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Abstract

Depletion of synaptic neurotransmitter vesicles induces a form of short term depression in synapses throughout the
nervous system. This plasticity affects how synapses filter presynaptic spike trains. The filtering properties of short term
depression are often studied using a deterministic synapse model that predicts the mean synaptic response to a presynaptic
spike train, but ignores variability introduced by the probabilistic nature of vesicle release and stochasticity in synaptic
recovery time. We show that this additional variability has important consequences for the synaptic filtering of presynaptic
information. In particular, a synapse model with stochastic vesicle dynamics suppresses information encoded at lower
frequencies more than information encoded at higher frequencies, while a model that ignores this stochasticity transfers
information encoded at any frequency equally well. This distinction between the two models persists even when large
numbers of synaptic contacts are considered. Our study provides strong evidence that the stochastic nature
neurotransmitter vesicle dynamics must be considered when analyzing the information flow across a synapse.
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Introduction

Synapses act as information gates in neuronal networks.

Presynaptic action potentials are communicated to postsynaptic

neurons by causing synaptic neurotransmitter vesicles to release

their contents, which then bind to receptors on a postsynaptic

neuron’s membrane, evoking a transient change in membrane

conductance. After a vesicle is released, it typically takes several

hundred milliseconds for it to be replaced at a synaptic contact (see

Fig. 1 for a schematic of synaptic release and recovery). This

refractoriness induces a form of short term synaptic depression

that alters the filtering properties of synapses [1]. An accurate

description of synaptic vesicle dynamics and their impact of on

information transfer is necessary for a thorough understanding of

coding in neuronal networks.

A widely used model of synaptic depression treats vesicle release

and recovery as deterministic processes [2–6]. While this determin-

istic model accurately describes the trial-averaged synaptic response

to a presynaptic spike train presented repeatedly to a cell [7–11], it

fails to capture the variability introduced at each trial by the

probabilistic nature of vesicle release and recovery [12]. Regardless,

the model has been used in studies for which neural variability and

information transfer are central themes [13–18]. The aim of our

paper is to determine the impact (if any) of stochastic vesicle

dynamics on the filtering properties of depressing synapses.

Past studies have begun to address this aim by considering how

variability from stochastic vesicle release and recovery affects the

amount of information transmitted through a synapse as well as

the firing rate of a postsynaptic cell [12,19,20], but a thorough

investigation of the impact of stochastic vesicle dynamics on

synaptic filtering has not been performed. We derive a compact

description of the filters imposed by short term synaptic depression

when stochastic vesicle dynamics are taken into account and when

they are ignored. We find that variability introduced by stochastic

vesicle dynamics plays a fundamental role in shaping the way in

which depressing synapses filter presynaptic information. In

particular, a model that ignores this variability transmits presyn-

aptic information encoded at any frequency with the same fidelity

[16,17]. In contrast, a model that captures this variability reduces

overall information transmission, and transmits quickly varying

signals with higher fidelity than slowly varying signals. Differences

between the two models persist over a broad range of physiolog-

ically motivated parameter values, even when a large number of

synaptic contacts is considered and even at the population level.

Our results suggest important implications for how signals

encoded at different timescales are propagated through the

nervous system and show that synaptic variability must be taken

into account to accurately address such questions.

Results

We study the synaptic filter induced by short term depression with

both a stochastic model and a deterministic model of synaptic vesicle

dynamics (see Fig. 2A–D for an illustration and Methods for a

detailed discussion). For both models, we consider a presynaptic spike

train, I(t), with rate n that induces a postsynaptic conductance,

g(t)~
X

j

wja(t{tj):
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Here, tj is the time of the jth presynaptic spike, wj is the number of

vesicles released by the jth presynaptic spike, and a(t) represents the

time course of conductance induced by the release of a single synaptic

vesicle. The presynaptic cell makes M contacts with the postsynaptic

cell. We make a simplifying assumption that each contact contains

only one release site, so that a single presynaptic action potential can

release at most one vesicle per contact [21], hence 0ƒwjƒM.

Alternately, to model biological settings where this single vesicle

hypothesis is violated [22,23], M can be interpreted as the total

number of release sites across all contacts (see Discussion). We rescale

conductance units so that
Ð?

0
a(t)dt~1. This rescaling causes g(t) to

have dimension time{1 but simplifies the exposition.

In the stochastic model of vesicle dynamics [12,19,24,25], a

presynaptic spike releases each available vesicle at each contact

independently with probability pr. After a contact releases its

vesicle, it is unavailable to release again until the vesicle is

replaced, a process known as recovery. The waiting time until the

vesicle is replaced follows an exponential distribution with mean tu

(Fig. 2B,C). For the deterministic model of vesicle dynamics [2],

the number of available vesicles is treated as a continuous variable

where a proportion pr of the total available vesicles are released by

each presynaptic spike and the number of available vesicles

increases exponentially towards M with timescale tu between

releases (Fig. 2D). Stochasticity in the conductance, g(t), produced

by the deterministic model is introduced solely by the stochasticity

in the input, I(t). Several presentations of the same realization of

A B

C D

Figure 1. Synaptic vesicle dynamics. (A) The axon of a presynaptic neuron (orange) makes M~5 synaptic contacts onto a postsynaptic neuron
(green). (B) Synaptic vesicles in the synaptic terminal of the presynaptic neuron contain neurotransmitter molecules. A presynaptic action potential
releases these neurotransmitter molecules with some probability, p. Once released, these molecules bind to the postsynaptic neuron’s membrane
and cause a transient change in membrane conductance. (C,D) After a vesicle is released, the synapse enters a refractory state where it is unavailable
to release additional neurotransmitter until it recovers by replacing the released vesicle.
doi:10.1371/journal.pcbi.1002557.g001

Author Summary

Neurons communicate through electro-chemical connec-
tions called synapses. Action potentials in a presynaptic
neuron cause neurotransmitter vesicles to release their
contents which then bind to nearby receptors on a
postsynaptic neuron’s membrane, transiently altering its
conductance. After it is released, the replacement of a
neurotransmitter vesicle takes time and the depletion of
vesicles can prevent subsequent action potentials from
eliciting a postsynaptic response, an effect that represents a
form of short term synaptic depression. When a vesicle is
available for release, an action potential elicits its release
probabilistically and depleted vesicles are replenished
randomly in time, making the transmission of presynaptic
signals inherently unreliable. We analyze a mathematical
model of vesicle release and recovery to understand how
signals encoded in sequences of presynaptic action
potentials are reflected in the fluctuations of a postsynaptic
neuron’s conductance. We find that slow modulations in the
rate of presynaptic action potentials are more difficult for a
postsynaptic neuron to detect than faster modulations. This
phenomenon is only observed when randomness in vesicle
release and replacement is taken into account. Thus, by
including stochasticity in the workings of synaptic dynamics
we give new qualitative understanding to how information
is transferred in the nervous system.

Depression Imposes a Frequency Dependent Filter

PLoS Computational Biology | www.ploscompbiol.org 2 June 2012 | Volume 8 | Issue 6 | e1002557



I(t) produce the same g(t) for the deterministic model, but not for

the stochastic model (Fig. 2A–D).

The conductance produced by the deterministic model repre-

sents the quantity that would be obtained by presenting the same

realization of I(t) to the stochastic model over several trials, then

computing the trial-averaged conductance. Despite the agreement

of their trial-averages, though, individual realizations of the two

models differ substantially. The deterministic model responds to

every presynaptic input, but releases a fractional number of

vesicles at each response (Fig. 2D). In contrast, the stochastic

model responds to only a few inputs, but releases a larger, quantal

number of vesicles at each response (Fig. 2B,C).

The steady state mean conductance induced by a presynaptic

spike train I(t) with rate n~SI(t)T is given by

mg~ limt?? Sg(t)T~prnM=(1zprtun) for both the stochastic

and deterministic models of vesicle dynamics (Fig. 2E and Eq.

(25)). The degree to which a small shift of the presynaptic rate is

reflected in a shift of the steady state mean conductance is

measured by the gain,

dmg

dn
~

prM

(1zntupr)
2

, ð1Þ

which is a decreasing function that decays to zero as n increases, a

well-known effect that is due to the saturation of the mean

conductance for large presynaptic firing rates (see Fig. 2E, inset

and [2,3,26]). However, the gain only measures changes in the

steady state mean of g(t) after a sustained shift in the mean of I(t),
whereas the signal processing properties of a synapse also depend

on the temporal response of g(t) to transient fluctuations in I(t)
[3,10,27,28]. Below, we use a cross-spectral measure to quantify

the temporal response properties of g(t).

The information processing capabilities of a synapse depend not

only on the response of g(t) to temporal fluctuations in I(t), but

also on the temporal and trial-to-trial variability of g(t). Noise

introduced by stochastic vesicle release and recovery leads to

larger variability in g(t), as measured by its variance (Fig. 2F).

However, the variance alone does not capture the timescale over

which this variability occurs. Below, we use a power-spectral

measure to describe the variability of g(t) over different timescales.

Synaptic filtering of a Poisson presynaptic spike train
To gain an intuition for the signal processing properties of

depressing synapses, we first study the case of a single Poisson

presynaptic spike train, I(t), with constant rate n. Since a

homogeneous Poisson process has equal power at every

frequency, this approach allows us to investigate synaptic filtering

at all frequencies simultaneously. Later, we will consider the

response to an inhomogeneous Poisson process whose rate

encodes a signal.

