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Abstract

Computational studies as well as in vivo and in vitro results have shown that many cortical neurons fire in a highly irregular
manner and at low average firing rates. These patterns seem to persist even when highly rhythmic signals are recorded by
local field potential electrodes or other methods that quantify the summed behavior of a local population. Models of the
30–80 Hz gamma rhythm in which network oscillations arise through ‘stochastic synchrony’ capture the variability observed
in the spike output of single cells while preserving network-level organization. We extend upon these results by
constructing model networks constrained by experimental measurements and using them to probe the effect of
biophysical parameters on network-level activity. We find in simulations that gamma-frequency oscillations are enabled by a
high level of incoherent synaptic conductance input, similar to the barrage of noisy synaptic input that cortical neurons
have been shown to receive in vivo. This incoherent synaptic input increases the emergent network frequency by
shortening the time scale of the membrane in excitatory neurons and by reducing the temporal separation between
excitation and inhibition due to decreased spike latency in inhibitory neurons. These mechanisms are demonstrated in
simulations and in vitro current-clamp and dynamic-clamp experiments. Simulation results further indicate that the
membrane potential noise amplitude has a large impact on network frequency and that the balance between excitatory
and inhibitory currents controls network stability and sensitivity to external inputs.
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Introduction

The 30–80 Hz gamma rhythm is among the most prominent

and ubiquitous forms of rhythmic activity in the brain [1–5]. Since

its discovery, a multitude of functions and mechanisms have been

ascribed to this form of oscillatory behavior. The gamma rhythm

has been proposed as a requirement for sensory binding, attention,

and memory formation [6–10], and disruption of the rhythm has

been suggested as a critical factor in pathologies such as

schizophrenia, autism, and epilepsy [11–15]. The gamma rhythm

has been modeled extensively and multiple mechanistic hypotheses

have been introduced to explain its origin [15–17].

Mechanistically, the gamma rhythm was initially studied experi-

mentally in networks of pharmacologically-isolated interneurons [18].

These experiments motivated theoretical studies that sought to

connect previous results concerning synchronization mediated by

inhibition [19] with experimental observations on the gamma rhythm

[18,20–24]. These studies were successful in devising a mechanistic

explanation of synchronization among interneurons and helped

explain several key experimental findings, such as the observation

that the frequency of network oscillations is closely related to the

decay kinetics of inhibition and the conditions under which the

oscillation may be stabilized in the presence of heterogeneity. While

these and other findings seem to be generalizable to gamma rhythms

arising by other mechanisms, it has become clear that this rhythm

depends on other cell populations in addition to interneurons under

many experimental conditions [16,17].

A synchronization mechanism solely involving interneurons

may straightforwardly be adapted to networks including excitatory

neurons if one assumes that the excitatory neurons are simply

entrained by inhibition from an oscillating interneuronal popula-

tion. However, experimental studies have established that gamma

rhythms may be generated by inducing activity in excitatory cells

[25], that the gamma period is correlated with excitatory neuron

activity levels [26], and that gamma rhythms persist in the absence

of GABAergic transmission between interneurons [27]. While

interneurons are still thought to play a vital role in gamma

rhythmogenesis, these findings imply that principal neurons are

not simply entrained by an oscillating interneuron population.

A separate series of studies of the gamma rhythm and other

rhythms in vivo and in vitro indicate that both excitatory and

inhibitory cells fire sparsely and irregularly, even when robust

oscillations are recorded at the population level [28–34].

Therefore, it is likely that gamma rhythmogenesis might be

difficult to explain through the study of synchronization in neurons

oscillating in a periodic manner. An attractive alternative
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hypothesis is that the gamma rhythm arises as a consequence of

coherent feedback inhibition recruited by irregularly-firing

excitatory neurons. This ‘stochastic synchrony’ has been studied

in reduced, idealized networks [35,36] and in large-scale detailed

models [37,38] and can possess fundamentally different dynamical

structures at the network level [39].

In this study, we use experimental measurements of the

biophysical properties of excitatory and inhibitory neurons to

constrain simulated networks generating a gamma rhythm

through a stochastic feedback mechanism. Our simulations suggest

that the period of the gamma rhythm and its stability are strongly

dependent upon the balance and variability of excitatory and

inhibitory synaptic conductances impinging upon neurons in the

local network. We provide an explanation of these dependencies

and we present evidence that the stability and sensitivity of the

network to external input is controlled by the balance of excitation

and inhibition in magnitude and in time.

