
What a Plant Sounds Like: The Statistics of Vegetation
Echoes as Received by Echolocating Bats
Yossi Yovel1*, Peter Stilz1, Matthias O. Franz2, Arjan Boonman3, Hans-Ulrich Schnitzler1

1 Animal Physiology Department, University of Tuebingen, Tuebingen, Germany, 2 University of Applied Sciences, Konstanz, Germany, 3 INCM-CNRS UMR, Marseille,

France

Abstract

A critical step on the way to understanding a sensory system is the analysis of the input it receives. In this work we examine
the statistics of natural complex echoes, focusing on vegetation echoes. Vegetation echoes constitute a major part of the
sensory world of more than 800 species of echolocating bats and play an important role in several of their daily tasks. Our
statistical analysis is based on a large collection of plant echoes acquired by a biomimetic sonar system. We explore the
relation between the physical world (the structure of the plant) and the characteristics of its echo. Finally, we complete the
story by analyzing the effect of the sensory processing of both the echolocation and the auditory systems on the echoes
and interpret them in the light of information maximization. The echoes of all different plant species we examined share a
surprisingly robust pattern that was also reproduced by a simple Poisson model of the spatial reflector arrangement. The
fine differences observed between the echoes of different plant species can be explained by the spatial characteristics of
the plants. The bat’s emitted signal enhances the most informative spatial frequency range where the species-specific
information is large. The auditory system filtering affects the echoes in a similar way, thus enhancing the most informative
spatial frequency range even more. These findings suggest how the bat’s sensory system could have evolved to deal with
complex natural echoes.
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Introduction

The understanding of natural stimuli is critical for understand-

ing the sensory systems that evolved to process them. More than

800 species of echolocating bats continuously emit echolocation

signals and analyze the returning echoes to perceive their

surroundings [1,2]. Without light, natural echoes form a major

part of the sensory world of these bats. As such they may have

played an important role in the design of echolocation signals

during evolution as well as in the design of the vocal apparatus, the

receiving mechanisms and the computational processes in the bat’s

brain. Despite their significant importance, the characteristics of

natural echoes are very poorly understood. In the field of vision,

substantial efforts have been invested in characterizing natural

images [3,4]. These efforts led to a better understanding of the

sensory system (e.g. the retinal ganglion cells or large monopolar

cells in the fly [3–8]). In this study we investigate the acoustical

sensory world of bats. We aim to set a framework to analyze the

statistics of natural echoes as available for echolocating bats.

Although vegetation echoes, on which we focus in this work, are

among the most common echoes bats constantly encounter, they

have been scarcely studied [9,10]. Bats interact with vegetation in

many different ways. In some cases such as feeding from a flower,

landing on a fruit or avoiding collision with a branch, the bat must

accurately localize the position of the relevant part of the plant. In

other cases bats might use plant echoes that were acquired from a

distance of a few meters. Such situations include two of the bat’s

most fundamental tasks: spatial orientation and food acquisition.

In order to navigate from their roost to the foraging sites and vice

versa, bats must use landmarks. Plants present one of the most

common acoustical landmarks and echoes from their edges might

facilitate the route following behavior in bats [11]. Additionally,

certain types of vegetation such as meadows, bushes, trees etc. may

be indicators of specific sources of bat food [12,13]. Some evidence

exists that bats respond to vegetation echoes that are acquired

from a distance of several meters and are able to use them. H-U

Schnitzler and A Denziger [unpublished data] trained Natterer’s

bats to discriminate conifers from broad-leaved trees and observed

that horseshoe bats commuting along a hedge of bushes show

distinct reactions in their echolocation behavior when the

reflection properties of the bushes are changed by covering them

with velvet.

Since plants have complex shapes that cannot be described in

terms of simple geometrical primitives vegetation echoes exhibit

highly complex temporal patterns [14]. From an acoustical point

of view, a plant can be approximated as a stochastic array of

reflectors formed by its branches and leaves. In all the behavioral

tasks mentioned above, bats ensonify the vegetation from a

relatively long distance of up to a few meters. At such a distance

the width of the sonar beam impinging on the vegetation is so
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large that the echo returning from the plant is a stochastic

superposition of numerous reflections from reflectors in a large

variability of sizes, distances and orientations. This variability

makes it futile to rely on characteristic spectral notches created by

interference of overlapping echoes, as is commonly done in the

case of simpler objects [15]. There is also no point in describing

the echo in terms of the positions of single reflectors. This can

change largely depending on the specific specimen and ensonifica-

tion angle. In addition, the large differences between the long

audio streams received by the two ears makes it extremely difficult

in most cases to identify the two corresponding glints of a single

reflector and therefore very hard to localize it. Thus, the observed

ability of bats to use the information contained in these echoes (see

above and [16]) must rely on statistical features. In the following,

we will study some of the statistical properties of vegetation echoes

which might play a role in bat behavior. We will examine both

spectral and temporal statistics using the power spectra of the

echoes and the power spectra of the envelope of the impulse

responses. We will try to connect their statistics to the physical

properties of the plants they were sampled from. We will

investigate the effect of the echolocation system and the early

auditory processing on the statistics of these echoes. Finally, we will

show that these latter spectra can be described by a simple Poisson

model of the spatial reflector arrangement.

Spectral statistics
The filtering characteristics of a reflecting object are known as

its frequency response and mainly depend on its acoustical cross-

section. In a plant covered with leaves, the leaves will reflect most

of the energy emitted by the bats [9]. The cross section of the

leaves will have a major influence on the spectra of the echoes.