Figure 2. Stochastic versus deterministic models of short term depression. (A) An example presynaptic spike train, I(t). Each vertical bar
represents an action potential. (B) The number of synaptic vesicles, m(t), available for release and the conductance, g(t), induced in the postsynaptic
cell for one realization of the stochastic model. Filled circles in (B) represent vesicle recovery events. (C) A second realization of the stochastic model
with the same input. Observe in (B) and (C) that the number of vesicles released by the stochastic model during one second is primarily determined
by the number of recovery events during that second and does not reflect the number of presynaptic spikes. (D) The number of synaptic vesicles and
the conductance induced by the deterministic model with the input from (A). Parameters in (A–D) were chosen for illustrative purposes as M~2,
tu~650ms, pr~0:5, and ta~5ms. (E) The steady state mean conductance, mg , as a function of the presynaptic firing rate, n. The inset shows the gain,

dmg=dn. (F) The steady state variance of g(t) as a function of n for the deterministic (solid blue) and stochastic (dashed red) models of vesicle dynamics

with Poisson inputs. Variability in the deterministic model is introduced only by variability in the input, I(t). Synaptic parameters for (E–F) and for all
subsequent figures are given in Table 1.
doi:10.1371/journal.pcbi.1002557.g002

Depression Imposes a Frequency Dependent Filter
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The magnitude of the response of the conductance, g(t), at

frequency f to fluctuations in the input, I(t), is quantified by the

cross-spectrum, SIg(f ), between these quantities (see Methods).

For both the deterministic and stochastic models of vesicle

dynamics, the cross-spectrum is given by (see Eq. (25) in Methods)

SIg(f )~~aa(f ) ~KK(f )n, ð2Þ

where ~uu(f )~
Ð

u(t)e{2piftdt denotes the Fourier transform and

~KK(f ) is a kernel that captures the filtering properties of synaptic

depression (see Eq. (20) in Methods and Fig. 3A). The fact that

SIg(f ) is identical for the stochastic and deterministic models can

be understood intuitively by noting that stochasticity in vesicle

dynamics is uncorrelated from I(t) and therefore does not

contribute to the covariability of I(t) and g(t). It should be noted

that, while Eq. (2) is exact for the deterministic model, it is an

approximation for the stochastic model (see Methods), which is

validated by simulations (Fig. 3B).

The shape of SIg(f ) can be understood by its components in Eq.

(2). The low-pass filter, eaa(f ), which captures postsynaptic channel

dynamics, suppresses power at frequencies higher than 1=(2pta)

(see Fig. 3A and [29]). The high-pass filter ~KK(f ), which captures the

deterministic dynamics of short term depression, suppresses power

at frequencies lower than 1=(2pt0)~(1zprntu)=(2ptu) (see Fig. 3A,

Methods and [17]). Their product, which determines SIg(f )

through Eq. (2), is then band-pass with most of its power at

frequencies between 1=(2pt0) and 1=(2pta) (Fig. 3B). Thus, only

fluctuations in the presynaptic input within this frequency band are

reflected faithfully by fluctuations in the postsynaptic conductance.

The low-frequency limit of SIg(f ) is nearly zero for the

parameter values chosen in Table 1 (Fig. 3B). This can be

explained by noting that the zero-frequency cross-spectrum is

related to the gain by [30]

SIg(0)~n
dmg

dn
:

For large n, the mean conductance saturates and the gain decays

to zero like n{2 (see Eq. (1) and Fig. 2E). Thus, SIg(0)*n{1 which

decays to zero for large n (Fig. 4Ai). More specifically, SIg(0)&0

Figure 3. Synaptic filtering of a single Poisson presynaptic spike train. (A)–(B) The low-pass filter, ~aa(f ), and the high-pass filter, ~KK(f ), are
multiplied with the presynaptic rate (cf. Eq. (2)) to determine the band-pass cross-spectrum, SIg(f ), between a Poisson presynaptic spike train, I(t),
and postsynaptic conductance, g(t). The cross-spectrum is identical for the stochastic (solid blue) and deterministic (dashed red) models. (C)–(D) The
power spectrum, Sgg(f ), of the conductance is larger for the stochastic model than the deterministic model due to the additive terms, Sgrgr

(f ) and
Sgugu

(f ), that quantify the increase in variability due to stochastic vesicle release and recovery (see Eq. (3)). For this and all subsequent figures, solid
blue lines and dashed red lines show plots obtained from closed form expressions for the stochastic and deterministic models, respectively. Light
blue and light red lines indicate simulations of the stochastic and deterministic models, respectively.
doi:10.1371/journal.pcbi.1002557.g003

Table 1. Table of synaptic parameters.

Name Definition Default value

tu timescale of vesicle recovery 800ms

M number of contacts between a pre- and
postsynaptic cell

5

pr probability of release when vesicle is
available

0:5

n presynaptic rate 25 Hz

a(t) synaptic activation kernel H(t)t{1
a e{t=ta

ta time constant of postsynaptic channels 2ms

ss bandwidth of rate-coded signal 0.1 Hz

Ds peak power of rate-coded signal 20 Hz

c noise correlation between presynaptic spike
trains

0.1

Parameters for synapses and presynaptic spike trains. These parameter values
are used in all figures unless otherwise indicated. Here, H(t) represents the
Heaviside step function.
doi:10.1371/journal.pcbi.1002557.t001

Depression Imposes a Frequency Dependent Filter
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when vesicles become depleted, which occurs when release is faster

than recovery, i.e., prn&M=tu. Note, though, that SIg(f ) is larger

for higher frequencies, meaning that faster fluctuations in I(t)
cause larger transient fluctuations in g(t) when compared to

changes in the steady state mean conductance, mg, caused by static

changes in n [3,10,27,28].

The trial-to-trial and temporal variability of the conductance at

frequency f is quantified by its power spectrum, Sgg(f ), which is

given by (see Eq. (25) in Methods)

Sgg~(1zD0)D~KK~aaD2 nzD~aaD2(SguguzSgrgr ): ð3Þ

Here D0 is a constant that represents variability introduced by the

interaction of Poisson input with deterministic vesicle dynamics,

Sgugu (f ) captures variability introduced by stochastic recovery,

and Sgrgr (f ) captures variability introduced by probabilistic vesicle

release. For the deterministic model, Sgrgr (f )~Sgugu (f )~0, but

Sgrgr (f ) and Sgugu (f ) are positive for the stochastic model (see

Methods and Fig. 3C). As a result, the stochastic model predicts a

larger power spectrum than the deterministic model (Fig. 3D). The

decay of Sgg(f ) at high frequencies is due to the low-pass nature of

the synaptic conductance kernel, eaa(f ) (see Fig. 3A and [29]).

The power spectrum predicted by the two models differs most

significantly at low frequencies, where it is nearly zero for the

deterministic model but much larger for the stochastic model

(Fig. 3D). This can be understood by noting that [30]

Sgg(0)~ lim
T??

var(Nx(T))=T

where Nx(T) is the number of vesicles released in a window of

length T . For the parameter values in Table 1, prn&M=tu so that

vesicles are mostly depleted and therefore the number of vesicles

released in a large time window is determined largely by the

number of recovery events during that window (Fig. 2A–D). For

the stochastic model, recovery events at each contact occur as a

Poisson process with rate 1=tu. Since there are M contacts and a

Poisson process has power equal to its rate, Sgg(0)&M=tu when n
is large. This intuition is confirmed by noting that Sgg(0)~

M=tuzO(n{1) for the stochastic model. In contrast, for the

deterministic model, recovery is deterministic and therefore the

amount of neurotransmitter taken up, and hence released, over a

large time window has a small variance. This is confirmed by

noting that Sgg(0)*n{3 for the deterministic model and therefore

approaches zero for large n. For the synaptic parameters in

Table 1, the power spectra produced by the stochastic and

deterministic models disagree for n larger than a few Hz (Fig. 4Aii).

The fidelity with which fluctuations in the postsynaptic

conductance, g(t), reflect fluctuations of the input, I(t), at

frequency f is quantified by their coherence

CIg(f )~
DSIg(f )D2

SII (f )Sgg(f )

where SII (f )~n is the power spectrum of the Poisson input. Since

SIg(f ) is identical for the two models, but Sgg(f ) is larger for the

stochastic model (Fig. 3B,D), it follows that CIg(f ) is smaller for the

stochastic model (Fig. 5). We now investigate the differences

between the coherences produced by the two models in more depth.

Since Sgugu
(f )~Sgrgr

(f )~0 for the deterministic model, the

cross-spectrum, SIg(f ), and power spectrum, Sgg(f ), are propor-

tional to one another (see Eqs. (2) and (3)) so that dividing them

Figure 4. Low frequency signal transfer in a variety of parameter regimes. Low frequency cross-spectrum (SIg(0)), auto-spectrum (Sgg(0)),
and coherence (CIg(0)) between a Poisson presynaptic spike train, I(t), and postsynaptic conductance, g(t), plotted as a function of the presynaptic
rate, n (Ai–iii), the vesicle recovery timescale, tu (Bi–iii), the number of synaptic contacts, M (Ci–iii), and presynaptic population size, n (Di–iii).
Columns A–C are for a single presynaptic spike train (n~1). The zero-frequency coherence in Diii is shown for three values of the presynaptic
correlation coefficient: c~0, 0:1, and 0:5. The power spectrum and coherence predicted by the stochastic model (solid blue) and the deterministic
model (dashed red) disagree by orders of magnitude unless n is small, M is large, tu is small, or n is large with cw0.
doi:10.1371/journal.pcbi.1002557.g004

Depression Imposes a Frequency Dependent Filter
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gives a flat coherence (i.e., a coherence that does not depend on f ,

Fig. 5 and [16,17]),

Cdet
Ig (f )~(1zD0){1:

Here and in subsequent expressions, a det (sto) superscript

indicates identities for the deterministic (stochastic) model.

Synaptic variability in the stochastic model increases the power

spectrum, giving a frequency-dependent coherence

Csto

Ig
(f )~ 1zD0z

Sgrgr (f )zSgugu (f )

D ~KK(f )D2 n

� �{1

,

which is high-pass (Fig. 5). Thus, stochastic vesicle dynamics

introduce high-pass frequency dependence into the fidelity of a

synaptic filter.