Materials and Methods

Ethics statement
All experimental protocols were approved by the University of

Utah Institutional Animal Care and Use Committee.

Tissue preparation
Coronal sections of neocortex were prepared from 15- to 28-day

old G42 mice in which GABAergic, parvalbumin-positive

interneurons are fluorescently labeled with GFP. G42 transgenic

mice [40] were obtained from The Jackson Laboratory (http://

www.jax.org). All chemicals were obtained from Sigma-Aldrich

unless otherwise noted. After the animals were anesthetized with

isoflurane (VETone) and decapitated, brains were removed and

immersed in 0uC artificial CSF (aCSF) consisting of the following

(in mM): 125 NaCl, 25 NaHCO3, 25 D-glucose, 2.5 KCl, 2

CaCl2, 1.25 NaH2PO4, and 1 MgCl2 (buffered to pH 7.4 with

95% O2/5% CO2). Coronal slices were cut to a thickness of

400 mm with a vibrating microtome (VT1200; Leica Microsys-

tems). Slices were then incubated at room temperature (,22uC) in

oxygenated aCSF for 60 min. After the incubation period, slices

were moved to the stage of a custom-built microscope equipped

with brightfield and two-photon fluorescence optics. Slices were

bathed in standard aCSF with 10 mM CNQX and 50 mM

picrotoxin added in some experiments to block synaptic activity.

All recordings were conducted at 33uC.

Electrophysiology
Electrodes were drawn on a horizontal puller (P97; Sutter

Instruments) and filled with an intracellular solution consisting of

the following (in mM): 120 K-gluconate, 20 KCl, 10 HEPES, 7

diTrisPhCr, 4 Na2ATP, 2 MgCl2, 0.3 Tris-GTP, 0.2 EGTA and

0.6% biocytin (Invitrogen) by weight, and buffered to pH 7.3 with

KOH. Final electrode resistances were between 3 and 4 MOhms,

with series access resistance values between 4 and 15 MOhms.

Electrophysiological recordings were performed with a current-

clamp amplifier (Multiclamp 700A; Axon Instruments), and data

were acquired using RTXI (www.rtxi.org).

Fast-spiking interneurons were patch-clamped under fluorescent

guidance with a custom-built two photon microscope (Fig. 1A)

while pyramidal neurons were selected based on their location in

layer II/III, pyramidal-shaped somata, and the presence of a large

apical dendrite projecting towards layer I. The identity of all cells

was confirmed with post-hoc morphological analysis. All (28/28)

recorded cells that expressed GFP displayed a fast-spiking

electrophysiological phenotype and were found to have morphol-

ogy consistent with basket interneurons.

Morphological reconstructions
All intracellular recordings were performed with intracellular

fluid containing 0.6% biocytin by weight. After cells were allowed

to passively fill with biocytin for one hour, they were fixed in 4%

paraformaldehyde. To visualize neurons, slices were washed three

times for 15 minutes in 0.1 M Phosphate buffered saline (PBS) and

then incubated for three hours in a solution containing 1 mg/mL

streptavidin-Alexa 488 or 532 (Invitrogen) and 0.75 mL/100 mL

Triton X-100 (Sigma) in PBS. After another three washes for

15 minutes each in PBS, slices were mounted on microscope slides

in Mowiol. Slides were imaged on a custom built 2-photon

microscope. Images stacks were processed with ImageJ (NIH) and

processes were traced with the Neuromantic tracing software

(http://www.reading.ac.uk/neuromantic/).

Protocols
For dynamic-clamp experiments, the current-clamp amplifier

was driven by an analog signal from an 686 personal computer

running Real-Time Application Interface Linux and an updated

version of the Real-Time Linux Dynamic Clamp [41] called Real-

Time eXperimental Interface [RTXI; 42,43]. The sample rate of

the dynamic clamp system was set to 10 kHz. Data were low-pass

filtered with a cutoff frequency of 4 kHz and collected at 10 kHz.