Basically (see [17] and [18] for more details), when the

circumference of a spherical reflector is much larger than all of

the wavelengths of the emitted signal, the intensity of the reflection

is equal in all frequencies (optic domain). If the circumference of

the reflector is smaller than the wavelength, however, the intensity

of the reflections decreases rapidly when decreasing the radius of

the sphere (Rayleigh domain). A sphere between these two

domains with a circumference of the same order as the wavelength

will reflect energy according to the ratio between its circumference

and the wavelength (resonance domain). Leaves are not spheres,

but the same reasoning applies to them. Broad-leaved plants will

have less spectral filtering effects on the echoes than small leaves or

needle-like leaves that act as high pass filters. The analysis of the

spectral statistics is therefore straightforward. Since the spectrum

of the emitted signal is always identical in all experiments,

differences between the spectra of different species imply structural

differences and particularly differences in the reflectors cross

section.

Temporal statistics
The spatial arrangement of the reflectors relative to the receiver

determines the temporal statistics of the echoes. The spatial

arrangement of the branches also plays an important role since it

defines the arrangement of the leaves. The analysis of the temporal

statistics of the echoes is not as straightforward as that of the

spectral statistics. There are many possible parameters that

represent the temporal statistics. We chose to use parameters that

are strongly related to the spatial distribution of the reflectors, i.e.,

to the structure of the plant. Additionally, in order to be

comparable to the findings in natural images we use a similar

method to the one used to characterize them [3,4].

We base our analysis on the envelope of the impulse response

[IR, see Figure 1B and 1C] of the echo. The IR is defined as the

output of a system (i.e., the plant) when presented with a Dirac

delta function. The envelope of the IR is directly related to the

spatial arrangement of the reflectors and can be intuitively thought

of as a one-dimensional image of the plant. Peaks in the envelope

correspond to glints returning from reflectors. The time between

them equals twice the time that the signal travels between these

reflectors. The distance between them relative to the receiver is

therefore the distance corresponding to half of this time (according

to the speed of sound). We used the Power Spectral Density (PSD,

Figure 1D) of the envelope to characterize the abundance of

reflectors (glints) at different distances from each other. A PSD

quantifies the amount of periodic structure in a signal over the

entire frequency range. Due to the nature of the Fourier

transform, the PSD of even a single glint will contain energies

spread on the entire frequency range. However a sequence of

repeating glints with a certain time difference between them

constitutes a periodic structure resulting in a higher energy at the

corresponding frequency in the PSD. Each frequency in the PSD

corresponds to a cycle time that can be translated into a

wavelength or a spatial distance according to the speed of sound:

R~
1

2
c:f {1, ð1Þ

where R is the distance between two reflectors; c is the speed of

sound and f is the frequency. We will refer to this as the

wavelength or the scale. The corresponding spatial frequency

equals 1 over the wavelength.

The basic assumption of our analysis is that the energy of a

certain frequency in the PSD correlates with the amount of

reflectors in periodic structures with corresponding spatial

distances between them (Figure 1D). Plants tend to have

characteristic distances that correspond to periodic structures:

Series of leaves, twigs, branches, etc create periodic structure with

typical distances between them. Obviously the distance between

two reflectors in comparison to the receiver depends on the

angular relation of the three. Therefore, when ensonifying a

periodic structure from a limited sector of angles the average PSD

will not present a sharp peak at the corresponding distance, but

rather a broad one around it.

When averaging the spectra of a plant from many different

orientations, particular distances that are very common in the

Author Summary

More than 800 species of bats perceive their surroundings
through echolocation. They emit ultrasonic pulses and
analyze the information conveyed in the echoes returning
from objects in their surroundings. This enables bats to
orient in space, to acquire food and to perfectly function in
complete darkness. In the absence of light, echoes
constitute a major part of the sensory world of bats.
Understanding their characteristics can thus help to shed
light on the echolocation sensory system. The goal of this
work is to study the characteristics of natural plant echoes.
Plant echoes are very abundant in the world of the bats
and are used by them to find food sources and to
navigate. We show that some of the features of the echoes
can be explained from the physical properties of the plant
they were sampled from (e.g., its leaf size and density). We
then analyze the effects of the sensory system on the
echoes and suggest that they improve the representation
of the echoes in a way that enhances the information that
is most reliable for the bats.

Natural Echo Statistics
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plant such as distances between twigs or larger branches will create

broad peaks of energy around the corresponding frequency in the

spectra. These distances are common from any direction the plant

is observed. Uncommon distances, however, will affect the

energies in all frequencies and will be negligible in relation to

the common ones. If no such common distances exist we should

receive a flat spectrum. Naturally there could be periodic

structures that are very salient from a single orientation, but these

clearly do not constitute a reliable feature for characterizing a

plant species.

Throughout the paper we shall refer to spatial frequencies

according to the wavelength of the corresponding periodic

structure of reflectors, which we will refer to as the scale of this

structure.

Modeling the creation of complex echoes statistics
In an attempt to understand the vegetation properties that

determine the temporal statistics of the echoes, we developed a

computer model of the physical processes that underlie their

creation. The model first produces a three-dimensional distribu-

tion of reflectors. Next, an echo is created as a superposition of the

echoes returning from all of the reflectors with delays correspond-

ing to their distance from the receiver (R), and with energies

attenuated according to the geometric attenuation of point

reflectors (1/R4). Modeling reflectors with a different cross-section

would lead to the same temporal statistics but to a different

frequency response.