In addition to introducing frequency dependence, stochastic

vesicle dynamics also decrease the coherence substantially,

especially at lower frequencies where the coherence is nearly zero

for the stochastic model (Fig. 5). The fact that coherence is small at

low frequencies for the stochastic model can be understood

intuitively through the following relation [30],

CIg(0)~ lim
T??

corr(NI (T),Nx(T))2,

where corr(Nx(T),NI (T)) is the Pearson correlation coefficient

between the number of presynaptic spikes, NI (T), and the number

of vesicles released, Nx(T), in a window of length T . When

prn&M=tu, synapses are mostly depleted in the steady state. As a

result, the number of vesicles released during a long time interval is

determined primarily by the number of recovery events in that

time window and hence mostly independent of the number of

presynaptic spikes (Fig. 2A–C and [31]). Therefore, for the

stochastic model, the number of vesicles released over a long time

window is uncorrelated from the number of presynaptic spikes

and, as a result, CIg(0) is small.

These intuitions are confirmed by appealing to the asymptotic

expressions derived for the cross-spectrum and power spectrum

above. For the stochastic model, SIg(0)*n{1 and

Sgg(0)*M=tuzn{1 when prn&M=tu. Since SII (f )~n for

Poisson input, it is then clear that

CIg(0)~
DSIg(0)D2

SII (0)Sgg(0)
*n{3

for the stochastic model when prn&M=tu. For the deterministic

model, however, SIg(0)*n{1, SII (0)~n, and Sgg(0)*n{3 so that

CIg(0)~DSIg(0)D2=(SII (0)Sgg(0)) approaches a positive constant

for n sufficiently larger than M=(tupr). For the parameter values in

Table 1, the coherences for the stochastic and deterministic

models disagree substantially when n is more than a few Hz

(Fig. 4Aiii).

The disagreement between the stochastic and deterministic

models is most dramatic when prn&M=tu since the postsynaptic

response is determined primarily by vesicle recovery dynamics in

this regime, as discussed above. In the figures considered so far, we

have used tu~800ms, motivated by measurements of pyramidal–

to–pyramidal synapses in rodent neocortex [2,19]. However, both

shorter and longer time constants have also been reported in

cortex [5,7,8,32,33]. When other parameters are set to the values

from Table 1, the two models disagree substantially when

tuw100ms (see Fig. 4Bi–iii).

A proposed justification for using a deterministic model of vesicle

dynamics is that stochasticity introduced at each contact averages

out when a presynaptic cell makes several contacts [17]. The

number, M, of contacts a presynaptic cell makes with a single

postsynaptic cell varies greatly across cell subtypes and brain

regions. Rodent and cat pyramidal cells in the hippocampus and

neocortex typically make M~1–12 contacts onto other pyramidal

cells or onto interneurons. Interneurons in the same regions make

M~1–17 contacts onto pyramidal cells. On the other hand, the

Calyx of Held synapse can make more than M~700 contacts onto

a single postsynaptic target in the rodent auditory brainstem and

Purkinje cells can receive over M~500 contacts from single

presynaptic cells in the rodent cerebellum (see [34] for values of M
measured in various animals and synapses). When other parameters

are set to the values from Table 1, the stochastic and deterministic

models disagree substantially for Mv1000 (see Fig. 4Ci–iii).

In summary, over a broad range of synaptic parameters,

stochastic vesicle dynamics both attenuate and impart a high-pass

nature to the coherence between a pre-synaptic spike train and the

post-synaptic conductance response. We next explore the impli-

cations of these effects on the transfer of rate-coded information.

Synaptic filtering of a rate-coded signal
Time-varying stimuli are often encoded in fluctuations of the

firing rate of neuronal populations [35]. To address the question of

how information about a rate-coded signal is filtered by vesicle

dynamics, we use a model from [16] and [17] in which a time-

varying signal is encoded in the firing rate of a presynaptic spike

train to yield a doubly stochastic Poisson process, I(t) (see Methods).

In this model, the instantaneous presynaptic rate conditioned on

a signal, s(t), is given by SI(t)Ds(t)T~nzs(t) and, without

conditioning on s(t), is given by SI(t)T~n. The power spectrum

of the presynaptic spike train is given by

SII (f )~nzSss(f ), ð4Þ

where Sss(f ) is the power spectrum of s(t). Eq. (4) can be interpreted

as follows: n represents the power of Poisson noise and Sss(f )
represents the power of the signal. Unless s(t) is identically zero, I(t)
inherits non-Poisson statistics from s(t), which violates the Poisson

assumptions used to derive the spectral properties given above. In

the Methods, we derive a linear approximation (valid when

Figure 5. Coherence between a single presynaptic spike train
and the postsynaptic conductance it induces. The coherence,
CIg(f ), between a Poisson presynaptic spike train, I(t), and the resulting
postsynaptic conductance, g(t). The stochastic model (solid blue) yields
a high pass coherence that is dramatically smaller than the flat
coherence predicted by the deterministic model (dashed red).
doi:10.1371/journal.pcbi.1002557.g005

Depression Imposes a Frequency Dependent Filter
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Sss(f )%n) to the synaptic filter induced by the deterministic and

stochastic models of vesicle dynamics and use it to obtain

approximations to the cross-spectrum, Ssg(f ), between the signal

and conductance as well as the power spectrum, Sgg(f ), of the

conductance for this model (see Eqs. (27) and (28) in the Methods).

These approximations allow an investigation of the information

transfer of the signal across the synapse in various frequency bands.

We model s(t) as a Gaussian process with Gaussian-shaped

power spectrum (Fig. 6A,B),

Sss(f )~Dse
{

(fs{f )2

2s2
s , f §0 ð5Þ

where ss is the bandwidth, fs the central frequency, and Ds the

peak power of the signal. We use a narrow-band signal (ss small)

to more clearly illustrate the dependence of synaptic fidelity on

signal frequency. Since s(t) is Gaussian, there is a positive

probability that s(t)znv0 so that the instantaneous firing rate of

the presynaptic cells becomes negative. However, when Dsss%n2,

this occurs rarely and can be disregarded by considering negative

rates as zero [17]. The coherence, Csg(f )~DSsg(f )D2= Sss(f )ð
Sgg(f )Þ, between the signal and the conductance quantifies the

fidelity with which the signal, s(t), is represented in the

postsynaptic conductance, g(t). For the deterministic model of

vesicle dynamics, the coherence is given by (from Eqs. (27))

Cdet
sg (f )~

Sss(f )

(1zD0)(nzSss(f ))

so that changing fs merely shifts Cdet
sg (f ), but does not change its

amplitude (Fig. 6C,D dashed red line). Thus, a signal coded within

any frequency band is transmitted with the same fidelity,

consistent with the conclusions reached above using the Poisson

model and also consistent with previous studies [16,17]. For the

stochastic model, however,

Csto

Ig
(f )~

D ~KK(f )D2Sss(f )

D~KK(f )D2(1zD0)(nzSss(f ))zSgugu (f )zSgrgr (f )
:

Since ~KK(f ) is high pass (Fig. 3A) and Sgugu (f )zSgrgr (f ) is mostly

flat (Fig. 3B), Csto

Ig
(f ) is larger when Sss(f ) concentrates its power

in higher frequencies. For example, the amplitude of the

coherence is larger when fs~10Hz than when fs~1Hz for the

stochastic model, but independent of fs for the deterministic model

(Fig. 6C,D).

The rate of linear information transferred from the signal to the

conductance is given by [36,37]

IL(g; s)~{

ð?
0

log2 (1{Csg(f ))df :

In particular, IL(g; s) represents the total information per unit time

that a linear decoder can obtain about the signal, s(t), by

observing the conductance, g(t), and also represents a lower

bound on the Shannon information [36,37]. The stochastic model

predicts a dramatically lower linear information rate than the

deterministic model (Fig. 7A). Since, for the deterministic model,

the amplitude of Csg(f ) is independent of the central signal

frequency, fs, the linear information rate is also independent of the

central frequency (Fig. 7A). The stochastic model, however,

transmits quickly varying signals with more fidelity than slowly

varying signals (Fig. 7A). Hence, stochastic vesicle dynamics

introduce frequency dependence into the transfer of linear

information across a synapse.

In summary, our results show that the high pass nature of

synaptic depression combined with low frequency synaptic noise

limits the transfer of low frequency information through a synapse,

while higher frequency information is transmitted more reliably.

We next investigate these conclusions in a population setting.

Figure 6. Signal transfer at high and low frequencies. The firing rate of a single presynaptic spike train (n~1) is modulated by the signal, s(t),
producing a postsynaptic conductance, g(t). The coherence between the signal and conductance for (A) a slowly varying signal with peak frequency
fs~1Hz and (B) a quickly varying signal with fs~10Hz. The stochastic model (solid blue) transmits the higher frequency signal more reliably than the
lower frequency signal. The deterministic model (dashed red) transmits the signal with equal fidelity in both cases.
doi:10.1371/journal.pcbi.1002557.g006
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Synaptic filtering at the population level
So far, we have studied the conductance induced by a single

presynaptic spike train that makes several contacts onto a

postsynaptic cell. However, information about a stimulus is often

encoded by populations of several presynaptic cells. We now

consider a population model in which a collection, fIk(t)gn
k~1, of n

presynaptic spike trains all encode the same signal, s(t), as

described for the single-cell model above. These inputs induce

individual synaptic conductances, fgk(t)gn
k~1, in a single postsyn-

aptic cell. Define the total presynaptic input, I(t)~
X

k
Ik(t), and

the conductance induced by this input, g(t)~
X

k
gk(t). For

simplicity, we assume that all synapses have the same synaptic

parameters pr, tu, M, and a(t).

The signal, s(t), introduces variability that is shared between the

presynaptic spike trains. Such shared variability is commonly

referred to as signal correlation since it is informative of the signal.