All stimulation protocols were created using custom plug-in

extensions of RTXI. Frequency-current relationships, input resis-

tance, and membrane time constants were determined using a

sequence of square current steps lasting 2 seconds with an inter-step

interval of 6 seconds. Membrane time constants and input

resistances were measured in each cell using subthreshold current

steps. To measure membrane impedance spectra, 10 second-long

noisy current stimuli were applied to each cell with five repetitions at

a constant holding potential of 260 mV. These stimuli were

constructed in the frequency domain with a flat frequency spectrum

between zero and 200 Hz and random phases. The amplitudes of

these stimuli were adjusted to produce a 5 mV peak-to-peak

fluctuation in membrane potential to minimize membrane

Author Summary

The gamma rhythm is a prominent, 30–80-Hz EEG signal
that is associated with cognition. Several classes of
computational models have been posited to explain the
gamma rhythm mechanistically. We study a particular class
in which the gamma rhythm arises from delayed negative
feedback. Our study is unique in that we calibrate the
model from direct measurements. We also test the model’s
most critical predictions directly in experiments that take
advantage of cutting-edge computer technologies able to
simulate ion channels in real time. Our major findings are
that a large amount of ‘‘background’’ synaptic input to
neurons is necessary to promote the gamma rhythm; that
inhibitory neurons are specially tuned to keep the gamma
rhythm stable; that noise has a strong effect on network
frequency; and that incoming sensory input can be
represented with sensitivity that depends on the strength
of excitatory-excitatory synapses and the number of
neurons receiving the input. Overall, our results support
the hypothesis that the gamma rhythm reflects the
presence of delayed feedback that controls overall cortical
activity on a cycle-by-cycle basis. Furthermore, its frequen-
cy range mainly reflects the timescale of synaptic
inhibition, the degree of background activity, and noise
levels in the network.
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Figure 1. Model neurons were constructed to match electrophysiological data. A Fast-spiking interneurons in layer II/III of primary
somatosensory cortex were patched in G42 mice that express green fluorescent protein (GFP) in a subpopulation of parvalbumin-positive
interneurons. A GFP+ neuron before (i) and after (ii) a recording in the whole-cell configuration was initiated with a long wavelength fluorophore
included in the intracellular solution. B Morphology (i) and response to constant current steps (ii) of a recorded layer II/III regular-spiking pyramidal
(RSP) neuron. (iii) Response to constant current steps of model regular-spiking pyramidal neuron. C Morphology (i) and response to constant current
steps (ii) of a recorded fast-spiking (FS) interneuron. (iii) Response to constant current steps of model fast-spiking interneuron. D Input resistance (i),
time constant (ii), and subthreshold impedance spectra (iii) of fast-spiking interneurons and regular-spiking pyramidal neurons from in vitro
experiments (black, green) and model simulations (blue, red). E Firing frequency-current relationships of RSP neurons (experiment, black; model,
blue) and FS interneurons (experiment, green; model, red) in the non-adapted (median of first five interspike intervals; upper line) and fully-adapted
(median of last five interspike intervals; lower line) conditions.
doi:10.1371/journal.pcbi.1002354.g001
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nonlinearities. In experiments measuring membrane responses to

simulated inhibitory post-synaptic conductances, bi-exponential

conductance waveforms (as in Equation 20) with a rise time constant

of 1 ms and reversal potential of 275 mV were applied every

500 ms to a quiescent cell, either simulated (low-conductance state)

or biological, while varying the decay time constant, amplitude, and

tonic background conductance in random order. Simulated

inhibitory conductances with each combination of parameters were

applied 6 times to each cell. In order to measure spike latencies,

spike threshold was first determined and then each cell was held

approximately 10 mV below spike threshold with applied DC

current. Simulated post-synaptic conductances with a 1 ms rise time

constant, 5 ms decay time constant, and a reversal potential of

0 mV were applied every two seconds with varying amplitude. The

‘threshold’ conductance, Gth, was determined as the minimum

amplitude needed to elicit a spike and waveform amplitudes were

varied over the range of 0.5Gth to 3.0Gth in steps no larger than

0.15Gth. All amplitudes were presented 6 times in randomized order.

