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Abstract: Advanced statistical methods

used to analyze high-throughput data

such as gene-expression assays result in

long lists of ‘‘significant genes.’’ One way
to gain insight into the significance of

altered expression levels is to determine

whether Gene Ontology (GO) terms
associated with a particular biological

process, molecular function, or cellular

component are over- or under-represent-

ed in the set of genes deemed significant.
This process, referred to as enrichment

analysis, profiles a gene-set, and is widely

used to makes sense of the results of

high-throughput experiments. The ca-
nonical example of enrichment analysis

is when the output dataset is a list of

genes differentially expressed in some

condition. To determine the biological
relevance of a lengthy gene list, the usual

solution is to perform enrichment analysis

with the GO. We can aggregate the
annotating GO concepts for each gene

in this list, and arrive at a profile of the

biological processes or mechanisms af-

fected by the condition under study.
While GO has been the principal target

for enrichment analysis, the methods of

enrichment analysis are generalizable. We

can conduct the same sort of profiling
along other ontologies of interest. Just as

scientists can ask ‘‘Which biological pro-

cess is over-represented in my set of
interesting genes or proteins?’’ we can

also ask ‘‘Which disease (or class of

diseases) is over-represented in my set

of interesting genes or proteins?‘‘. For
example, by annotating known protein

mutations with disease terms from the

ontologies in BioPortal, Mort et al. recently

identified a class of diseases—blood
coagulation disorders—that were associ-

ated with a 14-fold depletion in substitu-

tions at O-linked glycosylation sites. With
the availability of tools for automatic

annotation of datasets with terms from

disease ontologies, there is no reason to

restrict enrichment analyses to the GO. In
this chapter, we will discuss methods to

perform enrichment analysis using any

ontology available in the biomedical

domain. We will review the general
methodology of enrichment analysis, the

associated challenges, and discuss the

novel translational analyses enabled by

the existence of public, national compu-
tational infrastructure and by the use of

disease ontologies in such analyses.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

Advanced statistical methods are most

often used to perform the analysis of high-

throughput data such as gene-expression

assays [1–5], the result of which is a long

list of ‘‘significant genes.’’ Extracting

biological meaning from such lists is a

nontrivial and time-consuming task,

which is exacerbated by the inconsisten-

cies in free-text gene annotations. The

Gene Ontology (GO) offers a taxonomy

that provides a mechanism to determine

statistically significant functional sub-

groups within gene groups. One way to

gain insight into the biological signifi-

cance of alterations in gene expression

levels is to determine whether the GO

terms associated with the particular bio-

logical process, molecular function, or

cellular component are over- or under-

represented in the set of genes deemed

significant by the statistical analysis [6].

This process, often referred to as ‘‘enrich-

ment analysis,’’ can be used to summarize

a gene-set [7], although it can also be

relevant for other high-throughput mea-

surement modalities including proteo-

mics, metabolomics, and studies using

tissue-microarrays [8].

With the availability of tools for auto-

matic ontology-based annotation of data-

sets with terms from biomedical ontologies

besides the GO, we need not restrict

enrichment analysis to the GO. In this

chapter, we outline the methodology of

enrichment analysis, the associated chal-

lenges, and discuss novel analyses enabled

by performing enrichment analysis using

disease ontologies. We first review the

current methods of GO based enrichment

analysis to provide a foundation for

discussing analyses using Disease Ontolo-

gies. Note that there is also research

underway on the use of ‘‘pathways’’ for

enrichment analyses as well as comparing

statistically significant, concordant differ-

ences between two biological states as in

Gene Set Enrichment Analysis [9], which

are not discussed here.

1.1 Gene Ontology Enrichment
Analysis

The goal of enrichment analysis is to

determine which biological processes (or

molecular function) might be predomi-

nantly affected in the set of genes that were

deemed interesting or significantly

changed. The simplest approach is to

calculate functional ‘enrichment/deple-

tion’ for each GO term—a higher (or

lower) proportion of genes with certain

annotations among the significantly

changed genes than among all of the

genes measured in the experiment. The

finding of enrichment should not be

interpreted as evidence implicating the

GO term in the process studied without an

appropriate statistical test.

The calculation of GO based functional

enrichment involves two sets of items

(usually genes or proteins): 1) The refer-

ence set, which is the set of items with

which the ‘‘significant-set’’ is to be com-

pared; the reference set may comprise all

of the genes in the genome or all of the

genes for which there were probes in the

high throughput experiment; 2) The set of

interest, which is the subset or list of

significant genes that is to be analyzed for
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enrichment (or depletion) of GO terms in

their annotations.

The analysis process (Figure 1) counts

the GO annotations for both gene lists to

calculate the number of genes (n and m)

annotated with a particular GO term in

each list and then calculates the probabil-

ity (p-value) of the occurrence of at least n

genes belonging to that category among

the N genes in the set of interest, given that

m genes are annotated with that term

among the M genes in the reference set.

There are multiple ways to calculate the

probability of observing a specific enrich-

ment value. The simplest approach is to use

a binomial model. For example, if one

assumes that the probability of picking a

gene annotated with the GO term ‘apopto-

sis’ is fixed and is equal to the proportion of

genes annotated with ‘apoptosis’ in the

reference set, then the binomial distribution

provides the probability of obtaining a

particular proportion of apoptosis genes

among the genes in the set of interest by

chance [10]. Such an approximation is

quite reasonable for large reference sets (e.g.

the whole genome) because the probability

of selecting a gene annotated with the term

‘apoptosis’ into the set of interest does not

change significantly after each selection.

However, when a gene or protein is

picked from a smaller reference set, then the

probability that the next picked gene is

annotated to apoptosis is affected by wheth-

er the previously picked genes were anno-

tated to apoptosis. Under these circumstanc-

es, the hypergeometric distribution—a

discrete probability distribution that de-

scribes the number of successes in a

sequence of n draws from a finite population

without replacement—is a better statistical

model. Another option is the Fisher’s exact

test or the chi-squared distribution, both of

which take into consideration how the

probabilities change when a gene is picked.