Assuming that the spatial arrangement of the reflectors has the

most important effect on the temporal statistics, we started with a

Figure 1. The basic assumption. A) The normalized echo train returning when ensonifying an artificial branch with four identical plastic leaved
twigs 15 cm apart from a flat horizontal angle (see illustration above A. a.u – arbitrary units. B) The normalized IR of the echo train presented in A. C)
The normalized envelope of B. Note the clear correspondence to the structure of the plant. The envelope presents three main peaks ,0.9 ms apart
corresponding to the first three twigs. The echo from the fourth twig is much weaker due to occlusion. Additional smaller peaks follow each of the
main ones and correspond to the leaves on the twigs. D) The PSD of C shows a main peak around 14 cm, as expected, with following peaks at the
higher harmonics at, e.g., 7, 3.5 and 1.8 cm. One peak however, at ,5 cm (marked by an asterisk) deviates from this sequence and is probably a result
of the periodic structure created by the leaves on the twigs. The energy (Y-axis) is normalized to a sum of one.
doi:10.1371/journal.pcbi.1000429.g001

Natural Echo Statistics
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simple model that only considers the reflectors distribution and

does not take into account other possible factors such as leaf shape,

orientation, occlusion etc.

The uniform Poisson model is the simplest reflector distribution

we examined. It assumes that the reflectors are evenly distributed

everywhere in the plant according to a Poisson distribution. Thus,

if l is the expected number of reflectors in a cubic volume with a

side length of 0.5 cm (the basic unit of volume we used), then the

probability of finding a single reflector within this volume is given

according to the Poisson distribution:

Pl~l:e{l ð2Þ

We also examined more complicated models with reflectors

distributed in clusters (non- stationary distributions). In our so-

called second-order model, the centers of the clusters are first

determined according to a Poisson distribution as described above.

Next, Gaussian clouds of reflectors are created around these

centers, with a probability of finding a reflector at a radius x from

the center given by the Gaussian probability density:

P xð Þ~ 1

r
ffiffiffiffiffiffi
2p
p :e

{
xffiffiffi
2
p

r

� �2

ð3Þ

r represents the radius of the cluster.

Higher-order models can be created in a sequential fashion by using

the reflectors of the previous order as centers for smaller Gaussian

clouds. These models can be intuitively thought of as a representation

of the arrangement of reflectors in a plant, starting from the gross

skeleton, bifurcating several times and finally ending at the leaves.

Results

Spectral statistics
The average normalized spectra of the echoes for each of the

investigated four species is shown in Figure 2. The differences

between the species can be best understood in terms of the cross

section of their main reflectors – the leaves. Spruce trees show the

largest differences compared to the other plants as expected from

their needle-like leaves. Their spectra contain the least energy in

the low frequencies and the highest energy in the high frequencies

due to their small reflectors. The three broad-leaved species

spectra are similar. In the very low frequencies (,40 kHz)

blackthorn has the lowest relative energy due to its smaller

reflectors (see methods) while beech has the highest. In the

intermediate range (.40 & ,60 kHz) blackthorn shows the

highest energy probably because most of its reflectors are in the

optic region for this range. In the high frequencies (.60 kHz)

beech exhibits the lowest energy while the other two are similar.

Temporal statistics
The relation between the physical plant and its echoes.

* Natural plants: In the second analysis we examine the

normalized spectra of the envelopes of the IRs. When presenting

the averaged spectra on a doubly logarithmic plot, a surprisingly

robust pattern emerges: all of the plant species we examined have

an overall inverted sigmoid shape consisting of three

approximately constant-slope domains in a spatial scale range

corresponding to 1.7–50 cm, (Figure 3). The borders between the

domains can be grossly placed around 10 cm and 3 cm. In spite of

their similar overall shape, the spectra differ in their exact borders,

their typical slopes and their absolute values. The most salient

differences appear in first domain (.10 cm, this is seen better on a

linear plot). We quantified this by calculating the average

difference after normalizing according to the standard deviation.

As discussed in the introduction and as will be demonstrated

below, we hypothesize that these differences are a result of species-

specific structure characteristics at different scales, particularly

related to the frequent occurrence of certain distances between

reflectors. In the two following experiments, we directly examine

this hypothesis.

* Plastic model: To verify our basic assumption that a peak in

the spectrum of the IR envelope corresponds to a common inter-

reflector distance, we examined the echoes from a plastic plant

model consisting of four broad-leaved twigs in a row perpendicular

to the impinging sound. The peak of energy in the mean spectrum

of the plastic branch echo envelope over a variety of ensonification

angles indeed corresponds to the distance between the four twigs

(Figure 4). This confirms our basic interpretation of the IR as a

one-dimensional representation of the spatial arrangement of the

reflectors, at least for such a simple structure when ensonified from

a limited range of angles.

* Leaf density: To confirm that the differences between the

sigmoid curves can be related to the complex spatial structure of

the species, we examined the influence of the leaf density on the

spectra of a Ficus plant. These spectra behaved differently in the

different scale domains when decreasing leaf density (Figure 5). In

the large scale domain (.10 cm) energy was negatively correlated

with leaf density, i.e., there was an increase in the normalized

spectral energy when the leaf density was lower. In the other two

domains (,10 cm) however, there was a positive correlation

meaning that the spectral energy decreased when lowering the leaf

density (Figure 5B). Decreasing leaf density thus induces a shift of

energy from frequencies representing small scale structures to

those representing large scale structures. This confirms our

hypothesis: continuously ripping off leaves in a random fashion

on the one hand decreases the amount of nearby leaves and

therefore the relative energy at small scales. On the other hand it

increases the amount of leaves that are far from each other, and

therefore the relative energy at the large scales.