Model cells
Simulated regular-spiking pyramidal neurons were modeled

using a version of the adaptive exponential integrate-and-fire

model [44] modified to include an extra time scale of spike-rate

adaptation. The current balance equation for the model was:

C
dV

dt
~{gl V{Elð ÞzglDt exp

V{Vt

Dt

� �

{w1 V{Elð Þ{w2 V{Elð ÞzIapp

{se V{Eeð Þ{si V{Eið Þ{Isyn

ð1Þ

Equation 1 is similar to the leaky integrate-and-fire model with

several extra terms. The exponential term gives rise to action

potentials with sharpness determined by Dt. The variable w1

represents spike-dependent and spike-independent adaptation on a

fast time scale. This process prevents the first several ISIs from

becoming two short in response to large step currents and prevents

unrealistically-high instantaneous firing frequencies in response to

strong inputs. In contrast, w2 represents purely spike-dependent

adaptation at longer time scales. This slow adaptation reproduces

the gradual lengthening in ISIs observed in layer II/III pyramidal

neurons in response to the first several hundred milliseconds of a

step input (Fig. 1B ii). The adapted and unadapted firing

frequency-current relationships measured in layer II/III pyrami-

dal neurons (Fig. 1E) could not be reproduced without including

two time scales of adaptation in the model. The terms w1 and w2

were determined by the differential equations:

dw1

dt
~ a V{Elð Þ{w1ð Þ=tw1

ð2Þ

dw2

dt
~{w2=tw2

ð3Þ

When voltage exceeded the reset threshold of +20 mV, the state

variables were modified in the following manner:

If Vw20 mV , then

V?Vreset

w1?w1zb1

w2?w2zb2

8><
>: ð4Þ

The variables se and si in Equation 1 represent random conductance

fluctuations which were modeled as Ornstein-Uhlenbeck processes

[45,46] and evolved according to the update rule:

sx tzDtð Þ~gavg,xz s(t){gavg,x

� �
exp {

Dt

tx

� �
zAx

:rnorm ð5Þ

Ax~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxtx

2
1{ exp

{2Dt

tx

� �� �s
ð6Þ

where rnorm was a normally-distributed random variable with zero

mean and unitary standard deviation. gavg,x represents the mean

conductance of a process, x, tx represents the time scale of decay of

fluctuations in this conductance, and Dx represents the magnitude of

fluctuations in the conductance.

Synaptic current, Isyn, was calculated according to the equation:

Isyn~
X

i

gsyn,i(V{Esyn,i) ð7Þ

Where i enumerates all synapses impinging upon the neuron, Esyn,i

is the reversal potential of synapse i, and gsyn,i, given by Equation

20, is the conductance of the synapse.

Parameters of the model are given in Table 1.

Cortical fast-spiking interneurons were modeled using a

published conductance-based model [47] with modifications to

fit our experimental measurements. The current-balance equation

for the model was:

C
dV

dt
~{�ggNam?h V{ENað Þ{�ggKdrn

2 V{EKð Þ

{gd
a3b V{EKð Þ{gl V{Elð Þ{wzIapp

{se V{Eeð Þ{Si V{Eið Þ{Isyn

ð8Þ

The model included a fast, inactivating sodium conductance, a

delayed rectifier potassium conductance, a D-type potassium

conductance, and a leak conductance, each of which were

modeled according to the formalism of Hodgkin and Huxley

[48]. Additionally, the model included a simple adaptation

variable w, which evolved in analogous fashion to the variable

w2 described in Equation 3. The variables se and si were as given in

Equations 5 and 6. The equations governing the transient sodium

conductance were as follows:

m? Vð Þ~ 1z exp {
V{hm

sm

� �	 
{1

ð9Þ

dh

dt
~ h? Vð Þ{h½ �=th Vð Þ ð10Þ

h? Vð Þ~ 1z exp {
V{hh

sh

� �	 
{1

ð11Þ

th Vð Þ~0:5z14 1z exp {
V{hth

sth

� �	 
{1

ð12Þ

where the activation variable, m, was an instantaneous function of

Cellular Biophysics and Gamma Rhythmogenesis
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voltage. The gating variables of the delayed rectifier potassium

conductance evolved according to:

dn

dt
~ n? Vð Þ{n½ �=tn Vð Þ ð13Þ

n? Vð Þ~ 1z exp {
V{hn

sn

� �	 
{1

ð14Þ

tn Vð Þ~ 0:087z11:4 1z exp
Vz14:6

8:6

� �� �{1
( )

| 0:087z11:4 1z exp {
V{13:0

18:7

� �� �{1
( )

| 1z
Vz40

80

� �
Vv{40ð Þ

	 

ð15Þ

The model also included a D-type potassium conductance. It was

described by:

da

dt
~ a? Vð Þ{a½ �=ta ð16Þ

db

dt
~ b? Vð Þ{b½ �=tb ð17Þ

a? Vð Þ~ 1z exp {
V{ha

sa

� �	 
{1

ð18Þ

b?(V )~ 1z exp {
V{hb

sb

� �	 
{1

ð19Þ

ta and tb were 2 ms and 150 ms respectively. Again, all model

parameters are given in Table 1. Model interneurons were

Table 1. Synapse and model parameters.