The hypergeometric p-value is calculated

using the following formula:

P nð Þ~
m
n

� �
M{m
N{n

� �

N
n

� �

The p-value reports the likelihood of finding

n genes annotated with a particular GO

term in the set of interest by chance alone,

given the number of genes annotated with

that GO terms in the reference set. A

biological process, molecular function or

cellular location (represented by a GO term)

is called enriched if the p-value is less than

0.05. GO annotations form the corner-stone

of enrichment analysis in sets of differentially

expressed genes. The GO project’s Web site

lists over 50 tools that can be used in this

process [11].

Enrichment analysis can be done as a

hypothesis-generating task, such as asking

which GO terms are significant in a

particular set of genes or a hypothesis-

driven task such as asking whether apop-

tosis is significantly enriched or depleted in

a particular set of genes.

In the hypothesis-driven setting, the

analysis can include all of the genes that

are annotated both directly to apoptosis

and to its child nodes to maximize the

statistical power because no correction for

multiple comparisons is required. The

hypothesis-generating approach allows an

unbiased search for significant GO anno-

tations. The analysis can be done with a

bottom-up approach where for every leaf

term the genes annotated with that GO

term are also assigned to its immediate

parent term. One can propagate the

annotations recursively up along parent

nodes until a significant node is found or

until the root is reached. (Note: this

upward propagation of annotations is

Figure 1. An overview of the process to calculate enrichment of GO categories. The steps usually followed are: (1) Get annotations for each
gene in reference set and the set of interest. (2) Count the occurrence (n) of each GO term in the annotations of the genes comprising the set of
interest. (3) Count the occurrence (m) of that same GO term in the annotations of the reference set. (4) Assess how ‘‘surprising’’ is it to find n, given m,
M and N.
doi:10.1371/journal.pcbi.1002827.g001

What to Learn in This Chapter

N Review the commonly used approach of Gene Ontology based enrichment
analysis

N Understand the pitfalls associated with current approaches

N Understand the national infrastructure available for using alternative ontologies
for enrichment analysis

N Learn about a generalized enrichment analysis workflow and its application
using disease ontologies
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referred to as computing the transitive

closure of the annotation set over the

graph of the Gene Ontology). Newer

approaches can also perform the enrich-

ment analysis accounting for the position

of the term in the GO hierarchy [12–

14].

1.1.1 Interpretation of p-

values. The p-values should be

interpreted with caution because the

choice of the reference set to which the

set of interest is compared affects the p-

value. For whole genome arrays, using the

list of all genes on the array as the

reference set is equivalent to using the

complete list of genes in the genome.

However, for arrays containing a selected

subset of genes associated with a biological

process, the choice of the gene set to use as

the reference set is not obvious. Moreover,

the p-value calculation using the

hypergeometric distribution assumes the

independence of the GO annotation

categories, an assumption that may not

be justified.

Another difficulty in determining sig-

nificance using the calculated p-value and

a cutoff of 0.05, especially in the hypoth-

esis-generating approach mentioned

above, is that multiple testing increases

the likelihood of obtaining what appears

to be a statistically significant value by

chance. Multiple testing occurs because

the GO term to be tested for enrichment

is not pre-selected, but each term is tested.

This allows multiple opportunities (equal

to the number of terms tested) to obtain a

statistically significant p-value by chance

alone in a given gene list. However,

correcting for multiple testing by using a

Bonferroni correction in which the critical

p-value cut-off is divided by the number

of tests performed is too restrictive—

especially when annotations are propa-

gated up to the root node via a transitive

closure; then the number of tests is equal

to the number of terms in the GO

hierarchy.

In this situation, calculation of the false

discovery rate (FDR), which provides an

estimate of the percentage of false posi-

tives among the categories considered

enriched at a certain p-value cutoff,

allows for a more informed choice of the

p-value cutoff. One can estimate the false

discovery rate (FDR) for the enriched

categories by performing simulations

which generate a user-specified number

of random gene sets of the same size as

the set of interest and calculate the

average number of categories that are

considered enriched in the random gene

sets, at a p-value cutoff of 0.05. If the

FDR is above the desired threshold, we

can lower the p-value cutoff in order to

re-duce the FDR to acceptable levels.

Multiple hypothesis testing is a general

problem that is not specific to GO (see

[15] for a general review).

A related issue arising from performing

the transitive closure—the propagation of

annotations along the parent-child

paths—is that the parallel tests performed

for nodes in a given path will be correlated

because the same genes can appear several

times on each path. Correction methods

that assumes independence of categories

might not function well in this situation

and might preclude identification of some

categories that are indeed enriched [6]. It

is possible to use the structure of the GO

to decorrelate the analysis of various terms

[12–14] or to use corrections methods

such as a Benjamini–Yekutieli correction,

which accounts for the dependency be-

tween the multiple tests [16].

1.2 Summary of Existing Limitations
In 2005, Khatri and Draghici noted

that, despite widespread adoption, GO-

based enrichment analysis has intrinsic

drawbacks [17] and scientists must still

rely on literature searches to understand a

set of genes fully. These drawbacks

represent conceptual limitations of the

current state of the art and include:

N Incomplete annotations—even today,

roughly 20% of genes lack any GO

annotation

N Annotation bias because of inter-rela-

tionships between annotations (e.g.

annotation with certain GO terms is

not conditionally independent).

N Lack of a systematic mechanism to

define a level of abstraction, to com-

pensate for differing levels of granular-

ity.

The remainder of the chapter discusses

approaches to using existing, public bioin-

formatics tools to address these limitations

and use disease ontologies in such analy-

ses.

2. Using Disease Ontologies—
Going beyond GO Annotations

As we have discussed, enrichment

analysis provides a means of understand-

ing the results of high-throughput datasets

[17,18]. Conceptually, enrichment analy-

sis involves associating elements in the

results of high-throughput data analysis to

concepts in an ontology of interest, using

the ontology hierarchy to create a sum-

marization of the result, and computing

statistical significance for any observed

trend. The canonical example of enrich-

ment analysis is in the interpretation of a

list of differentially expressed genes in

some condition. The usual approach is to

perform enrichment analysis with the GO

[17]. There are currently over 400 publi-

cations on methods and tools for GO-

based enrichment, but (to the best of our

knowledge) only a single tool, Genes2Mesh,

uses something other than the GO (i.e. the

Medical Subject Headings or MeSH), to

calculate enrichment [19].