Populations of presynaptic neurons that code for the same stimulus

also share non-informative variability, known as noise correlation

[38,39]. As a simple model of presynaptic noise correlation, we

assume that each pair of spike trains, Ij(t) and Ik(t) with j=k,

share a proportion c of their spike times. The pairwise cross-

spectra are then given by

SIjIk
(f )~cnzSss(f ), j=k

where cn represents the contribution of noise correlations and

Sss(f ) represents the contribution of signal correlations.

As we have done for the single input model above, we gain an

intuition for the population-level filter imposed by short term

depression by first considering purely Poisson spike trains, which is

achieved by setting s(t)~0 so that Sss(f )~0. Even though the

cross-spectrum, SIg(f ), is identical for the stochastic and deter-

ministic models, the power spectrum, Sgg(f ), is larger for the

stochastic model due to noise introduced by synaptic variability

(see Fig. 8A,B and Eq. (29) in Methods). Therefore the coherence,

CIg(f ), between the total presynaptic signal and the total

conductance is smaller for the stochastic model. Moreover, the

deterministic model predicts a flat coherence, while the stochastic

model predicts a high-pass coherence (Fig. 8C). These conclusions

are identical to those reached for a single input above, but the

disparity between the two models is reduced at the population

level (compare Figs. 3 and 5 with Fig. 8).

Notice also that the power spectrum, Sgg(f ), is peaked within

the beta frequency band even though the inputs are Poisson and

Figure 7. Linear information transfer rate as a function of signal frequency. The linear mutual information rate, IL(g; s), between a rate-
coded signal, s(t), and the total conductance, g(t), produced by (A) n~1, (B) n = 100, and (C) n~1000 presynaptic spike trains, each encoding s(t).
The information rate is plotted as a function of the central frequency, fs , at which s(t) is encoded. The stochastic model (solid blue) transmits quickly
varying signals more reliable than slowly varying signals. The deterministic model (dashed red) transmits information encoded at any frequency
equally well.
doi:10.1371/journal.pcbi.1002557.g007

Figure 8. Synaptic filtering at the population level. A population,
fIk(t)g, of n~100 Poisson presynaptic spike trains with pairwise
correlation c~0:1 drive a postsynaptic neuron to produce postsynaptic
conductances, fgk(t)g. (A) The cross-spectrum between the total
presynaptic input and the total conductance. (B) The power spectrum
of the total conductance has maximal power within the beta frequency
band for both the deterministic (dashed red) and stochastic (solid blue)
models. (C) The coherence between the total presynaptic input and the
total conductance. Stochastic vesicle dynamics increase the power
spectrum and therefore decrease the coherence, especially at low
frequencies. All three plots are obtained in the absence of a rate-coded
signal (s(t)~0).
doi:10.1371/journal.pcbi.1002557.g008
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therefore have a flat power spectrum. This effect could exaggerate

beta frequencies in recorded data. We return to this topic in the

Discussion.

A potential justification for using a deterministic model of

vesicle dynamics is that, since stochastic release and recovery

events are uncorrelated across all synapses, the extra variability

introduced by synaptic noise averages out at the population level.

So far, we have compared the two models for a population size of

n~100. For the parameter values in Table 1, the low frequency

cross-spectrum is identical for the two models, but the coherence

and power spectrum disagree considerably until n&5000
(Fig. 4Di–iii). The value of n at which the models begin to agree

depends on the pairwise correlation, c, between the presynaptic

inputs. Notably, in the absence of correlations (c~0 and s(t)~0),

the population-level coherence is identical to the individual

coherences, CIg(f )~CIkgk
(f ), so that the coherence predicted by

the stochastic and deterministic models disagree by the same

amount for any value of n (Fig. 4Diii, lightest lines). As c increases,

the two models agree at smaller population sizes (Fig. 4Diii, darker

lines). Hence, presynaptic correlations must be present and n must

be large if the deterministic model is to be used in place of the

stochastic model for large populations.

We now study the transfer of rate coded information at the

population level by allowing s(t)=0. In particular, we are

interested in how information about a rate-coded signal, s(t), is

transferred to the population conductance, g(t). As above, we use

a signal with Gaussian shaped power spectrum given by Eq. (5). A

linear approximation to the cross-spectrum, Ssg(f ), for this model

is calculated in the Methods (see Eq. (29)), which allows us to

calculate the coherence, Csg(f ), between the signal and the

postsynaptic response and the linear information rate, IL(g; s),
which depends on the central frequency at which the signal is

coded in a qualitatively similar manner as for a single presynaptic

spike train (compare Figs. 7A to 7B,C). In particular, low

frequency information transfer is reduced for the stochastic model

of synaptic depression. Moreover, the stochastic model transfers

information in a frequency dependent manner and the determin-

istic model transfers information at all frequencies equally (Fig. 7).

The disparity between the models is substantial when n~100, but

reduced considerably when n~1000 (compare panels B and C in

Fig. 7). We remind the reader that n represents the number of

presynaptic neurons that encode the shared signal, s(t), which

could be much smaller than the total number of presynaptic inputs

a cell receives. This suggests that, due to the stochastic nature of

vesicle release and recovery, large presynaptic populations must be

used to encode slowly varying signals.

Discussion

We derived a concise mathematical description of the synaptic

filter induced by short term depression arising from neurotrans-

mitter vesicle depletion. We found that stochasticity in vesicle

release and recovery plays an important role in shaping this filter

and determining the information processing capabilities of

depressing synapses. For example, ignoring the stochasticity

introduced by stochastic vesicle dynamics gives rise to a filter that

transmits rate-coded signals encoded at all frequencies equally well

[16,17], but taking this stochasticity into account reduces

information transfer and causes slowly varying signals to be

transferred with higher fidelity than slowly varying signals.

The deterministic model of short term depression provides a

usable approximation to the stochastic model when considering

large populations of correlated presynaptic spike trains (Figs. 4Di–

iii and 7C). While a postsynaptic neuron typically receives

thousands of inputs, only a fraction of these inputs might be

devoted to encoding a single stimulus. Our results show that a

slowly varying stimulus must be encoded by large presynaptic

populations, but quickly varying stimuli can be encoded by smaller

populations. This conclusion is not true the deterministic model of

synaptic depression, which ignores the inherent randomness of

vesicle dynamics.

Since the two models predict the same mean conductance, the

deterministic model is valid for studies that focus on mean

postsynaptic activity and for which noise is not a concern. For

example, the deterministic model has been used to describe the

effects of depression on gain and temporal changes in postsynaptic

firing rate [3,10,26,27]. Using the deterministic model in these

cases is justified only if changes in postsynaptic firing rate result

primarily from changes in the mean conductance and the

variability of the conductance is inconsequential. When spiking

is fluctuation driven, the postsynaptic firing rate is underestimated

by the deterministic model [12].

A number of experimental studies have successfully fit

parameters for the deterministic model to recorded neural data.

This is achieved by first repeating the same presynaptic stimulus to

a cell, then averaging the cell’s response and fitting the averaged

response to the response predicted by the deterministic model

[2,5,7,8,18,32,33]. Since the stochastic model discussed here uses

the same parameters as the deterministic model, the parameters

obtained through this procedure can also be used to constrain the

stochastic model.

Spectral analysis of synaptic depression
There is an extensive experimental and theoretical literature

addressing how synapses that exhibit short term depression

transmit different patterns of presynaptic spikes [3,26,27,40,41].

One recurring observation in these studies is that the steady state

mean conductance (equivalently, the mean rate of vesicle release)

saturates with the presynaptic firing rate, which causes the gain,

dmg=dn, to approach zero for large presynaptic rates (Fig. 2E).

However, the gain only captures the sensitivity of the steady-state

mean, mg, to static changes in n. Previous studies show that

temporal changes in n are reflected more reliably in the transient

mean of g(t) than static changes of n are reflected in the steady-

state mean of g(t) [3,10,27,28]. This observation can be

understood through our analysis by noting that higher frequency

components of SIg(f ) are larger than the low-frequency compo-

nents (Fig. 3B). Note that the decay of SIg(f ) at very high

frequencies is due to the low-pass properties of the post-synaptic

conductance kernel, eaa(f ), (Fig. 3A and [29]) and not to synaptic

depression. The filtering effects of depression are captured by the

kernel ~KK(f ), which is high-pass (Fig. 3A).

A second shortcoming of the gain as a descriptive quantity is

that it does not capture the trial-to-trial variability in the

conductance, which is a vital component of information transfer.

We quantify this trial-to-trial variability as a function of frequency

using the power spectrum, Sgg(f ). We show that the frequency-

independence of information transfer through a deterministic

synapse model depends on the precise shape of Sgg(f ) [16,17], and

the high-pass frequency-dependence of information transfer

through a stochastic synapse model likewise depends on the shape

of Sgg(f ). Furthermore, we show that stochastic vesicle dynamics

cause an overall decrease in information transfer by increasing

Sgg(f ). Thus, trial-to-trial variability in g(t) must be considered to

obtain an accurate description of information transfer through a

synapse.

Depression Imposes a Frequency Dependent Filter
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While other studies of synaptic depression have investigated the

transfer of rate-coded signals at various frequencies, we are not

aware of a study that derives an explicit approximation to the filter

induced by a depressing synapse. Such an approximation is

derived in the Methods, giving

~gg~ 1z
ffiffiffiffiffiffi
D0

p� �
~KK~IIz~gguz~ggr

� �
~aa

where ~II(f ) and ~gg(f ) are the Fourier transforms of the presynaptic

spike train and postsynaptic conductance respectively (see

Methods for definitions of other terms). This expression can be

used to predict the spectral properties of the postsynaptic response

to a presynaptic input with a given power spectrum. A

generalization of this expression that can be used in the case of

a population of correlated presynaptic spike trains is given by Eq.

(26).