Figure 2. Mean normalized spectra of the echoes. The spectra
were first divided by the emitted signal spectrum to calculate the
relative reflected energy at each frequency. The result was then
normalized to have a sum of one.
doi:10.1371/journal.pcbi.1000429.g002
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Figure 3. Mean normalized spectra of the IR envelopes of four plant species common in the central European bat environment.
Spectra were normalized to have a sum of one.
doi:10.1371/journal.pcbi.1000429.g003

Figure 4. Mean normalized spectra of the envelope of the echo train returning from an artificial branch. Each branch was composed of
a row of 4 artificial plastic twigs which were 8, or 15 or 20 cm apart. Notice the energy peaks around 8, 15 and 20 cm in the three graphs (marked
with asterisks). Spectra were normalized to have a sum of one. We present the spectra on a linear scale here in order to emphasize the peaks of
energy corresponding to the distance between twigs.
doi:10.1371/journal.pcbi.1000429.g004

Natural Echo Statistics
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McKerrow et al. [9] argued that leaves are the main reflectors

in a plant while branches play only a minor role. Our experiments

show that when decreasing the leaf coverage to nearly zero, the

absolute energy of the echo indeed drops noticeably. In this sense

our results confirm McKerrow’s findings. However, although the

leaves dominate the absolute energy of the echoes, the leaf

arrangement is modulated by the branches. In this indirect way,

branches exert a strong influence on the large scale periodic

structures and their corresponding echo statistics. We therefore

conclude that the leaf coverage amplifies the modulations in

reflector density caused by twigs and branches.

The effect of the emitter on the statistics of plant

echoes. To study the effect of the emitted signal we generated

artificial random IRs with a uniform distribution of distances (in

the range 0–1 m) between the glints. Such an IR represents a plant

that has an equal number of reflectors in all distances from any

point of ensonification. These IRs were then convolved either with

the emitted bat-like signal described above or with an artificial

signal with a spectro-temporal structure that is identical to the

emitted one, but with a constant energy in all frequencies (we call

this the ideal bat sweep). We then ran the artificial echoes created

by this process through the same analysis as the natural ones

(Figure 6). If we used a Dirac delta function as the emitted signal,

we would expect the spectra of the random IRs’ envelopes to be

flat since there is equal energy at all scales. This is almost the case

for the ideal bat sweep with a slightly higher energy at the large

scales. For the real emitted signal however, this bias is much more

salient. The energy at large scales is clearly higher than at the

small ones. The energy at the small scales (,6 cm) decreases

logarithmically resulting in a shape that is very similar to the one

that characterizes the real data.

The effect of the receiver on the statistics of plant

echoes. The temporal analysis presented so far was based on

the envelope of the impulse response of the echoes. In order to

have access to this information bats would have to be able to use a

receiver that is equivalent to a non-coherent matched filter, yet

such ability was never shown. In order to test the effect of the

filtering of early stages in the auditory system on the statistics, we

applied the commonly used auditory system model (see methods)

on the raw echoes (Figure 7). We analyzed the spectra of the raw

output signals of different channels of the auditory system

representing the changes in the membrane potential of the outer

hair cells of each channel. This information is actually not

available to the animal directly. Instead it is encoded in parallel

spike trains in the auditory nerve, which hold much less

information. However, since the translation of the potential

changes into a spike train requires a definition of some arbitrary

threshold, we chose to analyze the entire spectral content of the

raw signals. Our results therefore represent the effect of the middle

ear filtering in comparison to the raw physical echoes on the entire

range of spatial frequencies, some of which can probably not be

resolved by the bat’s auditory system.

The effects of biological filtering are quite salient: it increases

the spectral energy at the large scales and attenuates the energy at

the small scales in all filter-bank channels. With the cutoff

frequency of the leaky integrator used by us (8 kHz) the energy

becomes very small (less than 1% of the total energy) for scales

smaller than ca. 5 cm. A lower cutoff frequency, as suggested by

some authors [17], is expected to make this effect even stronger

such that the energy will become very small for even larger scales.

Modeling the statistics of plant echoes. We tested

different spatial distributions of point reflectors and compared

the temporal statistics of the created echoes to those of the real

data. We used the Kullback-Leibler (KL) divergence as a measure

for goodness of fit. The smaller the KL divergence is, the more

similar the distribution of the artificial data is to the observed one.

The inverted sigmoid shape that characterizes the natural

spectra could be reproduced by the simple uniform model that

treats a plant as a 3D array of point reflectors distributed with a

characteristic distance between them (Figure 8). In the uniform

model, the KL divergence as a function of the distance between

reflectors (d1) was a concave function with a minimum

Figure 5. The effect of the leaf density on the echoes’ spectra. A) Mean normalized spectra of the envelopes of the echo trains of a Ficus plant
with four different leaf densities (out of the eleven measured). Notice the shift of energy from the small scales to the large scales as leaf density
decreases. Spectra were normalized to have a sum of one. B) Pearson correlation coefficient between leaf density and energy. Each point in the graph
presents the correlation between 11 leaf densities and their corresponding energies for the scale given on the X axis. As an example, we marked the
correlation between density and energy at a scale of 27 cm (depicted by an ellipse in A and an asterisk in B) that is almost perfectly negative linear.
doi:10.1371/journal.pcbi.1000429.g005
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Figure 6. The effect of the emitter. Normalized spectra of the artificial IR-envelopes simulated with two different emitted signals aside the real
spectrum of beech. Spectra were normalized to have a sum of one.
doi:10.1371/journal.pcbi.1000429.g006

Figure 7. The effect of the auditory system. A–C) Normalized echo spectra of two species (apple and spruce) after auditory system filtering
compared to the spectra of the same species with no filtering. The system response is represented by the output of three channels with different
center frequencies (Fc) representing the entire frequency range. (A) Fc%30kHz, (B) Fc%55kHz, (C) Fc%100kHz. The energy was normalized to a sum
of one. D) The output of the three channels of apple (appearing in A–C) are overlaid to emphasize the differences between them.
doi:10.1371/journal.pcbi.1000429.g007
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(representing the best fitting model) at the same distance (20 cm)

for all species except apple (Table 1). The second-order model

generated sigmoid curves that fit the real data even better than the

uniform model for all species except apple as is reflected by lower

values of the KL divergence (Table 2). As in the uniform model,

the most suitable parameter set (d1, d2, r2) was identical for all

species except for apple.

