and yields posterior distributions over

parameter estimates for more sensitive analysis. In comparative

eQTL mapping experiments, VBQTL outperformed alternative

methods for eQTL finding on simulated and real data. In the most

striking example, VBQTL found up to three times more eQTLs

than a standard method, and 45% more compared to the best

alternative in the HapMap 2 expression dataset.

Our approach advances the methodology for understanding

phenotypic variation. The implementation of a flexible framework

allows models for explaining the observed variability to be

straightforwardly combined. Notably, non-Bayesian models can

also be included, as we demonstrated with PCA, SVA, and linear

(a) Probes with a VBeQTL in
pooled population

(b) Validation against probes with a 
standard eQTL in pooled population

(d) Replication with probes having 
VBeQTLs in YRI population

(e) Replication with probes having
VBeQTLs in CHB+JPT populations

(f) VBeQTL location and strength 
relative to gene start

(c) Standard cis eQTL location and strength 
relative to gene start
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Figure 6. Validation of VBeQTLs by comparison to standard eQTLs. (a,b,d,e) Venn diagrams depicting overlap of probes with a standard
eQTL or VBeQTL in the CEU population and probes with an eQTL in other populations. (c,f) Standard and VBeQTL location and strength relative to the
transcription start site.
doi:10.1371/journal.pcbi.1000770.g006
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regression models. VBQTL controls the model complexity at the

level of all individual components of expression variability, thereby

preventing from over- and underfitting. Our experimental results

on simulation and real data showed how explaining away too

much variability removes some signal of interest from the data,

and failing to account for all sources of confounding variation

decreases power to detect the relevant signal. When the variable of

interest is correlated with many gene expression levels, its effect

can be falsely explained away by the hidden factor model. We

showed that in such settings the choice of an iterative schedule

helps to ensure that variability is explained by the appropriate part

of the model. There can be no silver bullet solution that provides

perfect results in any scenario with no supervision. Instead,

modelling assumptions must be made explicit, and incorporated in

the analysis, as is elegantly done in the Bayesian setting.

VBQTL and other methods that account for hidden factors all

found additional expression QTLs in the datasets studied

compared to the standard method. It is remarkable that, with

only 270 samples, and looking in one tissue type, we can find

significant genetic associations to 27% of the expressed genes.

While similar results have been reported before, we have shown a

threefold increase in the number of associations for the HapMap

dataset, and analysed their repeatability and location distribution.

The replication of the additional associations in different

populations suggests that they are genuine. The increase in power

is due to the hidden factor model, which explains away unwanted

non-genetic variability, thereby allowing the genetic effects to

stand out to a greater extent. The high number of additional

associations suggests that association finding studies in human

have not saturated, and we expect the fraction of genes with an

eQTL will increase further as the number of samples grows. It

may be that the expression of majority of human genes varies as a

result of segregating genetic variation. While previous studies have

reported only 12% of heritable variation to be due to cis variants

[29], this does not contradict the presence of weak cis eQTLs for a

large fraction of the genes.

In conclusion, we believe that VBQTL provides a principled

and accurate way to study gene expression and other high-

dimensional data. Increasingly complex models combining genetic

and other effects can explain significantly more of the variance in

observed phenotypes, as suggested by this study and others. Our

general framework provides the flexibility to facilitate these richer

models, for example, we have already started exploring interaction

effects as an additional model of the framework. It will be

interesting to see how these approaches can contribute to our

understanding of human disease genetics, potentially involving

intermediate phenotypes such as gene expression and other

factors.

The software used in this study is freely available online at

http://www.sanger.ac.uk/resources/software/peer/.

Supporting Information

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pcbi.1000770.s001 (0.23 MB PDF)

Text S2 Supplementary results.

Found at: doi:10.1371/journal.pcbi.1000770.s002 (0.86 MB PDF)

Figure S1 Sensitivity of recovering simulated eQTLs for

alternative eQTL models. (a–b) Using a standard model for

expression values, performing 2-tailed t tests on the statistic based

on correlation coefficient between expression level and genotype.

(c–d) Similar test for ranks of expression values. (e–f) Permutation

test with 1000 permutations and 0.1% FPR. Bonferroni correction

to 0.1% false positive rate was used for (a–d) to correct for multiple

testing as detailed in Text S1.

Found at: doi:10.1371/journal.pcbi.1000770.s003 (0.30 MB PDF)

Figure S2 Sensitivity of recovering human eQTLs for alterna-

tive eQTL models. (a–b) Using a standard nested model for

expression values, performing chi-squared tests with one degree of

freedom on the log likelihood ratio for adding the genetic

association term to the model. (c–d) Using a standard nested

model for ranks of expression values, performing t tests with N-2

degrees of freedom as described in Supplementary Methods.