While GO has been the principal target

for enrichment analysis, we can carry out

the same sort of profiling using Disease

Ontologies. Just as scientists can ask

‘‘Which biological process is over-represented in

my set of interesting genes or proteins?’’, they also

should be able to ask ‘‘Which disease (or class

of diseases) is over-represented in my set of

interesting genes or proteins?’’ For example, by

annotating known protein mutations with

disease terms from the ontologies in

BioPortal, Mort et al. recently identified

a class of diseases—blood coagulation

disorders—that were associated with a

14-fold depletion in substitutions at O-

linked glycosylation sites [20].

There are several resources that can be

used as disease ontologies for enrichment

analysis. We use the term ‘‘disease ontol-

ogy’’ to refer to artifacts—terminologies,

vocabularies as well as ontologies—that

can provide a hierarchy of parent-child

terms for disease conditions. One of the

most elaborate ontology for diseases is the

Systematized Nomenclature for Medicine-

Clinical Terms (SNOMED CT) is consid-

ered to be the most comprehensive,

multilingual clinical healthcare terminolo-

gy in the world [21]. SNOMED CT was a

joint development between the NHS in

England and the College of American

Pathologists (CAP). It was formed in 1999

by the convergence of SNOMED RT and

the United Kingdom’s Clinical Terms

Version 3 (formerly known as the Read

Codes). As of 2007, SNOMED CT is

maintained and distributed by the Inter-

national Health Terminology Standards

Development Organization (IHTSDO).

Currently, SNOMED CT contains more

than 311,000 active concepts with unique

meanings and formal logic-based defini-

tions organized into multiple hierarchies.

The disease hierarchy is available under

the clinical finding root node (analogous to

the ‘‘biological process’’ root node in the

Gene Ontology). Another widely used

disease ontology is the National Cancer

Institute thesaurus (NCIt), which is an

ontology that provides terms for clinical

care, translational and basic research, and

public information and administrative
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activities. NCIt is a widely recognized

standard for biomedical coding and refer-

ence, used by a variety of public and

private institutions including the Clinical

Data Interchange Standards Consortium

Terminology (CDISC), the U.S. Food and

Drug Administration (FDA), the Federal

Medication Terminologies (FMT), and the

National Council for Prescription Drug

Programs (NCPDP). The disease hierar-

chy is available under the root node of

‘‘Diseases, Disorders and Findings’’. The

most widely used disease ontology is the

International Classification of Diseases

(ICD), which is part of the WHO Family

of International Classifications. Version 9

of ICD is widely used in the United States

for billing purposes in the health care

system. Finally, there is effort to create an

ontology of Human Diseases (available at

http://diseaseontology.sourceforge.net)

that conforms to the principles of the

Open Biomedical Ontologies Foundry

[22]. The Human Disease ontology is

under review by the OBO Foundry since

2006. For the purpose of the current

discussion, and enrichment analysis in

general, pretty much disease ontology that

provides a clear hierarchy of parent-child

for diseases would be suitable for use.

Enrichment analysis owes its popular-

ity to the fact that the process is

methodologically straightforward and

yields these easily interpretable results.

Apart from analyzing results of high

throughput experiments, enrichment

analysis can also be used as an explor-

atory tool to generate hypotheses for

clinical research. Computationally gener-

ated annotations (from multiple ontolo-

gies) on patient cohorts can provide a

foundation for enrichment analysis for

risk-factor determination. For example,

enrichment analysis can identify general

classes of drugs, diseases, and test results

that are commonly found in readmitted

transplant patients but not in healthy

recipients. As noted, the GO has been the

principal target for such analysis and

despite widespread adoption, GO-based

enrichment analysis has intrinsic draw-

backs—the primary ones being incom-

pleteness of and bias among available

manually created annotations. Below, we

discuss recent advances in the use of

ontologies for automated creation of

annotations that allow us to address these

drawbacks and apply enrichment analysis

using disease ontologies.

2.1 Advances in Ontology Access
and Automated Annotation

There are several recent advances that

enable us to use disease ontologies in

enrichment analysis. The most obvious

advancement is that almost all biomedical

ontologies are now available in public

repositories such as BioPortal [23]—built

as a part of the NIH’s Biomedical

Information Science and Technology Ini-

tiative—which enables the use of terms

from multiple ontologies in data analysis

workflows. As of this writing, the BioPortal

library contains more than 204 publicly

accessible biomedical ontologies and their

metadata, ranging in domains from geno-

mics to clinical medicine to biomedical

software resources, and comprising nearly

1.5 million terms. BioPortal’s ontology

library includes ontologies that individual

investigators submit directly to BioPortal,

terminologies drawn from both the Uni-

fied Medical Language System (UMLS)

and the WHO Family of International

Classifications (WHO-FIC). The BioPortal

library also includes the ontologies that are

candidates to the OBO Foundry, which is

an initiative to create a set of well-

documented and well-defined reference

ontologies that are designed to work with

one another to form a single, non-

redundant system [22]. In addition to

ontologies, BioPortal contains more than 1

million mappings between similar terms in

different ontologies and 16.4 billion auto-

matically created annotations on records

from 22 public databases of biomedical

data. Resources such as BioPortal provides

a unified view of all its ontologies, which

may be encoded in different formats,

each of which has its own purpose,

scope, and use. The unified view of the

content enables uniform programmatic

access to all ontologies and terminologies

in the library for use in data analysis

workflows.

The availability of automated annota-

tion tools, such as the Annotator Web

service from the NCBO and MetaMap

from the National Library of Medicine

allows the creation ontology-based anno-

tations from free-text descriptions of gene

and protein functions (such as GeneRIFs);

as a result the lack of preexisting, manually

assigned annotations is no longer a

bottleneck. For example, the Annotator

Web service enables users to provide a

textual metadata of an item of interest—

such as a GeneRIF describing a gene’s

function or an abstract corresponding to a

PubMed record—to computationally gen-

erate ontology-based annotations for the

item of interest. The user specifies which

ontologies to use, and whether also to use

mappings to other ontologies or transitive

closure of hierarchy relations to extend the

annotations. The service returns the on-

tology terms that it recognizes from the

text—the annotations—and their position

in the submitted record.