Synaptic depression and neural rhythms
For the parameters in Table 1, the power spectrum is peaked

within the beta frequency band (13{30Hz) for both the stochastic

and deterministic models (Fig. 8B). We emphasize that the

presynaptic spike trains in this case are Poisson processes with flat

power spectra and cross-spectra. Thus, the peaked power

spectrum of the conductance is due completely to synaptic

filtering: Frequencies below 1=(2pt0)~(1zprntu)=(2ptu)Hz are

suppressed by synaptic depression and frequencies above

1=(2pta)Hz are suppressed by post-synaptic channel dynamics.

The conductance power spectrum is peaked between these two

frequencies. This effect could potentially cause an exaggeration of

beta or other frequencies in recordings such as local field potentials

that reflect large pools of synaptic currents. Parameters can be

chosen within a physiologically realistic range to produce a more

exaggerated peak than that shown in Fig. 8B or to produce a peak

within another frequency band (not shown). Further work is

needed to determine the role that synaptic filtering plays in

generating or exaggerating rhythms within beta or other frequency

bands in functioning neural circuits.

Possible extensions
We used a simplified model of neurotransmitter release and

recovery. In particular, we assumed that each contact contains

only one release site. However, individual contacts can have

multiple release sites and recent results show that multiple vesicles

can be released by a single contact in response to a single

presynaptic action potential [22,23]. Such situations can be

modeled in our framework by interpreting M as the total number

of release sites at all contacts. However, this interpretation is only

valid if the release of vesicles is statistically independent between

release sites that share a contact. If the probability of release at one

site depends on release at another site – for instance if a contact

has several release sites but can only release one vesicle per

presynaptic spike [12,42] – then our model would need to be

adjusted to account for this dependency. To the authors’

knowledge, the precise structure of such dependencies are a

subject of current research and not presently understood. In the

depleted state (Untu&1), a contact with several release sites will

rarely have more than one vesicle available for release at any point

in time and our single-vesicle model should provide an accurate

approximation regardless of dependencies between release sites, as

long as the recovery time constant is properly adjusted [12].

We modeled stochasticity introduced by probabilistic vesicle

release and random recovery times, but did not model stochasticity

introduced by randomness in the amount of neurotransmitter

contained in each vesicle [43,44]. In addition we did not model

variability at the postsynaptic site (e.g., randomness in the number

of bound receptors, the number of open channels, or the

availability of messenger molecules), which could introduce

variability in the amplitude of the postsynaptic conductance

elicited by each vesicle released. Assuming statistical independence

of these sources of variability between release events, they can be

captured by multiplying each response amplitude, wk, by a

random number. This would simply scale the power spectrum of

the conductance linearly and would not alter our central

conclusions.

The cross-spectrum between presynaptic input and postsynaptic

conductance decays to zero at high frequencies, but the coherence

between the two does not (Figs. 3A and 5). This is due to the fact

that the power spectrum also decays at high frequencies and

cancels perfectly with the cross-spectrum. However, any additional

high frequency noise would destroy this balance. For example, if

one were to instead compute the coherence between the

presynaptic input and the current across the postsynaptic mem-

brane, high frequency channel noise [45] could increase the power

spectrum without increasing the cross-spectrum and therefore

cause the coherence to decay at high frequencies. Thus,

information transfer from presynaptic input to postsynaptic

current is effectively bandpass. Similar observations were discussed

in [17] for the deterministic model of vesicle dynamics with

additive noise.

We used a linear approximation to predict the spectral

properties of the postsynaptic conductance induced by non-

Poisson presynaptic spike trains. However, the approximation is

only assured to be accurate when inputs are approximately

Poisson, i.e., have a nearly flat power spectrum. This restriction is

implicit in our assumption that Sss(f )%n (see Eq. (4) and the

surrounding discussion). Presynaptic spike trains that exhibit

highly non-Poisson properties, such as bursts or a high degree of

regularity, can interact with synaptic depression in a fundamen-

tally different manner than Poisson spike trains [12,46]. Further

work is needed to extend our results to highly non-Poisson

presynaptic spiking statistics.

We focused on short term depression caused by the depletion of

synaptic neurotransmitter vesicles. However, other sources of short

term depression as well as several forms of short term facilitation

affect the filtering properties of synapses [1,40]. Our mathematical

methods could be extended to take these additional forms of

plasticity into account.

Synaptic transmission of Shannon information
To quantify information transfer through a synapse, we used an

information metric that only captures the amount of information

available to a linear decoder observing the conductance. The

Shannon information measures the maximum amount of infor-

mation available to any decoder [47]. Interestingly, for our choice

of a(t), the deterministic model of vesicle dynamics transmits

Shannon information perfectly because every presynaptic spike

elicits a postsynaptic response (Fig. 2D) and hence each spike time

can be resolved by detecting jumps in g(t) [17,19]. In contrast, the

stochastic model of vesicle dynamics exhibits failures due both to

probabilistic release and to vesicle depletion (Fig. 2C,E). Due to

the presence of synaptic failure, the stochastic model reduces

Shannon information since some presynaptic spikes have no effect

on the postsynaptic conductance.

A few studies have investigated the reduction of Shannon

information through synapses with synaptic failure [20,46,48] but

focus on the impact of probabilistic release and ignore stochasticity

in vesicle recovery dynamics. In contrast, we studied the reduction
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of linear information induced by both probabilistic release and

stochastic recovery. The qualitative differences we observed

between stochastic and deterministic models depend on the

stochasticity of vesicle recovery since it introduces low frequency

variability into the conductance (Fig. 3C,D). To our knowledge,

only one study [19] has investigated information transmission in a

model with both probabilistic release and stochastic recovery.

Using simulations, they found that stochastic vesicle dynamics

reduce Shannon information by orders of magnitude, consistent

with our results for linear information. These previous studies of

information transmission do not quantify the dependence of

information transfer on the frequency band in which presynaptic

information is encoded. Furthermore, care must be taken when

drawing conclusions about neural coding from studies of Shannon

information. Shannon information quantifies the maximal infor-

mation that can be extracted by a decoder, but it is not always

clear whether a neural decoder can achieve optimal or even near-

optimal decoding.

Methods

Definition of the models and derivation of first moments
Consider a single presynaptic neuron that fires action potentials

at times ftjg and define the presynaptic spike train as a point

process,

I(t)~
X

j

d(t{tj),

where d(t) is the Dirac delta function. The number of presynaptic

spikes in ½0,t� is then given by NI (t)~
Ð t

0
I(s)ds. Define M to be

the number of functional contacts that the presynaptic neuron

makes onto a postsynaptic cell [48] and, for simplicity, assume that

each contact can have at most one vesicle available for release at

any point in time. Let 0ƒm(t)ƒM be the total number of vesicles

available for release at time t. Let wj be the number of vesicles

released by the jth presynaptic spike, with 0ƒwjƒm(tj). The total

number of vesicles released up to time t is given by

Nx(t)~
P

tjvt wj and the effective synaptic input is a marked

point process defined by

x(t)~
dNx(t)

dt
~
X

j

wjd(t{tj): ð6Þ

We first consider a model of synaptic vesicle dynamics that

treats vesicle release and recovery stochastically [12,19,24,25]. At

each presynaptic spike time, tj , each contact at which a vesicle is

available releases this vesicle independently with probability pr.

After a synaptic contact releases its vesicle, vesicle recovery occurs

as a Poisson process with rate 1=tu. That is, the waiting time from

vesicle release until recovery at a single contact is exponentially

distributed with mean tu and independent from the state of other

contacts, so that the probability of a recovery event during the

interval ½t,tzdt� is dt(M{m(t))=tuzO(dt2). This model can be

described by the equation

dm(t)~{dNx(t)zdNu(t) ð7Þ

where dNu(t)~u(t)dt is the increment of an inhomogeneous

Poisson process with instantaneous rate that depends on m(t)
through SdNu(t)TDm(t)T~dt(M{m(t))=tu (here, S:D:T denotes

conditional expectation) and dNx(t) is given by Eq. (6) where each

wj is a binomial random variable with mean prm(tj). Since each

trial with a fixed input, I(t), yields a different, random realization

of the response, x(t), we hereafter refer to this model as the

‘‘stochastic model’’ of vesicle dynamics.

A popular simplification of the stochastic model replaces the

random increments, dNx(t) and dNu(t), in Eq. (7) with their expected

values conditioned on m(t) and dNI (t) [2,3,5,6]. Since SdNx(t)
Dm(tj),dNI (t)T~prm(t)dNI (t) and SdNu(t)Dm(t),dNI (t)T~

dt(M{m(t))=tu, this gives

dm(t)~{dNx(t)z
M{m(t)

tu

dt

dNx(t)~prm(t)dNI (t):

ð8Þ

This model treats m(t) as a continuous variable where a proportion pr

of the available vesicles are released at each input and recovery occurs

exponentially with time constant tu. We hereafter refer to the model

described by Eq. (8) as the ‘‘deterministic model’’ of vesicle dynamics

since the response, x(t), is determined completely by the presynaptic

input, I(t). Stochasticity in this model is only introduced by

randomness in I(t).

When I(t) is a homogeneous Poisson process, the deterministic

model is analytically tractable: the first two moments of x(t) and

m(t) can be derived exactly, as we show below. We also show that

the first moments agree for two models. The second moments for

the stochastic model are difficult to derive analytically, but we

derive a more tractable diffusion approximation below. Further-

more, when I(t) is not a homogeneous Poisson processes, closed

form approximations can be obtained for both the deterministic

and stochastic models.

Assume that I(t) is a homogeneous Poisson process with rate n.

Then the increment, dNI (t), is independent from the current value

of m(t) so that, by taking expectations in Eq. (8),

SdNx(t)T~Sprm(t)dNI (t)T~prnSm(t)T for the deterministic

model. Similarly, Sdm(t)T~{SdNx(t)Tzdt(M{Sm(t)T=tu.