RSP neuron model Value Units FS interneuron model Value Units

C 0.15 nF C 1.0 mF/cm2

gl 4.5 nS �ggNa 135 mS/cm2

El 265 mV �ggKdr 675 mS/cm2

Dt 0.8 mV �ggd 0.3 mS/cm2

Vreset 253 mV gl 7.0 nS

Vt 252 mV ENa 50 mV

a 20.00005 nS/mV EK 270 mV

tw1 20 ms El 265 mV

b1 0.05 nS hm 224 mV

tw2 550 ms sm 11.5 mV

b2 0.0015 nS hh 258.3 mV

sh 26.7 mV

gavg,e-low 561024 nS hth 260 mV

gavg,i-low 261023 nS sth 212 mV

gavg,e-high 10.8 nS hn 21.24 mV

gavg,i-high 2.7 nS sn 29.8 mV

De 561024 nS2/ms ha 250 mV

Di 261023 nS2/ms sa 20 mV

te 2 ms hb 270 mV

ti 8 ms sb 6 mV

Ee 0 mV tw 500 ms

Ei 275 mV

gavg,e-low 561024 nS

Synapse parameters Value Units gavg,i-low 261023 nS

trise,E 0.5 ms gavg,e-high 12.0 nS

trise,I 1.0 ms gavg,i-high 3.0 nS

tfall,E 2.5 ms De 561024 nS2/ms

tfall,I 5.0 ms Di 261023 nS2/ms

Esyn,EE 0 mV te 2 ms

Esyn,EI 0 mV ti 8 ms

Esyn,IE 265 mV Ee 0 mV

Esyn,II 255 mV Ei 275 mV

doi:10.1371/journal.pcbi.1002354.t001
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represented as isopotential spheres with a radius of 18 mm so that

input resistance, capacitance, and applied current values in non-

normalized units could be compared to the analogous experimen-

tally-relevant quantities. The value of 18 mm was chosen so that

model cells and experimentally-recorded interneurons had similar

input resistance and time constant values.

Network architecture
Simulations consisted of two populations of 400 excitatory

regular-spiking pyramidal (RSP) neurons and 100 inhibitory fast-

spiking (FS) interneurons. Connection probabilities, pij, between a

presynaptic neuron i and a postsynaptic neuron j were determined

by the identity of pre- and post-synaptic cells according to

pEE = 0.2, pII = 0.4, pEI = 0.4, and pIE = 0.4 where E represents an

excitatory cell and I represents an inhibitory cell. The connectivity

was sparser between excitatory neurons than between other pairs

[49]. The effect of synaptic transmission was modeled by the

initiation of a bi-exponential conductance waveform in a

postsynaptic cell immediately following a zero-crossing of

membrane voltage in any presynaptically-connected cell according

to:

gsyn~gsyn, max exp {
t

tfall

� �
{ exp {

t

trise

� �� �
ð20Þ

A further normalization constant was employed in simulations in

which synaptic decay time constants were altered. This constant

was equal to
tfall,control{trise,control

tfall{trise

, and ensured that the total

time-integrated conductance initiated in the postsynaptic cell

remained constant in simulations testing the contribution of

synaptic kinetics on network period. To determine synaptic

conductance magnitudes, the total postsynaptic conductance from

all cells of a given type (i.e. excitatory) onto an (excitatory) cell j,
�GGEj , was first sampled from a uniform distribution with minimum

(1{k1)�GGEE and maximum (1zk1)�GGEE . Individual synapse

magnitudes GEj were then chosen from a uniform distribution

with minimum (1{k2)
�GGEj

Nsyns,Ej

and maximum (1zk2)
�GGEj

Nsyns,Ej

,

where Nsyns,Ej would be the total number of excitatory synapses

onto cell j. Synapses connecting other populations were deter-

mined in an analogous fashion. In this way, the variability in the

total synaptic conductance impinging upon each cell and the

variability in individual synaptic conductances could be indepen-

dently controlled by the parameters k1 and k2 respectively. In

additional simulations conducted to test the effects of k1 and k2 on

network activity no strong dependence was observed (data not

shown), and so we make k1 and k2 identical and equal to 0.25.