Finally the availability of large annota-

tion repositories such as the Resource

Index, which is a large repository of

automatically created annotations by the

NCBO, and the NIF database index,

which is another large repository of

computationally generated annotations

on public data sources relevant to neuro-

science, provide a source of co-occurrence

statistics among ontology-terms in anno-

tations. The availability of such annotation

corpora makes the dependence between

annotations with different ontology terms

explicit.

Given these publicly available sources

for ontologies, tools for creating ontology-

based annotations and large repositories

(or corpora) of annotations, it is now

feasible to use disease ontologies in

enrichment analysis in a manner similar

to the Gene Ontology.

As we have discussed, one key aspect of

calculating statistical enrichment is the

choice of a reference-term frequency. It

is not clear what the appropriate refer-

ence-term frequency should be when

calculating enrichment of ontology-terms

for which a ‘‘background set’’ is not

defined. For example, in the case of Gene

Ontology annotations, the background set

is usually the GO annotations of the set of

genes on which the data were collected or

the GO annotations of a set of genes

known in the genome for the species on

which the data were collected. A back-

ground set is not available, however, when

calculating enrichment using disease on-

tologies that have not been used for

manual annotation in a way the Gene

Ontology has. For this situation, there are

two main options: 1) to construct a

reference set programmatically (discussed

in Section 2.3); or 2) use the frequency of

particular terms in a large corpus, such as

the Resource Index, Medline abstracts or

on Web pages indexed by Internet search

engines such as Google.

Multiple hypothesis testing—because

each term is tested for enrichment indi-

vidually—is also unavoidable when per-

forming enrichment analysis with disease

ontologies. However, methods of correct-

ing the resultant increase in false discovery

rates that work in the case of GO based

enrichment analyses are directly applica-

ble when using disease ontologies for such

analyses.

Several researchers have noted that

enrichment analysis is more meaningful

when performed for combinations for

terms [24]. For example, it is biologically

more meaningful to know that a certain
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molecular function in a certain biological process

at a certain cellular location is enriched than

it is to know about each of the terms

separately. Similarly, when using ontolo-

gies other than GO, it is more meaningful

to look for enrichment of combinations

such as certain adverse reactions in a given

disease when treated by a particular drug.

However, exhaustively examining all pos-

sible 3-term combinations of ontology

terms is computationally expensive and

most of the random term combinations

make no biological sense. The identifica-

tion of combinations that are meaningful

and appear at a high enough frequency to

justify their use in enrichment computa-

tions is an exciting and fruitful area of

research.

2.2 DIY Disease Ontology-based
Enrichment Analysis Workflow

We have seen that the progress in the

current state of the art in storing, accessing

and using ontologies for annotation pro-

vides components that allow enrichment

analysis when preexisting annotations do

not exist; as in the case of disease

ontologies. We now discuss a workflow to

conduct enrichment analysis in domains

beyond just expression analysis. A sche-

matic of the workflow is shown in Figure 2.

A user can start with two principal types

of inputs. In the first case, the user already

has the elements of the dataset of interest

annotated with specific ontology terms—

i.e. the user already has a file associating

element identifiers (gene names, patient

ID numbers, etc.) with ontology term

identifiers. In the second case, the user

has associations of identifiers to textual

descriptions instead of ontology terms. For

example, a user might have a file associ-

ating gene IDs with their GeneRIF

descriptions from NCBI. In this situation

a user can invoke the NCBO Annotator

service [25,26] to process these textual

descriptions and assign ontology terms to

the element identifiers (Step 0). Given the

user’s selection of an ontology, the anno-

tator processes the input text (say GeneR-

IFs) to identify concepts that match

ontology terms (based on preferred names

or synonyms). The implementation details

and accuracy of the Annotator service are

described in [25]. The result is a list of

computationally annotated element iden-

tifiers based on the input textual descrip-

tion, and this output is equivalent to the

first input type. Using this step, we’re able

to create ontology-based annotations from

free-text descriptions. Thus, we are no

longer reliant on the availability of ex-

haustive manually-curated annotations,

such as those required with GO-based

analyses.

Step 1 After this optional preprocessing

step, for each ontology term in the input

dataset one can programmatically traverse

the ontology structure and retrieve the

complete listing of paths from the concept

to the root(s) of the ontology using Web

services [27]. A traversal through each of

these paths, essentially recapitulates the

ontology hierarchy. Each term along the

path is associated as an annotation to that

element identifier in the input dataset to

which the starting term was associated

with. This procedure of tracing terms back

to the graph’s root performs the transitive

closure of the annotations over the ontol-

ogy hierarchy. In essence, for each

child-parent (IS_A) relationship, we gen-

erate the complete set of implied (indirect)

annotations based on child-parent rela-

tionships, by traversing and aggregating

along the ontology hierarchy.

Step 2 Once the ontology terms and

their aggregate frequencies in the input

dataset are calculated, we arrive at the step

of determining the meaning or significance

of the results. Enrichment analysis with

GO has benefited from the existence of a

natural and easily defensible choice for a

background set—all of the given organ-

ism’s genes, all genes measured on the

platform, etc. For most of the disease

ontologies we consider, no such compre-

hensive distribution exists [28]; and as

discussed before, for calculating statistical

enrichment, we need the background term

frequency to determine if the aggregate

annotation counts after step 1 are ‘‘sur-

prising’’ given the background. By lever-

aging existing projects and resources, there

are several methods by which a user can

address this problem. We discuss a couple

of heuristic approaches to address this

problem, and in Section 2.3 discuss a

systematic process to create custom refer-

ence sets.