Bonferroni correction to 1% false positive rate was used for both

methods to correct for multiple testing as detailed in Text S1.

Found at: doi:10.1371/journal.pcbi.1000770.s004 (0.23 MB PDF)

Figure S3 Sensitivity of recovering yeast eQTLs for alternative

eQTL models. (a–b) Using a standard model for expression values,

performing 2-tailed t tests on the statistic based on correlation

coefficient between expression level and genotype. (c–d) Similar

test for ranks of expression values. Bonferroni correction to 0.1%

false positive rate was used for both methods to correct for multiple

testing as detailed in Text S1.

Found at: doi:10.1371/journal.pcbi.1000770.s005 (0.26 MB PDF)

Figure S4 Sensitivity of recovering mouse eQTLs for alternative

eQTL models. (a–b) Using a standard model for expression values,

performing 2-tailed t tests on the statistic based on correlation

coefficient between expression level and genotype. (c–d) Similar

test for ranks of expression values. Bonferroni correction to 0.1%

false positive rate was used for both methods to correct for multiple

testing as detailed in Text S1.

Found at: doi:10.1371/journal.pcbi.1000770.s006 (0.25 MB PDF)

Table S1 Number of probes with a cis association for individual

chromosomes and per-probe false discovery rate for the consid-

ered populations (per-probe FPR = 0.100%, Bonferroni corrected

for testing multiple SNPs per probe, 2-tailed t test) on raw

expression data (Standard) and after accounting for hidden factors

(fVBQTL).

Found at: doi:10.1371/journal.pcbi.1000770.s007 (0.02 MB PDF)

Table S2 Magnitude and fraction of overlap between probes

with a Standard of fVBQTL cis eQTL respectively, for different

populations and methods. Total numbers for each population and

method are given in parenthesis after the population. 955 probes

had a standard eQTL in some population, and 148 in every

population. 2236 probes had a fVBQTL eQTL in some

population, and 477 in every population.

Found at: doi:10.1371/journal.pcbi.1000770.s008 (0.02 MB PDF)

Table S3 Overlap of VBQTLs in one population (2.) with

standard eQTLs found when pooling the other two populations

(3.). Overlaps are given both for all QTLs (2. & 3.) and only for

additional ones (2. - 1. & 3. - 1.) compared to standard eQTLs in

the population. Per-probe eQTL FPR = 0.1%, Bonferroni cor-

rected for testing multiple SNPs per probe, 2-tailed t test.

Found at: doi:10.1371/journal.pcbi.1000770.s009 (0.01 MB PDF)

Table S4 Pearson correlation coefficient between top 6 factors

learned on the pooled HapMap data, and 4 indicator variables

relating to the background of the individual. Correlations with

absolute value above 0.6 are highlighted.

Found at: doi:10.1371/journal.pcbi.1000770.s010 (0.01 MB PDF)

Table S5 Summary statistics for method performances on the

human chromosome 19 dataset presented in the main text. The

parameters for different methods are varied by the number of

allowed factors K (PCA, VBQTL) or by the significance cutoff a
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(PCAsig, SVA). Hidden factor summary is given by the number of

factors found and the variance explained by the hidden factor

effects. The number of probes with a cis and trans eQTL, as well as

the sensitivity and specificity of recovering probes with a standard

eQTL are given. Per-probe eQTL FPR = 0.001, Bonferroni

corrected for testing multiple SNPs per probe, 2-tailed t test.

Found at: doi:10.1371/journal.pcbi.1000770.s011 (0.02 MB PDF)

Table S6 Summary statistics for method performances on the

yeast dataset presented in the main text. The parameters for

different methods are varied by the number of allowed factors K

(PCA, VBQTL) or by the significance cutoff a (PCAsig, SVA).

Hidden factor summary is given by the number of factors found

and the variance explained by the hidden factor effects. The

number of probes with a cis and trans eQTL, as well as the

sensitivity and specificity of recovering probes with a standard

eQTL are given. Per-probe eQTL FPR = 0.001, Bonferroni

corrected for testing multiple SNPs per probe, 2-tailed t test.

Found at: doi:10.1371/journal.pcbi.1000770.s012 (0.02 MB PDF)

Table S7 Summary statistics for method performances on the

mouse dataset presented in the main text. The parameters for

different methods are varied by the number of allowed factors K

(PCA, VBQTL) or by the significance cutoff a (PCAsig, SVA).

Hidden factor summary is given by the number of factors found

and the variance explained by the hidden factor effects. The

number of probes with a cis and trans eQTL, as well as the

sensitivity and specificity of recovering probes with a standard

eQTL are given. Per-probe eQTL FPR = 0.001, Bonferroni

corrected for testing multiple SNPs per probe, 2-tailed t test.

Found at: doi:10.1371/journal.pcbi.1000770.s013 (0.02 MB PDF)
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