Discussion

The spectral echo statistics of the plant species we examined

behaved as expected from the cross sections of their leaves (see

methods). The spectra of the three broad-leaved species were

much more similar to each other than to the single conifer species.

Among them, species with larger reflectors (beech and apple) had

more energy in the low frequencies (,40 kHz) and less energy in

high frequencies (.60 kHz) in comparison to the species with

smaller reflectors (blackthorn). Blackthorn echoes had higher

energy in the intermediate frequencies (.40 & ,60 kHz). Most of

the energy reflected at a certain frequency returns from reflectors

that are in the optic domain for that frequency (see methods).

Figure 8. Modeling echo statistics. A) Mean normalized power spectra of blackthorn and the best fitting uniform model for all scales (d1 = 16 cm).
The shaded area depicts the standard deviation predicted by the model. B) A sample from the uniform 3D Poisson distribution of reflectors with a
distance of d = 16 cm. C) Same as A, for the best fitting second-order model (d1 = 40 cm, d2 = 16 cm, r2 = 50 cm). D) A sample from the 3D distribution
of reflectors created by the second-order model with the same parameters as in C.
doi:10.1371/journal.pcbi.1000429.g008

Table 1. Uniform Model Optimal Parameters.

Plant Species Spruce Blackthorn Apple Beech

d1 (cm) 20 20 16 20

KL divergence 1.5 1.4 2.0 1.5

The minimum KL values and the corresponding distance parameter (d1) for the
uniform model when fitting all scales or only large scales.
doi:10.1371/journal.pcbi.1000429.t001

Table 2. Second-order Model Optimal Parameters.

Plant Species Spruce Blackthorn Apple Beech

d1 (cm) 40 40 40 40

d2 (cm) 4 4 8 4

r2 (cm) 75 75 50 75

KL divergence 0.9 1.2 2.0 1.4

The minimum KL values and the corresponding parameters (d1, d2, r2) for the
second-order model when fitting all scales or only large scales.
doi:10.1371/journal.pcbi.1000429.t002

Natural Echo Statistics
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Apple and beech trees have a larger proportion of reflectors that

are in the optic domain in the low frequencies (,40 kHz) while the

reflectors of black thorn are mainly in the resonance domain at

low frequencies. This results in a higher proportion of energy in

the low frequencies in the echoes of apple and beech trees. The

higher energy in the intermediate frequencies in black thorn is

probably due to the higher proportion of its reflectors in the optic

domain at this range of frequencies. The conifer spectra (spruce)

contain less energy in the low frequencies and more energy in the

high frequencies, compared to the broad-leaved species. For a

detailed analysis on how these differences could be used to

discriminate between species see Yovel et al [18].

The temporal statistics of complex echoes of different plant

species show both robust similarities as well as interpretable

differences between them. On a doubly logarithmic plot the

averaged power spectra of the IR envelopes of all plant species we

examined had an inverted sigmoid curve (Figure 5). The

robustness of this pattern is comparable to that found for natural

images [5]. Control experiments confirmed that distances between

reflectors that are more frequent than others correspond to higher

energy at the corresponding wavelength in the spectra of the IR

envelope. The fine differences between the sigmoid of different

species suggest an interpretable relation between the echo statistics

of a complex plant and the spatial arrangement of its reflectors

(branches and leaves). Among the three broad-leaved trees for

instance, the average spectrum of blackthorn has the least energy

in the first domain (10–50 cm) as one would expect from its bush-

like shape and lack of large, spread-out branches. Spectral features

of an echo convey information on the cross section of a plant’s

reflectors. Since each plant has a wide range of reflector sizes and

since the reflector sizes of different plant species and specimens

largely overlap, these features can only provide limited object

specific information (e.g., for classifying conifers from broad leaved

plants). The ability to use the temporal characteristics of the echo

however, could provide additional information that might enable

classification of plant species or of specific plants (e.g. for landmark

recognition) independently of their size and to a certain extent of

their distance.

The spectrum of a single plant echo envelope is much noisier

than the average sigmoid curves presented in the results (Figure 3).

In order to estimate the minimum number of echoes that have to

be averaged to generate the characteristic sigmoid statistics we

gradually reduced the numbers of echoes (of a single specimen)

and visually tested whether the sigmoid curve was still apparent.

We found that as few as 10 echoes of a single plant (acquired from

adjacent angles as explained in the methods) are sufficient to

generate the sigmoid curve.

When classifying a large object such as a tree while flying past it,

a bat could collect several echoes of the object taking into account

the time needed to pass the object and an average time interval

between emitted calls. Although it has been shown both

theoretically [19] and behaviorally [16] that bats can classify

complex echoes based on a single echo, it is clear that several

echoes might help to emphasize the statistical features that are

advantageous for classification. This was already shown in a

theoretical approached used by P. Stilz (un-published data) and is

supported by our analysis here. In addition the bat might change

its calls (see below) in order to improve the acquired information

after getting a crude representation using the first calls. This is

similar to how the visual system has to saccade in order to focus on

different parts of an object that is being classified.

The effect of the emitter on the statistics of plant

echoes. The analysis of an artificial IR with an equal number

of reflectors in all distances suggests that the logarithmic decrease

of energy at the small scales (,3 cm) mainly results from the

convex energy distribution of our emitted signal. This bias results

from the partial ability to deconvolve an echo with a signal of

limited bandwidth which acts as a low-pass filter. A larger

bandwidth, such as in the ideal bat sweep we simulated, reduces

this bias. The differences between the first two domains (50–3 cm)

however might still be attributed to the different domains of scale

in the plant (e.g, distances between branches vs. distances between

leaves). This implies that most of the information that is relevant

for the bat in the echo, for instance for classification, is created by

large scale structures.