In the first approach, one can access a

database of automatically created annota-

tions over the entirety of MEDLINE

abstracts and use these annotations source

as an approximate proxy for the true

‘‘background distribution’’ frequency of a

specific term. To generate the background

frequency, for a given term X, we retrieve

the text strings corresponding to its

preferred name and all of its synonyms,

and then add up the MEDLINE occur-

rence counts for each of these strings. We

Figure 2. Workflow schematic of enrichment analysis. If the input set has only textual annotations, we first run the Annotator service to create
ontology-term annotations. The annotation counts in the input set are first aggregated along the ontology hierarchy and then compared with a
background set for a statistically significant difference in the frequency of each ontology term. If a significant difference in the term frequency is
found, that term is called ‘‘enriched’’ in the input set of entities. The results of the analysis are returned either as a tag-cloud, a graph, or as an XML
output that users can process as required.
doi:10.1371/journal.pcbi.1002827.g002
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return this number (m) as well as the total

number of entries in the MEDLINE

annotation database (M). The fraction m/

M then represents the background fre-

quency of the term X in the annotated

corpus. Using this frequency we can

compute significant comparative over- or

under-representation in the input dataset.

The second approach uses NCBO’s

Resource Index, which is a repository of

automatically-created annotations. Access

to the Resource Index allows a user to

make the same sort of calculations as with

the MEDLINE term frequencies, but also

offers information on the co-occurrence of

ontological terms in textual descriptions

and annotations of datasets; enabling the

user to quantify the degree to which terms

are independent or correlated in the

annotation space.

Step 3 There are several possible output

mechanisms to such an analysis workflow.

The simplest is a tag cloud, which intui-

tively summarizes the results of the analysis

(Figure 3). The sizes and colors of terms in

the cloud indicate the relative frequency of

the terms offering a high-level overview.

However, a tag cloud’s representative

ability is limited because there is no easy

way to show significance relative to some

expectation, or to show the elements in the

input associated with some term.

The second output format is in XML,

which is amenable to postprocessing by

the user, as needed. The result for each

term contains its respective frequency

information in the input data along with

the counts on which the frequency is

based. The results on each term can also

contain the list of identifiers that mapped

to that term. Each node includes informa-

tion on the level in the ontology at which

the term is found. Using such an output, it

is straight forward to create graphical

visualizations similar to those that most

GO based enrichment analysis tools pro-

vide [29]; see example in Figure 4.

2.2.1. Ensuring quality. For any

such custom analysis workflow it is

essential to set up tests that ensure

technical accuracy before interpreting the

results for scientific significance. To

evaluate technical accuracy, we suggest

that users create benchmark data sets

similar to those of Toronen and

colleagues [30], who created gene lists

with a selected enrichment level and a

selected number of independent, over-

represented classes to compare different

GO-based enrichment methods. In the

case of analyses using disease ontologies,

the benchmark data sets would comprise

gene lists enriched for specific disease

terms, clinical-trial lists enriched for a

specific drug being studied; lists of research

publications that are enriched for known

NCIt terms, and so on. A sample

benchmark list of aging related genes and

their annotations is provided in Section 5.

Exercises. This dataset was compiled by

computationally creating disease term

annotations on 261 human genes

designated to be related to aging

according to the GeneAge database [31].

The annotations of this gene list are

enriched for disorders, such as

atherosclerosis, that are known to be

associated with aging. Such benchmark

data sets can be used to ensure accuracy of

the enrichment statistics as well as to

evaluate the appropriateness of different

sources of reference-term frequencies for

computing enrichment.

The inconsistency of abstraction levels

in ontologies is an often discussed stum-

bling block for enrichment analysis [17].

Two terms at equal depths may not

represent concepts of similar granularity,

creating a bias in the reported term

enrichment. By comprehensively analyz-

ing the frequencies of terms in MEDLINE

and the NCBO Resource Index, a user

can perform a thorough analysis of

dependencies among ontology-term anno-

tations to make existing biases explicit as

well as to define custom abstraction levels

using methods developed by Alterovitz

et al. [32]. The development of methods to

reliably identify the appropriate level of

abstraction at which to report the results of

enrichment analysis is another exciting

and fruitful area of research.

2.3 Creating Reference Sets for
Custom Enrichment Analysis

As discussed before, a key pre-requisite

for performing enrichment analysis is the

availability of an appropriate reference

dataset to compare against when looking

for over- or under-represented terms. In

this section, we describe: (i) a general

method that uses hand-curated GO anno-

tations as a starting point, for creating

reference datasets for enrichment analysis

using other ontologies; and (ii) a gene–

disease reference annotation dataset for

performing disease-based enrichment.

GO annotations are unique because

highly trained curators associate GO

terms to gene products manually, based

on literature review. We describe how,

with the availability of tools for automatic

ontology-based annotation with terms

from disease ontologies, it is possible to

create reference annotation datasets for

enrichment analysis using ontologies other

than the GO—for example, the Human

Disease Ontology.

Unlike GO terms, which actually ap-

pear in the text with low frequency, or

gene identifiers, which are ambiguous,

disease terms are amenable to automated,

term extraction techniques. Therefore,

using tools which recognize mentions of

ontology terms in user submitted text, we

can automatically recognize occurrences

of terms from the Human Disease Ontol-

ogy (DO) from a given corpus of text [28];

the key is to identify the text source that

can be relied upon to recognize disease

terms to associate with genes.

Unlike other natural-language tech-

niques for finding gene–disease associa-

tions, our proposed method uses manually

curated GO annotations as the starting

basis to identify the text source from which

to recognize disease terms. Basically, we

use manually curated GO annotations to

identify those publications that were the

Figure 3. Tag cloud output: An example for the annotations of grants from FY1981 using SNOMEDCT. Blue denotes low-frequency
terms and red denotes highly frequent terms. Many concepts, such as ‘‘neoplasm of digestive tract’’, occur at high frequencies in most years, possibly
denoting the constant focus on cancer research. An appropriate background term frequency distribution is necessary to determine significance of the
high frequency.
doi:10.1371/journal.pcbi.1002827.g003
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basis for associating a GO term with a

particular gene.

Figure 5 summarizes our method. First,

we start with GO annotations, which

provide the PubMed identifiers of papers

based on which gene products are associ-

ated with specific GO terms by a curator.