Total synaptic conductances are given in Table 2. Although the

decay time constant of inhibition impinging upon interneurons has

been shown to be shorter than for inhibition onto principal cells

[50], these values were taken to be identical for simplicity and

because network simulations were not found to be sensitive to the

time scale of interneuron-interneuron connections (Supporting

Fig. S1). Synaptic conductances in high-conductance state

simulations were determined empirically so that post-synaptic

voltage deflections remained constant.

Simulations
All simulations were conducted using GenNet [51], a network

simulator written in C++. Equations were integrated with a

forward Euler solver with a time step of 0.01 ms. Simulation

convergence was checked by repeating a subset of simulations with

a time step of 0.005 ms and ensuring consistency of solutions.

Results in Figs. 2 and 3 were taken from a single ten-second

simulation. The simulation data presented in Figs. 4–7 were

averages of ten five-second realizations of the model network.

Figs. 8 and 9 were generated from 81 two-second simulations and

800 one-second simulations, respectively.

The data described in Supporting Fig. S1 represent average

values taken from ten five-second realizations. Parameters and

other details regarding these simulations can be found in

Supporting Text S1 and Supporting Table S1.

In all simulations comparing the effects of added background

conductance on network period, the values of applied current were

normalized empirically so that the resting membrane potentials (in

the absence of synaptic input) were uniformly distributed between

0 and 15 mV below spike threshold. Additionally, synapse

magnitudes were scaled to give equal deviations in the post-

synaptic membrane potential (Table 2).

Analysis
All analyses were performed using custom-written scripts in

Matlab (version 2009a; The Mathworks). Input resistances were

calculated as the slope of the subthreshold voltage-current

relationship produced from a series of subthreshold current steps.

Membrane time constants were calculated by fitting an exponen-

tial function to the membrane voltage trajectory following the

onset of the current steps. Unadapted firing rates were calculated

as the median of the inverse of the first five interspike intervals

after the onset of a current step. Adapted firing rates were

calculated as the median of the inverse of the last five interspike

intervals. Impedance spectra were calculated by dividing the

magnitude of the fast Fourier transform (FFT) of the membrane

voltage by the magnitude of the FFT of the input current.

Impedance spectra and firing frequency-current relationships are

displayed as mean values with error bars denoting one standard

deviation. Power spectra of simulated field potentials were

calculated using the Welch method and a sliding two-sec

Hamming window with 95% overlap between segments. Power

spectra depicting averages across multiple network realizations

were calculated by first computing the spectra corresponding to

individual simulations and subsequently computing their average

value.

Field potential approximations were calculated first by summing

the total number of spikes detected on each time step. The

dominant network frequency, fnet, was determined as the frequency

Table 2. Maximal synaptic conductance values used in
simulations of the high- and low-conductance states.

Low conductance synapses Value Units

�GGEE 37.5 nS

�GGEI 100 nS

�GGIE 46.25 nS

�GGII 25 nS

High conductance synapses

�GGEE 67.5 nS

�GGEI 225 nS

�GGIE 100 nS

�GGII 50 nS

doi:10.1371/journal.pcbi.1002354.t002

Cellular Biophysics and Gamma Rhythmogenesis

PLoS Computational Biology | www.ploscompbiol.org 6 January 2012 | Volume 8 | Issue 1 | e1002354



corresponding to the peak of the Fourier transform of this signal.

The field potential approximation was then calculated by low-pass

filtering the summated train of spikes with a fourth-order

Butterworth filter with a cutoff frequency of 2fnet. This filter was

applied in the forward and reverse directions in order to preserve

phase information. This signal was used as a smooth time-varying

estimate of local network activity, similar to a local field potential.

However, lacking any geometry in this model, a more accurate

local field potential, which arises from the presence of aligned

extracellular currents, could not be calculated.

The coefficient of variation of spike times was calculated as the

standard deviation of interspike interval times divided by the mean

interspike interval. The vector strength of each cell was

determined by taking a vector sum of the phases of all spikes in

each cell and reporting the magnitude of the resulting vector.