FM Bats will also be subject to a bias of this sort since their

down-sweep is never the ideal one. The matched filter that we

used for this analysis is optimal to resolve temporally adjacent

glints. Thus, even if bats do not perform a direct deconvolution of

the echo (i.e., using a coherent or non-coherent matched filter) the

signal they receive will be biased towards large scale structures.

The extent of the bias will depend on the bandwidth of the calls

they emit. Some bats species can manipulate the band-width of

their calls by up to several tens of percents. In addition different

bat species emit calls with different spectral modulations that

might enhance or attenuate the relevant features of plant echoes’

temporal statistics (see [20] & [21] for a review of bat call

variability). Bats could exploit this range of variability in order to

improve classification performance. An additional important

parameter in this context is the duration of the call. We did not

test the effect of the call duration because the one we used (4 ms) is

typical for bats flying at the relevant distance from vegetation and

a small change of the duration should not have a major influence

on our results.

The effects of the receiver on the statistics of plant

echoes. The effects of the biological filtering of the auditory

system are quite salient: it increases the energy at the large scales

and attenuates the energy at the small scales in all filter-bank

channels. With the cutoff frequency of the leaky integrator used by

us (8 kHz) the energy becomes very small (less than 1% of the total

energy) for scales smaller than ca. 5 cm. Interestingly the scale

range that is amplified by the auditory system coincides with the

range where information for classification should be of the highest

relevance for the bat, due to the limited bandwidth of its emitted

signal (see above).

The increase of energy in the large scales is visible in all filter-

bank channels. Despite this consistent pattern, the different

channels emphasize different features of the echo (Figure 7D).

Generally speaking, channels with higher characteristic frequency

have less energy at large scales and tend to be noisier. These results

can be given several physical reasons: On the one hand high

frequencies are attenuated more than low ones, thus contributing

less to large scale structure and on the other hand low frequencies

suffer more scattering, therefore having less influence on the fine

temporal structure of the echo. The representation of different

features of the echo in different channels, as is done by the

auditory system, might simplify classification by emphasizing the

characteristics of large-scale structures in the corresponding

channels.

Modeling the statistics. A very simple model that only

considers the spatial arrangement of the plant reflectors was able

to reproduce the observed typical sigmoid shape of the IR

envelope spectra. This implies that the spatial arrangement of the

reflectors is indeed the most important factor in shaping the

temporal echo statistics when using a certain emitted call. Several

findings suggest that the model was able to capture the basic

relation between the structure of the plant and its echo statistics.

Increasing the distances between reflectors an adding branch-like
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clusters improved the total fit of the real data and improved the

large scales fit even more (compare KL values in Tables 1 and 2

and see Figure 6).

The optimization of the model parameters clearly revealed the

different nature of apple trees in comparison to the other three

species (Tables 1 and 2). While apple trees were best modeled by a

unique parameter set, spruce, blackthorn and beech were assigned

the same parameters although they have a very different spatial

structure. This means that even the second-order model is not rich

enough to reveal the differences between all four species. Perhaps

this is not very surprising since real plants have much more than

two orders of scale. Testing higher-order models might lead to

different parameters for all species.

Use of plant echo statistics by bats. In previous work, we

already showed that classification of plant species is possible based

on both spectral and temporal features in their echoes [19]. The

goal of this work was not to test classification, but to study the

statistics of natural plant echoes. Classification is certainly one of

the main ways the bats could use the statistics presented here, but

not necessarily for species classification. One could argue that

classifying a specific individual from other individuals of the same

species is sometimes more relevant for a navigating bat (to use as a

landmark for instance).

Our previous work found that spectral cues and low

frequency temporal cues (energy distribution at certain time

points along the echo) are advantageous for a linear classifier of

the sort we were using. The findings in this work provide an

explanatory basis for those conclusions. Here we clearly showed

how the frequency response of a plant and the temporal

modulations created by the large scale structures can be related

to its physical structure.

Conclusions
In this work we demonstrated on the one hand the existence of

an interpretable relation between the physical world of plants and

the statistics of their echoes, and on the other hand found that the

general temporal statistics of all plants follow a common pattern.

The robustness of this pattern suggests that the sensory system

could have evolved in a way that improves the extraction of

relevant information.

Previous examinations of the power spectra of natural images

[3] revealed a similarly surprising regularity: the spatial frequen-

cies of all natural images, regardless of their content, follow a 1/f2

distribution. This finding was then used to further study the

statistics of natural image statistics [4] as well as to explain the

filtering properties of neurons in the early stages of the visual

system [4–8]. One of the main hypotheses that was also partially

confirmed experimentally about the function of the processing in

the early stages of the visual system is that they aim to maximize

some measure of information content in the processed images.

Here, we present the first analogous results on the statistics of

natural plant echoes. These echoes should be of major importance

to more than 800 species of echolocating bats, and might have

influenced the evolution of their auditory system. Our results point

in a similar direction to the findings for natural images. We find

that the information that is enhanced by the bats’ active sensor (i.e.

the emitted signal) and moreover by the filtering of the early stages

of their auditory system coincides with the most reliable domain.

Depending on the angle of ensonification, the depth distance

between two reflectors as measured from the echo will usually

appear to the bat shorter than the actual distance between them.