The annotations essentially give us a link

between gene identifiers and PubMed

articles and only those PubMed articles

that were deemed to be relevant for GO

annotation curation. Next, we recognize

terms from an ontology of interest (e.g.

Human Disease) in the title and abstracts

of those articles. Finally, we associate the

recognized ontology terms with the gene

identifiers to which the article analyzed

was associated.

In order to demonstrate feasibility of the

proposed workflow and to provide a

sample reference annotation set for per-

forming disease ontology based analyses in

the exercises of this chapter, we download

GO annotation files for human gene

products from geneontology.org. These

files are tab-delimited text files that

contain, among other things, a list of gene

identifiers, associated GO terms, and the

publication source (a PubMed identifier)

on the basis of which that GO annotation

was created. We removed all electronically

inferred annotations (IEA) from the anno-

tation file. We also removed all qualified

annotations, such as negated (NOT) ones.

As a result, we obtain a list of publications

and the genes they describe, gene–publi-

cation tuples. In the next step, using the

PubMed identifiers obtained from the GO

annotation files, we fetch each article’s title

and abstract using the National Library of

Medicine eUtils. We save each article’s

title and abstract as a file and annotate it

via the Annotator service using the disease

ontology as the target. Once we have the

publication–disease tuples, we cross-refer-

ence them with the gene–publication

tuples resulting in gene–disease associa-

tions for 7316 human genes.

Out of 25,000 currently estimated

human genes, we are able to annotate

7316 genes (29.2%) with at least one

disease term from the Human Disease

Ontology. Previous methods that use

advanced text mining have been able to

annotate 4408 genes (17.7%) [33]. A study

based on OMIM associated 1777 genes

(7.1%) with disease terms to create a

human ‘‘diseasome’’ [34] and an auto-

mated approach using MetaMap as the

concept recognizer and GeneRIFs as well

as descriptions from OMIM as the input

textual descriptions annotated roughly

14.9% of the human genome with disease

terms [28]. Because the number of human

genes known at the time of each study

varies, we make the comparisons loosely.

In order to validate our background

annotation set, we evaluated our gene–

disease association dataset in several ways

described in [35]. First, we examined a set

of genes related specifically to aging from

the GenAge database [31] for their

coherence in terms of the assigned disease

annotations. Next, we performed disease-

based enrichment analysis on the same

aging related gene set using our newly

created reference annotation set. The

results of the enrichment analysis are

shown in Figure 6 and the analysis itself

is offered as an exercise for the reader in

Section 6. Exercises. What differentiates

our suggested method from other ap-

proaches [28,36] for finding gene–disease

associations is the use of GO annotations

as a basis for identifying reliable gene–

publication records that serve as the

foundation for generating automated

annotations. Furthermore, researchers

can reuse our method to examine func-

tion along other dimensions. For exam-

ple, researchers can use the Pathway

ontology to generate gene–pathway asso-

ciations.

2.3.1 Ensuring quality. When using

an automated annotation process to create

a reference annotation set, there are some

caveats to consider. First, not all ontologies

are equally suited for creating automated

annotations. Second, automated

annotation depends highly on the quality

of the input text corpus. Third, some

errors in annotation are inevitable in an

automated process. We discuss these issues

below.

Using other ontologies. Although we specif-

ically focus on creating annotations with

terms from the human disease ontology,

the method we have devised (Figure 6) can

create annotations with terms from other

ontologies. In the presented workflow, to

obtain a background dataset for enrich-

ment for some ontology other than DO,

researchers would simply configure a

parameter for the Annotator Web service

to use their ontology of choice from

BioPortal. In fact, other researchers have

used a similar annotation workflow to

Figure 4. The figure shows a visualization generated using the GO TermFinder tool. The GO graph layout shows the significantly enriched
GO terms in the annotations of the analyzed gene set. The color of the nodes is an indication of their Bonferroni corrected P-value (orange , = 1e-10;
yellow 1e-10 to 1e-8; green 1e-8 to 1e-6; cyan 1e-6 to 1e-4; blue 1e-4 to 1e-2; tan .0.01).
doi:10.1371/journal.pcbi.1002827.g004

Figure 5. Workflow for generating background annotation sets for enrichment analysis: We obtain a set of PubMed articles from
manually curated GO annotations, which we process using the NCBO Annotator service.
doi:10.1371/journal.pcbi.1002827.g005
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recognize morphological features in textu-

al descriptions of fish species [37].

Not all ontologies are viable candidates

for automatic annotation because not all

ontology terms appear in the text of a

MEDLINE abstract. For example, using

term–frequency counts in MEDLINE

abstracts [38], we calculated that disease

terms are mentioned 46% more often

than GO terms in MEDLINE abstracts.

As another example, only 10% of the

manually assigned GO terms can be

detected directly in the paper abstract

supporting that particular GO annota-

tion. Because disease terms are mentioned

significantly more often than GO terms,

the automated annotation process works

well for annotating genes with disease

ontology terms.

Missing annotations. Out of the 261 aging-

related genes in our evaluation subset, the

Annotator left out 24 genes (9%), for

which we have no disease terms associated

with those genes in our gene–disease

association dataset. These missed annota-

tions provide an opportunity for refining

the annotation workflows to use sources of

text beyond just the papers referenced in

GO annotations.

Annotation errors. Some errors in annota-

tion are inevitable in an automated

process. For example, in the reference

annotation set we created, TP53 was also

annotated, wrongly, to ‘‘Recruitment’’.

Papers that were the basis of creating

GO annotations for TP53 certainly men-

tion the term ‘‘Recruitment’’; however

that term is not a disease. The term

‘‘Recruitment’’ is in the Human Disease

Ontology and is declared to be a synonym

of ‘‘auditory recruitment’’, which does not

have an asserted superclass, or a place in

the hierarchy indicating a possible error in

the ontology. However, because such

errors will affect annotation of both the

set of interest and the reference set equally,

the errors will most likely cancel each

other out when computing statistical

enrichment (Figure 6)—though that is

not guaranteed. Advanced text mining

can potentially provide checks against

such kinds of errors by analyzing the

context in which a potential disease term is

mentioned.