Phase was determined relative to the field potential approximation

Figure 2. Emergent oscillations arise in a model network due to feedback inhibition. A Schematic of network architecture (detailed in
Materials and Methods). B Field potential approximation (i) and spike rastergram (ii) of cells in the model network. The power spectrum of the field
potential approximation (iii) clearly indicates an emergent oscillation at the network level at approximately 20 Hz. Inset illustrates loose
synchronization in a subset of 75 RSP neurons. C Despite a clear oscillation at the population level, such an oscillation is obscured by irregular
fluctuations in individual membrane potential traces from RSP neurons (gray) and FS interneurons (light blue). Model pyramidal neurons spike
sparsely on approximately every tenth cycle of the oscillation while model interneurons spike every other cycle, on average. Interspike interval
histograms of RSP neurons (iii) and FS interneurons (iv) are highly variable, although an oscillation is clearly visible in the FS interneuron histogram.
doi:10.1371/journal.pcbi.1002354.g002

Cellular Biophysics and Gamma Rhythmogenesis
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where the preceding peak of the field potential approximation was

defined as phase zero and the subsequent peak as phase 2p.

Intermediate times were assigned a phase by linearly interpolating

between these two values. Correlations in Fig. 3 are Pearson linear

correlation coefficients and p values are reported as the estimated

probabilities that two variables are uncorrelated under the

assumption that each variable is normally distributed.

Recovery time after inhibition was determined by measuring

the peak negative deflection in membrane voltage (the trough)

relative to baseline and then calculating the elapsed time after the

trough until the deflection in membrane voltage had decayed by

63.7% (one time constant). Average derivative values (Fig. 5C)

were taken between the time points at which the negative

deflection in membrane potential had decayed by 10 and 90

percent.

Results

Construction of model neurons
For this study, we constructed model neurons in order to

simulate the behavior of neocortical layer II/III regular-spiking

pyramidal (RSP) neurons and fast-spiking (FS) interneurons. The

pyramidal neuron model was based on the adaptive exponential

integrate-and-fire model [aEIF; 44] with parameter values for

cortical pyramidal neurons (Fig. 1B ii,iii) [52]. A single-

compartment, conductance-based model was chosen to represent

FS interneurons (Fig. 1C ii,iii). This model was based on a

previously-published model of neocortical fast spiking interneurons

[47] and contained inactivating sodium, delayed rectifier potassi-

um, D-type potassium, and linear leak conductances. These

models were chosen because their behavior could be modified to

well-approximate the firing patterns and intrinsic properties

observed in recorded neurons.

In order to ensure that model neurons reproduced the basic

biophysics of simulated cell types, whole-cell patch clamp

recordings of the cell types of interest were performed from

somatosensory cortex of G42 mice [40]. In the neocortex, G42

mice express green fluorescent protein (GFP) in a subset of

parvalbumin-positive fast-spiking interneurons with basket mor-

phology (Fig. 1A,C i). Model neurons were subsequently modified

so that the input resistance, time constant, impedance spectrum,

firing frequency-current relationship, and spike-frequency adap-

tation of each model cell type was consistent with the

corresponding quantity in recorded neurons (Fig. 1D,E). A full

description of the modified models is given in Materials and Methods.

All of the above-mentioned electrophysiological attributes were

reproduced closely with the exception of the steep roll-off of

impedance at high frequencies (Fig. 1D iii) in both cell types. This

attribute could not be captured precisely in either model cell, likely

due to the fact that both model cells lacked a spatial structure.

However, disparities in the frequency response of model cells at

high-frequencies (.100 Hz) were deemed to be a minor

inconsistency for the purpose of this study. In general, model

neurons were found to approximate the behavior of biological

neurons very well. With these parameter values, the RSP neuron

model was in the ‘integrator’ regime, in which the transition from

rest to tonic spiking is described by a saddle-node bifurcation [52].

It has been argued that this dynamical structure best describes

biological pyramidal cells in neocortex [53]. Likewise, the

transition to spiking in the FS cell model takes place via a

Figure 3. Balance of excitatory and inhibitory currents in the network. A Synaptic currents are highly phasic, but variable from cycle to
cycle, with inhibition (blue trace) lagging excitation (black trace) by several milliseconds on each cycle of the oscillation. B Histogram of the
magnitude and subsequent period of each cycle of the field potential approximation (i). The magnitude of the field potential approximation on one
cycle is predictive of the subsequent network period, as observed in experimental data [26]. (ii) Histogram of the amplitude of excitatory and
inhibitory currents on a cycle-to-cycle basis. The magnitudes of these currents are highly correlated. Scale bar is identical for both (i) and (ii) and
represents the fraction of cycles falling into each bin.
doi:10.1371/journal.pcbi.1002354.g003
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subcritical Andronov-Hopf bifurcation as previously suggested

[53]. Realistic spiking transitions were included in each model

neuron to increase the likelihood that responses to untested stimuli

would be similar to the responses of biological neurons [54–56].