This effect is similar to objects that are far from each other in 3D

but appear near in a flattened 2D image. In echolocation, the

depth equals the actual distance only if both reflectors are aligned

with the ensonification axis. Small scales are thus over-represented

in the echoes reflecting both real small scale structures and large

scale structures ensonified from a non-perpendicular angle. The

small scale information is therefore less reliable when attempting

to decipher the structure of the plant. Large scale structures

however, represent real large scales and are expected to be less

commonly observed in the echoes. In summary, large scale

structures are most informative, since they convey information on

the differences between plants and also most reliable since they

convey real information about the spatial structure (these two

features are related).

Both the emitted signal and the auditory system function as low-

pass filters in the relevant frequency range, enhancing large scale

information. Interestingly, the scale range they enhance corre-

sponds exactly to the one that is most informative as just described.

The border between the less and more informative structures

(,5 cm) is a result of the model parameters and the emitted signal

we used. In contrast to vision, in echolocation, this border can be

actively altered by the bat. It can be shifted towards smaller scale

structures by increasing the bandwidth of the emitted signal, by

shortening the signal or by using higher frequencies and vice versa

[22]. It can also be shifted towards smaller scales by shortening the

time integration properties of the auditory model. Previous

researchers suggested that the large bandwidth is advantageous

since it provides a wider range of spectral information revealing

the frequency response of an object [15]. Here we show that since

a larger bandwidth reduces the low-pass properties of the

deconvolution, it would be also beneficial for classifying complex

objects.

Methods

All echoes were acquired using a bat-mimicking ultrasonic

system consisting of a sonar head with three transducers (Polaroid

600 Series; 4-cm-diam circular aperture) connected to a computer.

The sonar head was mounted on a portable tripod. Its central

transducer served as an emitter (simulating the bat’s mouth) and

the two side transducers functioned as receivers (simulating the

ears). Backscatter received from the emitted signal was amplified,

A/D converted, and recorded by a computer. The emitted signal

resembles a typical frequency-modulated bat call in terms of its

duration and frequency content (Figure 1A). The emitted signal

(Figure 1D) consisted of a four millisecond linear down-sweep from

140 to 25 kHz. We excited the emitter with a constant frequency

distribution, but due to the frequency response of the speakers a

uni-modal response function was created with a maximum around

50 kHz, providing an intensity of 112 dB (SPL) at the maximal

frequency at a distance of 1 m from the emitter. Most of the signal

energy was contained in the frequency band between 25–100 kHz.

The combined frequency response of our emitter and receivers

resulted in a frequency response that resembles a typical

frequency-modulated bat call. In contrast to bats, our emitted

sound pulse had a rather narrow beam width, with its first null at

50 kHz occurring around 15u, narrower than known for bat calls

[23]. The recorded back scatter or echo (both terms will be equally

used in this paper, Figure 9B) was digitized at a sampling rate of

1 MHz with 12 bit resolution.

Field recordings
We recorded the echoes of four plant species, representing

common species in the environment of the bats of central Europe.

We recorded 50 specimens (always in the field) of each of the

following plants:
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N Apple tree (Malus sylvestris) – This species has large leaves (with

an average length of ,8 cm), in a spacious arrangement. The

trees were covered with fruit.

N Norway spruce tree (Picea abies) – This was the only conifer tree

that was ensonified. Its branches spread homogenously and are

evenly covered with needles (very small reflectors in compar-

ison to broad-leaved species). We refer to it as spruce

throughout the paper.

N Common beech tree (Fagus sylvatica, referred to as beech

throughout the paper) – The species is characterized by large

flat leaves (with an average length of ,8 cm) that are usually

arranged in the same plane on each branch.

N Blackthorn tree (Prunus spinosa) – This species has smaller

leaves than the other broad-leaved trees (with an average

length of ,3 cm), without any specific orientation. This

species is usually found in a hedge formation rather than as a

single tree.

Each specimen was recorded from 25 different aspect angles on

an equally spaced 565 grid centered at the horizon and the

midline of the tree (Figure 9A). This was done by starting at the

topmost left point of the grid, 10 degrees above the horizon and 10

degrees left to its midline and then turning the sonar head to the

right in sequential steps of 5 degrees along the 5 points of the first

row. Next the head was lowered by 5 degrees and the procedure

was repeated, this time towards the left. This procedure provided

us with 1250 echoes for each species from each ear. The distance

between plant and tripod was always 1.5 m, and the height of the

tripod above ground was set to 1.35 m. The same echo database

was also used in our previous study on ultrasonic plant

classification [18].

Indoor experiments
To understand the relationship between plant structure and

corresponding echoes we conducted two indoor experiments:

a) As a very simple test of our assumptions we ensonified a

plastic model plant that was composed of four identically

leaved twigs mounted on a main stem (,1.5 m long,

Figure 9B). We repeated this experiment, changing only the

distance between the twigs. Each branch (defined by its

specific twig distance) was ensonified from a single elevation

angle, ca. 10 centimeters higher than the branch and almost

perpendicular to the surface of the twigs, and from six

approximately equally spaced azimuth angles covering a total

sector of ,45 degrees around the branch.

b) In the second experiment we ensonified a single potted plant

of the species Ficus benjamina while randomly ripping off its

leaves, i.e. decreasing its leaf density (Figure 9C). The leaf

density was decreased in 11 steps starting from 100% leaf

coverage going down to ,0%. At each step, the plant

(,2.5 m high, ,1.5 diameter, initially with ,1200 leaves)

was ensonified from the horizontal plane (parallel to the floor)

and from 36 approximately equally spaced azimuth direc-

tions surrounding it.