3. Novel Use Cases Enabled

We believe that extending the current

enrichment-analysis methods to ontologies

beyond GO and to extending the method

beyond analyzing gene and protein anno-

tations to any set of entities for term

enrichment will enable several novel use

cases. For example, a user might analyze a

set of papers published in the last three

years in a particular domain (say, signal

transduction) and identify which pathway

was mentioned most frequently. Similar-

ly, a user could analyze descriptions of

genes controlled by a particular ultra-

conserved region of DNA to generate

hypotheses about the region’s function in

Figure 6. Disease terms significantly enriched in annotations of aging-related genes: The tag cloud shows those disease terms in
the annotations of the 261 aging related genes that are statistically enriched given our gene–disease background annotation
dataset. Terms that are significantly enriched appear larger. We used a binomial test to detect enriched disease terms in the aging related gene set.
Note that mis-annotated terms (such as Recruitment) and non-informative terms (such as Disease) are not deemed enriched by the statistical analysis.
doi:10.1371/journal.pcbi.1002827.g006
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specific disease processes. We discuss the

potential of some of the novel use cases

enabled by disease ontology based en-

richment analysis.

Analysis of protein annotations To demon-

strate the feasibility of performing enrich-

ment analysis and recovering known GO

annotations as well as to demonstrate

enrichment analysis with multiple ontolo-

gies, we analyzed a list of 261 known aging

related genes from the GenAge database

[31]. We started by collecting textual

descriptions for UniProt protein entries

corresponding to each human gene in the

GenAge database. The textual descrip-

tions included the protein name, gene

name, general descriptions of the function

and catalytic activity as well as keywords

and GO terms. We processed this text as

described in the workflow in Figure 6 and

created annotations from Medical Subject

Heading (MSH), Online Mendelian In-

heritance in Man (OMIM), UMLS Me-

tathesaurus (MTH) and Gene Ontology

(GO).

We created a background set of anno-

tations on 19671 proteins by applying the

same protocol to manually annotated and

reviewed proteins from SwissProt (Jan

2010 version). We calculated enrichment

and depletion of specific terms, corrected

for multiple hypotheses and obtained a list

of significant terms for all four ontologies.

Not surprisingly, ‘aging’ is an enriched

term. There were several other terms

enriched such as ‘electron transport’

(2.79e-10), ‘protein kinase activity’ (2.8e-

10) and ‘nucleotide excision repair’ (8.78e-

07) which appeared in MSH, MTH, and

GO. The enriched terms also included

aging associated diseases such as ‘Alzhei-

mer’s disease’ (0.01), ‘Werner syndrome’

(5.3e-05), ‘Diabetes Mellitus’ (1.5e-04) and

‘neurodegeneration’ (2.5e-03) from OMIM.

This case study demonstrate that en-

richment analysis with multiple ontologies

is feasible and it enables a comprehensive

characterization of the biological ‘‘signal’’

present in gene/protein lists [39]. For

example, by annotating known protein

mutations with disease terms from the

ontologies in BioPortal, Mort et al. recently

identified a class of diseases—blood coag-

ulation disorders—that were associated

with a 14-fold depletion in substitutions at

O-linked glycosylation sites [20].

Analysis of funding trends To demonstrate

the feasiblity of such analyses in a novel

domain, we processed the funding alloca-

tions of the NIH in fiscal years 1980–1989.

We aimed to identify trends in institutional

funding priorities over time, as represented

by changes in the relative frequencies of

ontology concepts from year-to-year.

Using a database containing the complete

set of grants in this interval—with their

titles, amounts, recipient institutions,

etc.—we selected grants worth over

$1,250,000 (in constant 2008 dollars). We

annotated the titles of these grants with

SNOMEDCT terms and used the anno-

tation sets to generate tag clouds for each

year, such as the one shown in Figure 3 for

year 1981, to create a visual summary of

funding trends on a per year basis. Further

analysis cross-linking annotation on grants

with annotations on publications from

specific institutions can enable compara-

tive analysis of the research efficacy at

different institutions.

Hypothesis generation for Clinical Research

Finally, enrichment analysis can also be

used as an exploratory tool to generate

hypotheses for clinical research by analyz-

ing annotations on medical records in

conjunction with annotation of molecular

datasets. For example, in the case of

kidney transplants, extended-criteria do-

nor (ECD) organs have a 40% rate of

delayed graft function and a higher

incidence of rejection compared to stan-

dard-criteria donor (SCD) kidneys.

Identifying causes of this difference is

crucial to identify patients in which an

ECD transplant has a high chance of

working.

At several research sites, the datasets

collected to address this question comprise

immunological metrics beyond the stan-

dard clinical risk factors, including multi-

parameter flow-cytometric analysis of the

peripheral immune-cell repertoire, geno-

mic analysis, and donor-specific functional

assessments. These patient data sets can be

annotated using automated methods

[8,26] to enable enrichment analysis for

risk-factor determination.

For example, simple enrichment anal-

ysis might allow identification of classes of

drugs, diseases, and test results that are

commonly found only in readmitted

transplant patients. Enrichment analysis

to identify common pairs of terms of

different semantic types can identify

combinations of drug classes and co-

morbidities, or test risk-factors and co-

morbidities that are common in this

population.

4. Summary

Because enrichment analysis with GO is

widely accepted and scientifically valuable,

we argue that the logical next step is to

extend this methodology to other ontolo-

gies—specifically disease ontologies.

Given the recent advances in ontology

repositories and methods of automated

annotation, we argue that enrichment

analysis based on textual descriptions is

possible.

We have systematically discussed how

to accomplish enrichment analysis using

ontologies other than the Gene Ontology

as well as address some of the limitations

of existing analysis methods. For example,

the roughly 20% of genes that lack

annotations can now be associated, via

their GeneRIFs, with terms from disease

ontologies. We have outlined possible

directions of research for overcoming

other limitations such as inconsistent

abstraction levels in ontologies, perform-

ing the analysis using combinations of

ontology terms, and accounting for anno-

tation bias.