Combining these gives

dSm(t)T
dt

~
M

tu

{
1zprntu

tu

� �
Sm(t)T

dSNx(t)T
dt

~prnSm(t)T:

ð9Þ

Eq. (9) is also obtained by taking expectations in Eq. (7), which

implies that the deterministic model and the stochastic model yield

the same means when I(t) is a homogeneous Poisson process. The

following equation for Sx(t)T can be obtained using Eq. (9) and

the fact that x(t)~dNx(t)=dt,

dSx(t)T
dt

~
prnM

tu

{prn
1zprntu

tu

� �
Sm(t)T: ð10Þ

The stationary mean of m(t) is given by the unique steady state

solution to Eq. (9) [4],

mm : ~ lim
t??

Sm(t)T~
M

1zprntu

: ð11Þ

Furthermore, after a perturbation of m(t) or starting from an

initial condition Sm(0)T=mm, Sm(t)T decays exponentially back

to mm with time constant
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t0~
tu

1zprntu

:

The stationary mean number of vesicles released by each

presynaptic spike is given by limj?? SwjT~prmm and the

stationary mean of the postsynaptic signal is

limt?? Sx(t)T~prnmm, which represents the steady state rate of

vesicle release. Furthermore, Sx(t)T approaches its steady state

exponentially with the same time constant, t0, as Sm(t)T.

The calculations of first moments above depend on the fact that

m(t) and dNI (t) are independent for any t. This can only be

assumed to hold when Eq. (8) is interpreted in the Ito
^

sense (so that

m(t) is updated directly after a spike) and I(t) is a homogeneous

Poisson process. If I(t) is not a homogeneous Poisson process, then

the equations for the first moments are not valid and the first

moments may not agree for the two models.

A diffusion approximation of the stochastic model
Second moments for the stochastic model are difficult to derive

analytically, so we obtain approximations by considering a

diffusion approximation

dm(t)~
M{m(t)

tu

dt{dNx(t)z
ffiffiffiffiffiffi
Du

p
dWu(t)

dNx(t)~prm(t)dNI (t)z
ffiffiffiffiffiffi
Dr

p
Zr(t)dNI (t)

ð12Þ

where Wu(t) is a standard Wiener process that models stochasticity

in vesicle recovery. Stochasticity in vesicle release is captured by

the stationary process, Zr(t), with moments given by SZr(t)T~0,

SZr(t)
2T~1, and SZr(t)Zr(s)T~0 for s=t. We assume that

Zr(t), Wu(t), and I(t) are mutually independent. These equations

should be interpreted in the Ito
^

sense, so that the increments

dm(t)~m(tzdt){m(t) and dNx(t)~Nx(tzdt){Nx(t) are inde-

pendent from the history of the noise terms,

fWu(s),Zr(s),NI (s)gsƒt, for any time t [49]. Since

SZr(t)T~SdWu(t)T~0, it is clear that the diffusion approxima-

tion defined by Eq. (12) has first moments that satisfy Eq. (9).

The noise coefficients, Dr and Du, quantify the degree of

randomness introduced by stochastic release and recovery

respectively. To find appropriate values for these coefficients, we

compute the infinitesimal variance of dm(t) and dNx(t) condi-

tioned on the drift terms that appear in their respective equations

in Eq. (12) [50]. Since vesicle recovery events are Poissonian, the

variance of its increment is equal to its rate, giving the conditional

variance

var(dmDm,dNx)~
M{m

tu

dt:

Note that the dNx(t) term that appears on the right hand side of

Eq. (12) does not contribute to this conditional variance since

var(dNxDm,dNx)~0. Conditioned on m(t) and the occurrence of a

presynaptic spike, the number of vesicles released has a binomial

distribution with mean SdNxDm,dNI~1T~prm and therefore has

conditional variance given by

var(dNxDm,dNI~1)~pr(1{pr)m:

Optimally, we would set Du~var(dmDm,dNx)=dt and

Dr~var(dNxDm,dNIw0)=dt, but doing so would give rise to

nonlinear multiplicative noise in Eq. (12), which is difficult to treat

mathematically. Instead, we obtain an approximation by replacing

m(t) with its stationary mean, mm, to obtain

Du~
M{mm

tu

and Dr~pr(1{pr)mm: ð13Þ

All calculations for the stochastic model are carried out using the

diffusion approximation from Eq. (12) with the noise coefficients

from Eq. (13), and therefore expressions obtained are approxima-

tions to the full stochastic model described above. However, in all

figures, simulations are performed using the full stochastic model

from Eq. (7) (light blue lines) and show excellent agreement with

the closed form approximations (dark blue lines).

Note that the deterministic model can be recovered by taking

Du~Dr~0 in Eq. (12). Thus, we can proceed in our analysis by

considering Eq. (12) without instantiating Du or Dr to obtain

results that apply to both the deterministic and stochastic models.

Derivation of the auto-covariance and power spectrum
of x(t)

We quantify temporal and trial-to-trial variability between two

stationary processes, v(t) and y(t), using the cross-covariance

function,

Rvy(t)~cov(v(t),y(tzt)),

and its Fourier transform, the cross-spectrum,

Svy(f )~

ð?
{?

Rvy(t)e{2ipf tdt:

The cross-covariance (cross-spectrum) between a process and itself

is called an auto-covariance (power spectrum). To quantify the

variability of the postsynaptic response, we now derive the auto-

covariance, Rxx(t), and the power spectrum, Sxx(f ), for the

synapse model in Eq. (12).

From Eqs. (9) and (10) it is apparent that, for tw0, the

expectations Sm(tzt)T and Sx(tzt)T decay exponentially to

their steady state, given any initial distribution, P0, imposed on

m(t) and x(t). From this fact, it is apparent that

Sx(tzt)x(t)T~
Ð

xSx(tzt)Dm(t)~m,x(t)~xTdP0(m,x) should

inherit this exponential shape and therefore that Rxx(t) should

have an exponential shape with time constant t0.

We now make this argument more precise using a regression

theorem from [49]. Define the bivariate Markov process,

Y (t)~
m(t){mm

x(t){prnmm

� �
:

Then Eqs. (9) and (10) show that

dSY (tzt)DY (t)T
dt

~{ASY (tzt)DY (t)T

for tw0 where

A~
1=t0 0

prn=t0 0

� �
:

In Sec. 3.7.4 of [49], it is shown that this implies
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dSY (tzt)Y (t)TT
dt

~{ASY (tzt)Y (t)TT

for tw0: Solving this linear differential equation gives

S(x(tzt){prnmm)(x(t){prnmm)T~nprSx(t)m(t)Te{t=t0

for tw0. Thus, due to stationarity,

Rxx(t)~ lim
t??

S(x(tzt){prnmm)(x(t){prnmm)T

~Be{t=t0

for tw0 and where B is a constant. By symmetry, we have

Rxx({t)~Rxx(t). Note also that, since x(t) is a marked point

process, there is a Dirac delta function that contributes to Rxx(t) at

t~0 [51]. Finally, we may conclude that the auto-covariance of x(t)
has the form

Rxx(t)~Ad(t)zBe{DtD=t0 ð14Þ

for some constants A and B.

To calculate the coefficients A and B in Eq. (14), we must first

calculate a few infinitesimal moments using stochastic calculus

techniques [52]. In our calculations, we ignore terms of order

dt2 : ~(dt)2 and higher, but must include terms of the form order

dm2 and dN2
x because their expectation is of the order dt [50].

The second moment of dNx conditioned on m is given by

SdN2
x DmT~S(prmdNIz

ffiffiffiffiffiffi
Dr

p
dNI Zr)

2DmT

~p2
r m2SdN2

I TzDrSdN2
I T

ð15Þ

~(p2
r m2zDr)ndt ð16Þ

where (15) follows from the fact that Zr(t) and dNI (t) are

independent from each other and from m(t), that SZr(t)T~0, and

that SZr(t)
2T~1; and (16) follows from the fact that SdN2

I T~ndt.

The calculation of the conditional mixed moment, SmdNxDmT, is

similar and gives

SmdNxDmT~Sm(prmdNIz
ffiffiffiffiffiffi
Dr

p
dNI Zr)DmT

~prm
2ndt:

To calculate the stationary second moment, limt?? Sm(t)2T,

we modify a strategy from Sec. 4.4.7c of [49] to derive a linear

differential equation for the time dependent second moment and

find its steady state. First note that

dSm2T~Sd(m2)T~2SmdmTzSdm2T:

The first term in this sum is given by

SmdmT~Sm (dt(M{m)=tu{dNxz
ffiffiffiffiffiffi
Du

p
dWu)T

~
SmTM

tu

dt{
Sm2T

tu

dt{SmdNxT

~
SmTM

tu

dt{Sm2T
1

tu

zprn

� �
dt

where we used the fact that m(t) and dWu(t) are independent (see

above) and the last line follows from the equation for SmdNxDmT
derived above. Now calculate

Sdm2T~S dt(M{m)=tu{dNxz
ffiffiffiffiffiffi
Du

p
dWu

� �2T
~SdN2

xTzDudt

~(p2
r Sm2TzDr)ndtzDudt

where we have eliminated terms of order dt2 and used the fact that

dWu is independent from all other terms; and the last line follows

from the equation for SdN2
x DmT above. Combining these

expressions gives a differential equation for the time course of

the second moment of m,

dSm(t)2T
dt

~{Sm(t)2T
2

tu

z(2pr{p2
r )n

� �

z
2Sm(t)TM

tu

zDrnzDu

where Sm(t)T is given by the solution of Eq. (9) above. The stable

fixed point of this linear differential equation is the stationary

second moment of m(t),

Sm2T : ~ lim
t??

Sm(t)2T

~
2mmMzDrntuzDutu

2z(2pr{p2
r )ntu

ð17Þ

where mm is the stationary mean of m(t), given in Eq. (11). The

delta function in Rxx(t) has area given by

A~
SdN2

xT
dt

~(p2
r Sm2TzDr)n ð18Þ

where we used Eq. (16) above and where Sm2T is given by Eq.

(17).