Figure 9. Summary of methods. A) Field data acquisition setting. The grid of points denotes the 25 acquisition positions used for each specimen.
B) Ensonification of a plastic model plant from a single elevation angle and 5 horizontal angles. C) Ensonification of a Ficus plant with decreasing leaf
density from 36 angles around the plant. Examples of 100% and 5% leaf coverage are shown. C) Time signal and spectrogram of the emitted signal.
doi:10.1371/journal.pcbi.1000429.g009
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Spectral analysis
All signal processing was performed with Matlab 7.0. To

analyze the spectra of the echoes their power spectral densities

(PSD) were computed using Welch’s method with a 5 ms window

and an overlap of 50%. The PSDs (referred to as spectra) were

normalized to a sum of one so that the value for each frequency

corresponds to the proportion of energy in this frequency. Since

the spectrum of the emitted signal was always identical, differences

between the spectra of different species imply structural differences

and particularly differences in the cross section of the reflectors

[see 17 for a general review and 18 for a specific discussion of these

species).

Temporal analysis
In order to investigate the relationship between the spatial

arrangement of the plant reflectors and the corresponding echo, all

echoes went through the following analysis steps:

1) Cross-correlation with the emitted signal to approximate the

IR of the plant.

2) A Hilbert transform for calculating the envelope of the IR.

3) The PSD of the envelope using Welch’s method with an 8 ms

window for the long outdoor echoes and a 4 ms window for

the indoor echoes and a 50% overlap for both. The PSDs

were observed only down to a scale of ,1.5 cm since, as is

demonstrated in the discussion smaller scales are highly

influenced by artifacts. The spectra were normalized to a sum

of one as in the PSDs of the plant echoes. This analysis

method enables an observation of the echo-structure relation

independently of the cross section of the reflectors. Notice

that while for the spectral analysis we calculated the PSDs of

the original echoes, for the temporal analysis we did so for the

envelope of the IR.

Modeling temporal statistics
The uniform model. The uniform model creates a three-

dimensional Poisson distribution of point reflectors (simulations

were done in Matlab 7.0). It has two parameters: 1) d1 - the typical

distance between the reflectors which can be easily translated into

the l parameter of the Poisson distribution, depicting the

probability to find a reflector in a cubic volume with a side

length of 0.5 cm (the basic unit of volume we used). 2) L – the side

length of the entire cube ensonified by the signal. The first

parameter was fit (see below) while the second was estimated from

the time duration of the original echoes.

The clustered models. These models include more complex

non-stationary distributions in which point reflectors are clustered

in Poisson clouds. Due to the high complexity of the calculation of

these models we only tested second-order models in which

spherical Poisson clusters of reflectors were distributed around

the centers found according to the uniform model. Higher-order

models can be derived in a sequential fashion based on lower-

order models by distributing spherical Poisson clusters of reflector

around the reflectors of the lower level. Each order of the n-order

models adds two parameters to the two initial ones of the uniform

model: ri - the radius of the spheres of the i’th order and di-

defining the typical distance between the reflectors in each cloud at

level i (for the clusters i.1).

Optimization of model parameters. We tested models

with different sets of parameters (d, r) spread along the entire

range of physical plausible values (see below). 500 echoes were

simulated for each set of parameters. The spectra of the echoes

were computed in the same way as for the real echoes. We used

the Kullback-Leibler (KL) divergence to choose the model that

best fits the observed real data. Assuming that the different

frequencies (scales) are independent we used the KL divergence

to compare the probability distribution functions (PDF) of the

model and the real data at each frequency. The PDFs of the

frequencies of single spectra were highly non-gaussian in all

frequencies (both for real data and models) and were therefore

estimated by a histogram with 8 equally spaced bins. The

similarity between model and measurement was then calculated

according to:

Dkl Pm Prkð Þ~
X

i

X
j

Prij
:log

Prij

Pmij

, ð4Þ

where Dkl is the sum of the KL divergence for the tested scale

range (i). Pm is the PDF of the model spectra and Pr is the PDF

of the measurement spectra. The ith and jth index of both Pm

and Pr represents the jth histogram bin of the ith frequency.

The KL divergence measures the expected difference in the

number of bits required to code samples from Pm when using a

code based on Pr. This is known as the relative entropy between

the two PDFs and is an estimate of the difference between the

two distributions. According to Gibbs’ inequality, the KL

divergence always satisfies

Dkl Pm Prkð Þ§0 ð5Þ

where equality occurs only if Pm~Pr. The model with the

lowest Dkl Pm Prkð Þ value was therefore chosen as the one that

best fits the real data. We tested the fit of the models to the data

in the scales 45.i.3 cm since the smaller scales already

correspond to the falling tail of the sigmoid (Figure 3) and are

probably less informative as described in the discussion. We used

the following values for the different parameters: For the

uniform model we tested the following parameters: d1 = [4, 8,

12, 16, 20, 30]. For the second-order model we tested the

combinations of d1 and d2 as specified in Table 3.

Auditory system model. To compare our results to the

statistics of the echo after going through the biological filtering we

applied the standard auditory system model (see [24] for the full

details). Basically this model first applies a 60-channel constant Q

gamma-tone filter-bank on the echo. Next the response of each of

the filter-bank channels is half-wave rectified and subsequently

compressed to mimic the first transformations occurring in the

inner hair cell. Finally a leaky integrator is used with a fourth-

order low pass filter with a cutoff frequency of 8 kHz removing all

phase information in the ultrasonic range. We then calculated the

spectra of the outputs of this process in the same way as we did for

the envelopes of the echo IRs. Note that this provided us with 30

spectra for each echo (one for each channel in the frequency range

of the emitted signal).

Table 3. Second-order Model Tested Parameters.

d1 [cm] 60 60 60 60 40 40 40 20 20 10

d2[cm] 30 16 8 4 16 8 4 8 4 4

Combination of distance parameters (d1, d2) used for the second-order model.
Each distance combination was tested with the following cluster radii (r2): 25, 50
or 75 cm.
doi:10.1371/journal.pcbi.1000429.t003
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