In order to perform enrichment analysis

using ontologies other than the GO, a key

pre-requisite is the availability of a back-

ground set of annotations to enable the

enrichment calculation. We have de-

scribed a general method, which uses

hand-curated GO annotations as a start-

ing point, for creating background datasets

for enrichment analysis using other ontol-

ogies—such as the Human Disease On-

tology, for which hand-curated annota-

tions are not available.

To demonstrate the feasibility and

utility of our proposals, we have created

a background set of annotations to enable

enrichment analysis with the Human

Disease Ontology and validated that

background set by using the created

annotations to examine the coherence of

known aging related genes and by per-

forming enrichment analysis on an aging

related gene set from the GeneAge

database [31]. We make the set of aging

related genes and the reference annotation

set available for reader exercises in

enrichment analysis.

We argue that enrichment analysis

using computationally created ontology-

based annotations from textual descrip-

tions is possible, thus introducing

enrichment analysis as a research meth-

odology in new domains such as hypoth-

esis generation for clinical research;

without requiring manually created anno-

tations.

5. Exercises

(1) For the 260 aging related genes in

Dataset S1, perform enrichment analysis

using the Human Disease ontology, using

Dataset S2 as the reference annotation set.

Some considerations while working

through the problem:
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N The genes are listed with their Uni-

protIDs.

N Using the notation in Section 1.1, the

values of N and M are the total

number of unique genes in the aging

set and total set, respectively, and not

the number of unique terms. The

values of n and m are the unique genes

that are annotated with a given term in

the corresponding set.

N When performing the hypergeometric

test, if the test calculates the p value

based on finding a value of n greater

than or less than what was observed

(instead of equal to what was observed),

remember to add or subtract 1 from the

number of genes annotated with a given

term when calculating. If you are using a

function to calculate, refer to the

documentation to understand the input

required.

N Consider from which tail of the

hypergeometric distribution you wish

to calculate the p value.

(2) For the 260 aging related genes,

perform enrichment analysis using

SNOMED-CT (Systematized Nomencla-

ture of Medicine-Clinical Terms). Use the

GeneRIF (Gene Reference into Function)

database as the source text to annotate with

disease terms from SNOMED-CT. Choose

an appropriate reference annotation set

and justify the choice. Some considerations

while working through the problem:

N An index of GeneRIFs, maintained

by the National Center for Biotech-

nology Information (NCBI) and

the National Institutes of Health

(NIH), can be downloaded from here:

ftp://ftp.ncbi.nih.gov/gene/GeneRIF/

N Mapping from UniprotIDs to Gen-

eIDs, which are used in the GeneRIF

database, can be done here: http://

www.uniprot.org/help/mapping.

Note that you will get 261 GeneIDs for

the 260 UniprotIDs.

N Annotation using the National Center

for Biomedical Ontology’s BioPortal

Annotator Service requires obtaining

an API key. This can be done after

registration and going to ‘‘Account’’

where your API key will be displayed:

http://bioportal.bioontology.org/

N Information on the programmatic use of

the BioPortal Annotator as a client can be

found here: http://www.bioontology.

org/wiki/index.php/Annotator_Web_

service. Example code from numerous

languages, including Java, R, Python,

Ruby, Excel, HTML, and Perl, can be

found here: http://www.bioontology.

org/wiki/index.php/Annotator_Client_

Examples. All NCBO REST Web

services require the parameter ‘‘api-

key = YourApiKey’’. It is strongly en-

couraged that all users of the NCBO

Annotator Web service use only the

virtual ontology identifier. To do

so, set the ‘‘isVirtualOntolgyId’’ param-

eter to ‘‘true’’. This will ensure that you

access the version of the ontology that is

actually in the database. Failure to do this

will result in your code breaking every

time the database is updated.

N Output from the annotation service

can be conveniently parsed in XML.

To see an example of what this might

look like, visit http://bioportal.

bioontology.org/annotator. Insert the

sample text or use text of your choice,

makes selection(s) under ‘Select Ontol-

ogies’ and ‘Select UMLS Semantic

Types’ and click ‘Get Annotations’. At

the bottom by ‘Format Results As’ you

can select XML to see the XML tree

structure of the Annotator output.

N The suggested ontology for this exercise

is SNOMED-CT (ontology ID: 1353)

and semantic types Anatomical Struc-

ture (T017), Disease or Syndrome

(T047), Neoplastic Process (T191), and

NCBO BioPortal concept (T999).

N Some processing of the GeneRIF text

may be necessary to prevent errors in

annotation. It is suggested to remove

GeneRIFs with new line characters

(‘\n’) and replace single or double

quotes with white space.

N Many GeneIDs have multiple Gen-

eRIF entries. The user will find more

efficient annotation if all of the Gen-

eRIF entries for a given gene are

concatenated and passed to the anno-

tator instead of annotating individual

GeneRIF entries for the same gene.

N Due to the large number of GeneRIFs,

the BioPortal Annotator may timeout

while the user is looping through genes to

annotate. It is suggested that the annota-

tion is done incrementally and joined or

intermittent saves of the annotations is

done to prevent timely re-annotation.

N The given set of aging genes will have

considerably more annotations terms

per gene than the set of all genes in the

GeneRIF database. This bias should

be a consideration when deciding on

an appropriate M. There are numer-

ous approaches to address this, and a

simple method may be to limit the

reference set of genes M to only those

with at least a given number of

annotated terms. You may also want

to limit the results to only those terms

that appear at least a given amount of

times in the aging gene annotations.

Answers to the Exercises can be found

in Text S1.

Supporting Information

Dataset S1 Data file for Exercise 1

(TXT)

Dataset S2 Data file for Exercise 1

(TXT)

Dataset S3 Data file for Exercise 1

(OBO)

Dataset S4 Additional info on genes

mentioned in S1 and S2. Can be used in

lieu of GeneRIFs in Exercise 2.

(TXT)

Text S1 Answers to Exercises

(DOCX)

Table S1 Exercise 1 analysis results

(CSV)

Table S2 Exercise 2 analysis results

(CSV)
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