To calculate the one-sided limit, B~ limt?0z Rxx(t), first

calculate

lim
t?0z

Sx(t)x(tzt)T

~ lim
t?0z

S prm(t)I(t)z
ffiffiffiffi
D
p

rI(t)Zr(t)
� �

|

prm(tzt)I(tzt)z
ffiffiffiffi
D
p

rI(tzt)Zr(tzt)
� �

T

~npr lim
t?0z

S prm(t)I(t)z
ffiffiffiffi
D
p

rI(t)Zr(t)
� �

m(tzt)T

~np2
r lim

t?0z
SI(t)m(t)m(tzt)Tz

ffiffiffiffi
D
p

rSI(t)Zr(t)m(tzt)T

where we have used the fact that Zr(tzt) and I(tzt) are

independent of all of the other terms when tw0. Each of the terms

in the sum above can be calculated by conditioning on a spike at

time t and on the value of m(t),
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lim
t?0

SI(t)m(t)m(tzt)T

~ lim
t?0

nSm(t)Sm(tzt)Dm(t),dNI (t)w0TTm

~nSm(t) m(t){prm(t){
ffiffiffiffiffiffi
Dr

p
Zr(t)

� �
T

m

~n (1{pr)Sm2T

where S:Tm is expectation over the variable m(t). Similarly,

lim
t?0

SI(t)Zr(t)m(tzt)T

~ lim
t?0

nSZr(t)Sm(tzt)DZr(t),dNI (t)w0TTz

~nSZr(t) m(t){prm(t){
ffiffiffiffiffiffi
Dr

p
Zr(t)

� �T
z

~{n
ffiffiffiffiffiffi
Dr

p
where S:Tz is expectation over Zr(t). Combining the expressions

above gives

lim
t?0

Sx(t)x(tzt)T~n2pr pr(1{pr)Sm2T{Dr

� �
Finally, since Sx(t)T~SdNxT=dt~prnmm from above, we have

B~ lim
t?0

Rxx(t)~ lim
t?0

Sx(t)x(tzt)T{Sx(t)T2

~n2pr pr(1{pr)Sm2T{Dr{prm
2
m

� � ð19Þ

where mm and Sm2T are the stationary first and second moments

of m(t), given in Eqs. (11) and (17). The auto-covariance of x(t) is

then given by Eq. (14) with A and B given by Eqs. (18) and (19).

The power spectrum is obtained from the auto-covariance

through a Fourier transform,

Sxx(f )~(1zD0)D ~KK(f )D2nzSgugu (f )zSgrgr (f )

where

~KK(f )~prmm{np2
r mm

it0

i{2pt0f
ð20Þ

is a deterministic linear kernel,

D0~
ntup2

r

ntu(2{pr)prz2

is the noise intensity introduced by the interaction between the

stochastic input and deterministic vesicle dynamics,

Sgugu (f )~DuD0 1zn (1{pr)
2t0

4p2t2
0f 2z1

� �

is the noise introduced by stochasticity in vesicle recovery, and

Sgrgr (f )~DrD0
2

p2
r t0

{n
t0ztu

prt0tu

� �
2t0

4p2t2
0f 2z1

� �

is the noise introduced by stochasticity in vesicle release. Note that

Sgugu (f )~Sgrgr (f )~0 for the deterministic model since

Du~Dr~0.

Derivation of the cross-covariance and cross-spectrum
between I(t) and x(t)

To measure the covariability between the presynaptic spike

trains and the postsynaptic response, we now derive the cross-

covariance between the input, I(t), and the response x(t). By a

similar argument to the one made above for Rxx(t), we may

conclude that RIx(t) is the sum of a delta function and an

exponential, except that the exponential is one-sided since

RIx(t)~cov(I(t),x(tzt))~0 for tv0. For tw0, we can find

the peak of the exponential by first conditioning on a spike at time

t, then conditioning on a spike at time tzt,

lim
t?0z

SI(t)x(tzt)T~n lim
t?0z

Sx(tzt)DdNI (t)w0T

~n2 lim
t?0z

Sprm(tzt)z
ffiffiffiffi
D
p

rZr(tzt)DdNI (t)w0, dNI (tzt)w0T

~n2Spr m(tzt){prm(tzt){
ffiffiffiffi
D
p

rZr(tzt)
� �

z
ffiffiffiffi
D
p

rZr(tzt)T

~n2pr(1{pr)mm

since SZr(tzt)T~0. Thus,

lim
t?0z

RIx(t)~ lim
t?0z

Sx(tzt)I(t)T{Sx(t)TSI(t)T

~n2pr(1{pr)mm{n2prmm

~{n2p2
r mm:

The area of the delta function in RIx is given by

SdNx(t)dNI (t)T
dt

~nSdNxDdNIw0T

~nprmm

since SdNxDdNIw0T~mw~prmm. Thus, we have

RIx(t)~nprmmd(t){H(t)n2p2
r mme{t=t0

where H is the Heaviside step function. Taking the Fourier

transform gives the cross-spectrum

SIx(f )~n ~KK(f )

where ~KK(f ) is defined in Eq. (20) above.

Postsynaptic response to several correlated presynaptic
spike trains

The statistics of the postsynaptic response to a population,

fIk(t)gn
k~1, of uncorrelated presynaptic spike trains can be easily

calculated from the statistics of individual responses, which are

calculated above. However, neurons that contact a shared

postsynaptic cell often exhibit correlations between their spiking

activity [39,53]. To determine the postsynaptic response to a

population of correlated presynaptic spike trains, we must first

calculate the pairwise cross-spectra of the conductances induced

by these inputs. Assume that each spike train, Ik(t), in the

presynaptic population is a Poisson process with rate n. Introduce

correlations by assuming that each pair, Ij(t) and Ik(t), of spike
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trains share a proportion c of their spike times so that SIj Ik
(f )~cn

[54]. We use subscripts to denote quantities associated with each

spike train and double subscripts as necessary. For simplicity,

assume that the synaptic parameters M, pr, and tu are identical for

all synapses. The asymmetric case can be treated identically, but

the expressions obtained are more cumbersome. The power

spectrum, Sxkxk
(f ), and the cross-spectrum, SIkxk

(f ), are given

above (where they are written as Sxx(f ) and SIx(f )). Below, we

derive expressions for Sxjxk
(f ) and SIjxk

(f ) for j=k.

First, following the same arguments used above to derive the

moments of Nx(t) and m(t) in the case of a single presynaptic spike

train, we obtain the bivariate moments

SdNxj
dNxk

Dmj ,mkT~S prmjdNIj
z

ffiffiffiffiffiffi
Dr

p
dNIj

Zr,j

� �
|

prmkdNIk
z

ffiffiffiffiffiffi
Dr

p
dNIk

Zr,k

� �
Dmj ,mkT

~p2
r mjmkSdNIj

dNIk
T

~p2
r mjmkcndt:

Similarly,

SdNxj
mk Dmj ,mkT~S(prmjdNIj

z
ffiffiffiffiffiffi
Dr

p
dNIj

Zr,j)mkT

~prnmjmkdt

and, equivalently,

SdNxk
mj Dmj ,mkT~prnmjmkdt:

We now derive a differential equation for Smj(t)mk(t)T to get the

stationary second moment. First note that

d(mjmk)~mjdmkzmkdmjzdmjdmk so that

dSmjmkT~SmjdmkTzSmkdmjTzSdmjdmkT: ð21Þ

By symmetry, the first and second terms in Eq. (21) are the same

and they can be derived from Eq. (12) as

SmjdmkT
dt

~
SmkdmjT

dt

~Smj ((M{mk)=tu{dNxk
=dtz

ffiffiffiffiffiffi
Du

p
dWu,k=dt)T

~
Mmm

tu

{
SmjmkT

tu

{SmjdNxk
T

~
Mmm

tu

{
SmjmkT

tu

{prnSmjmkT:

The last term in Eq. (21) is given by

SdmjdmkT~S dt(M{mj)=tu{dNxj
z

ffiffiffiffiffiffi
Du

p
dWu,j

� �
|

dt(M{mk)=tu{dNxk
z

ffiffiffiffiffiffi
Du

p
dWu,k

� �T
~SdNxj

dNxk
T

~p2
r SmjmkTcndt:

Combining these gives

dSmjmkT
dt

~2
Mmm

tu

{2
SmjmkT

tu

{2prnSmjmkTzp2
r SmjmkTnc

which has a fixed point at

SmjmkT : ~ lim
t??

Smj(t)mk(t)T

~
2Mmm

2z2ntupr{cntup2
r

:
ð22Þ

We now calculate the cross-covariance between xj(t) and xk(t).
By a similar argument to that used to derive Eq. (14) above, the

cross-covariance between xj(t) and xk(t) has the form

Rxjxk
(t)~A2d(t)zB2e{DtD=t0 ð23Þ

where we have used the symmetry of xj(t) and xk(t), inherited

from the symmetry in parameters, to conclude that

Rxjxk
(t)~Rxj xk

({t). The area of the delta function is given by

A2~
SdNxj

dNxk
T

dt
~p2

r cnSmjmkT

where SmjmkT is given in Eq. (22). To find B2, we first calculate

lim
t?0z

Sxj(t)xk(tzt)T~

lim
t?0z

S prmj(t)Ij(t)z
ffiffiffiffiffiffi
Dr

p
Ij(t)Zr,j(t)

� �

prmk(tzt)Ik(tzt)z
ffiffiffiffiffiffi
Dr

p
Ik(tzt)Zr,k(tzt)

� �
T

~p2
r lim

t?0z
Smj(t)Ij(t)mk(tzt)Ik(tzt)T

~n2p2
r lim

t?0z
Smj(t)mk(tzt)DdNIj

(t),dNIk
(tzt)w0T

~n2p2
r lim

t?0z
Smj(t)mk(tzt)DdNIj

(t)w0T

~n2p2
r lim

t?0z
(1{c)Smj(t)mk(tzt)DdNIj

(t)w0,dNIk
(t)~0T

zcSmj(t)mk(tzt) DdNIj
(t),dNIk

(t)w0T

~n2p2
r (1{c)Smj(t)mk(t)TzcSmj(t)(1{pr)mk(t)T
� �

~n2p2
r (1{cpr)SmjmkT

so that

B2~ lim
t?0z

Rxjxk
(t)~ lim

t?0z
Sxj(t)xk(tzt)T{SxjTSxkT

~n2p2
r (SmjmkT{m2

m){cn2p3
r SmjmkT

which gives Rxj xk
(t) through Eqs. (22) and (23).

Finally, we will derive RIjxk
(t) and RIkxj

(t). Once again, by

linearity, each of these is the sum of a delta function and an

exponential. The area of the delta function is given by
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SdNIj
(t)dNxk

(t)T=dt~cnSdNxk
DdNIj

,dNIk
w0T~cnprmm:

We also have

lim
t?0z

SIj(t)xk(tzt)T

~n2pr lim
t?0z

Smk(tzt)DdNIj
(t),dNIk

(tzt)w0T

~n2pr lim
t?0z

(1{c)Smk(tzt)DdNIk
(t)~0T

zcSmk(tzt)DdNIk
(t)w0T

~n2pr((1{c)mmzc(1{pr)mm)

~n2pr(1{cpr)mm

Thus,

lim
t?0z

RIjxk
(t)~ lim

t?0z
Sxk(tzt)Ij(t)T{Sxk(t)TSIj(t)T

~n2pr(1{cpr)mm{nprmmn

~{cn2p2
r mm

and therefore

RIjxk
(t)~cnprmmd(t){H(t)cn2p2

r mme{t=t0 :

By symmetry, RIkxj
(t)~RIjxk

(t):

Finally, the cross-spectra can now be found through a Fourier

transform to obtain

SIj xk
(f )~~KKcn and Sxj xk

(f )~(1zD0c0)D~KK D2cn

where

c0~
ntu(2{pr)prz2

ntu(2{cpr)prz2
c: ð24Þ

Statistics of the postsynaptic conductance
So far we have described the statistics of the processes, xk(t),

which quantify the release of vesicles released over time. The

postsynaptic conductance induced by vesicle release is then

defined as gk~a � xk where � denotes convolution and a(t)
represents the time course of conductance induced by the release

of a single vesicle (with a(t)~0 for tv0). The statistics of gk(t) can

easily be derived from those of xk(t) using standard signal

processing identities [29] to give

mg~
prnM

1zprtun

ð?
0

a(t)dt

SIkgk
~~aa ~KKn

Sgkgk
~(1zD0)D~aa ~KK D2 nzD~aaD2(SguguzSgrgr )

SIjgk
~~aa ~KKcn

Sgjgk
~(1zD0c0)D~aa ~KK D2cn

ð25Þ

for j=k and the steady state variance of g(t) is given by

limt?? var(gk(t))~2
Ð?

0
Sgkgk

(f )df .

Synaptic filtering of presynaptic spike trains with rate
coded signals

So far, we have discussed statistics of the conductance induced

by a population of homogeneous Poisson presynaptic spike trains,

but spike trains measured in vivo do not always exhibit

homogeneous Poisson statistics [55]. For example, time-varying

stimuli can induce fluctuations in the firing rate of presynaptic

neurons. As a simple model of rate-coded signals, we assume that a

shared, time-varying signal, s(t), is encoded in the firing rates of a

presynaptic population, fIk(t)gn
k~1.

In this model, each presynaptic spike train is a doubly stochastic

Poisson process [51]. The instantaneous firing rate of each

presynaptic neuron, conditioned on s(t), is given by

SIk(t)Ds(t)T~nzs(t). Without loss of generality, we assume that

the signal has zero bias, Ss(t)T~0, so that the unconditioned firing

rates are SIk(t)T~n. Signal correlations are introduced in this

model by the shared signal, s(t). We include noise correlations, i.e.,

correlations that are not due to shared signal [38,39], by assuming

each pair of presynaptic spike trains share a proportion c of their

spike times.

To compute the auto- and cross-covariance functions we first

note that, for t=0,

SIj(t)Ik(tzt)T

~

ð
SIj(t)Ik(tzt)Ds(t)~s1, s(tzt)~s2TdPt(s1,s2)

~

ð
s1s2dPt(s1,s2)

~Ss(t)s(tzt)T

where Pt(s1,s2) is distribution of (s(t),s(tzt)) in the steady state

(t??). In addition, RIjIk
(t) has a Dirac delta function at t~0

with mass equal to the rate of synchronous spikes, cn. Thus,

RIj Ik
(t)~cnd(t)zRss(t) for j=k. The auto-covariance (j~k) can

be obtained by taking c~1. The cross-covariance function

between s(t) and Ik(t) is be computed similarly to obtain

RsI (t)~Rss(t). Taking Fourier transforms gives the spectra,

SIkIk
(f )~nzSss(f )

SIjIk
(f )~cnzSss(f ), j=k

SsIk
(f )~Sss(f )

where Sss(f ) is the power spectrum of the signal.

Exact expressions for the statistics of the postsynaptic conduc-

tance are difficult to obtain for this inhomogeneous Poisson model

because Ik(t) is correlated with Ik(tzt) and with Ij(tzt), which

invalidates the methods used in the derivations for the homoge-

neous Poisson model above. However, when Sss(f )%n, the firing

rate inhomogeneities are weak compared to the background firing

rate and temporal correlations are weak as a result (analogously,

SIkIk
(f )&n). In this case, a linear approximation to the synaptic

response can be obtained. To obtain this approximation, we find a

linear filter that maps presynaptic spike trains to conductances and

that is consistent with Eqs. (25) when inputs are Poisson. The

following filter satisfies this requirement
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~ggk~ 1z
ffiffiffiffiffiffi
D0

p
~ww0,k

� �
~KK~IIkz~ggu,kz~ggr,k

� �
~aa: ð26Þ

Here, w0,k(t) is standard Gaussian white noise, gu,k(t) is unbiased

stationary noise with power spectrum Sgugu (f ) that accounts for

stochasticity in vesicle recovery, and similarly for gr,k(t), which

accounts for stochastic vesicle release. The noise terms gu,k(t) and

gr,k(t) are zero for the deterministic model. All noise terms here

are independent except that w0,j(t) and w0,k(t) are correlated with

cross-spectrum

Sw0,j w0,k
(f )~c0, j=k

where c0 is given by Eq. (24).

The spectra predicted by Eq. (26) can be easily calculated using

the fact that Suv(f )~S~uu0�~vv0T for stationary processes, u(t) and

v(t), where u0(t)~u(t){SuT and � denotes complex conjugation

[56]. Thus,

SIkgk
~S~II0�

k g0
kT

~S~II0�
k 1z

ffiffiffiffiffiffi
D0

p
~ww0,k

� �
~KK~II0

k z~ggu,kz~ggr,k

� �
~aaT

~ ~KK~aaSI0�
k I0

k T

~ ~KK~aaSIkIk

where we used the independence of the noise sources to eliminate

several terms. Other spectra can be derived in a similar manner to

obtain the following generalizations of Eqs. (25)

Sgkgk
~(1zD0)D~aa ~KK D2 SIkIk

zD~aaD2(SguguzSgrgr )

SIjgk
~~aa ~KK SIjIk

Sgjgk
~(1zD0c0)D~KK~aaD2SIjIk

ð27Þ

for j=k. These expressions agree with Eqs. (25) when inputs are

Poisson, i.e., when s(t)~0, because SIkIk
(f )~n and SIjIk

(f )~cn

in this case. When s(t)=0 and Sss(f )%n, these expressions give a

linear approximation which is verified using simulations in several

figures below. The fidelity with which the signal, s(t), is

represented in the conductances, gk(t), depends on the cross-

spectrum which can be calculated in analogous manner to

SIkgk
(f ) above to obtain

Ssgk
~Sg0

k~ss�T

~KaSeII0
kess�T

~KaSsIk
~KaSss:

ð28Þ

We are especially interested in the population spectra, SIg(f ),
Ssg(f ) and Sgg(f ), where I(t)~

P
k Ik(t) is the total presynaptic

input and g(t)~
Pn

k~1 gk(t) is the total conductance induced by

I(t). These are given by using the bilinearity of covariances to

obtain

SIg(f )~n(n{1)SIjgk
(f )znSIkgk

(f )

Ssg(f )~nSsgk
(f )

Sgg(f )~n(n{1)Sgj gk
(f )znSgkgk

(f ):

ð29Þ

A similar inhomogeneous Poisson input model was used in [17]

to investigate the transfer of rate-coded signals for the determin-

istic model of synaptic depression. Their model is analogous to our

deterministic model with M~1 (since their response amplitudes

are normalized) and ~aa(f )~1 (since they consider the postsynaptic

response, x(t), before convolution with a conductance kernel).

Under these substitutions, our expression for Ssgk
(f ) agrees with

their expression for SM
Rx(f ) exactly (where we use an ‘‘M’’

superscript to indicate expressions from [17]). However, our

expression for Sgkgk
(f ) for the deterministic model only agrees

with their expression for SM
xx(f ) when s(t)~0 (i.e., when the input

is a homogeneous Poisson process). Our expression has an

additional term that accounts for power introduced by the signal

s(t). In particular, Sgkgk
(f )~SM

xx(f )(1zSss(f )) for the determin-

istic model when M~1 and ~aa(f )~1.

Parameters used for figures
Theoretical results are obtained for arbitrary parameter values,

but for all figures we use the parameters from Table 1, which are

chosen to represent values from experimental studies. The values

used for tu and pr have been deemed ‘‘typical’’ for pyramidal-to-

pyramidal synapses in the rodent neocortex [2,19] and the value of

M is typical for several cortical areas [34]. The form of a(t) is

chosen to model AMPA dynamics and its units are rescaled so thatÐ?
0

a(t)dt~1. This rescaling simplifies the exposition in the

Results.
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