Emergent rhythmic activity
In order to investigate the relationship between intrinsic

neuronal properties and resultant network oscillations, we

simulated a model network consisting of an excitatory RSP

neuron population and a population of inhibitory FS interneurons

(Fig. 2A; for full network details, see Materials and Methods). All

simulated neurons were connected randomly and sparsely with

connection probabilities determined by the identity of presynaptic

and postsynaptic cells. RSP neurons were not active in the absence

of noise and were driven by fluctuations of a noisy conductance

process. Variability in average spike rates between cells was the

result of an additional randomly-distributed DC current. FS

interneurons were driven with noisy fluctuations and a randomly-

distributed DC current, but resided largely below threshold in the

absence of excitatory input from the RSP neuron population. As

anticipated, emergent oscillations were observed in the network

under these conditions (Fig. 2B). In the oscillatory condition,

individual neurons fired irregularly (Fig. 2C; RSP ISI CV

0.4460.06, FS ISI CV 0.6760.20) with low rate (RSP rate

3.4660.33 spks/s, FS rate 9.1964.78 spks/s) and principal RSP

neurons displayed loose synchronization (Fig. 2B i,ii; RSP vector

strength 0.6160.094). The standard deviation of membrane

potential in RSP neurons was 2.56 mV60.06, consistent with

observations reported in vivo during ongoing rhythmic network

states [29,34,57,58]. Additionally, these observations were quali-

tatively similar in the presence of gap junction coupling between

FS interneurons (Fig. S1).

Figure 4. Frequency of network oscillations depends strongly on background conductance in pyramidal neurons and interneurons.
A Increasing background conductance in pyramidal cells (ii; blue) or interneurons (iii; green) increases network frequency compared with control (i;
black). Increasing background conductance in both populations increases network frequency further (iv; red). B Changes in network frequency arise
independent of changes in firing rates of RSP neurons (i) or FS interneurons (ii). C Power spectra of the field potential approximations from the
simulations described in A.
doi:10.1371/journal.pcbi.1002354.g004
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Additionally, the network period, determined from the local

field approximation (see Materials and Methods), varied considerably

from cycle to cycle (mean: 51.7, sd: 12.1 ms) and was correlated

with the number of cells that were active during the previous cycle

(Fig. 3A,B i). This correlation has also been observed during

ongoing oscillations in vivo and in vitro and has been proposed as a

signature of oscillations arising due to feedback inhibition [26].

Simulated voltage-clamp recordings of cells in the network

revealed that excitatory and inhibitory currents in model RSP

neurons were tightly correlated in their magnitude (Fig. 3A,B ii)

and that inhibitory currents lagged by several milliseconds,

consistent with experimental observations during gamma

[26,31,59] and other behavioral states [60]. The overall

magnitudes of excitatory and inhibitory currents were also

consistent with experimentally-reported values [26,31,61].

Under these conditions, the frequency of emergent network

oscillations was found to be approximately 20–25 Hz. This result

was somewhat surprising as feedback from FS interneurons has

been proposed as a mechanism for the generation of the 30–80 Hz

gamma rhythm [17,31,36,37,62,63]. In fact, varying parameters

controlling network size, network connectivity, membrane noise,

and DC bias by 50% or more consistently produced network

oscillations ranging from 15–35 Hz (data not shown), suggesting

that under these conditions, feedback inhibition in sparsely firing

populations produces network oscillations at frequencies more

closely resembling beta-frequency oscillations than network

gamma. For this reason we conclude that oscillations can arise

through a feedback mechanism in networks of regular-spiking

pyramidal neurons and fast-spiking interneurons in the fluctua-

tion-driven regime, but that the frequency of these oscillations is

below the gamma range when experimentally-measured param-

eters from neurons in a slice preparation are used.

Background synaptic conductance enables gamma-
frequency oscillations

It has been observed in in-vivo electrophysiological recordings

that neurons in the neocortex receive a constant bombardment of

incoherent synaptic activity in the intact brain [64–68]. This high

background level of excitatory and inhibitory synaptic conduc-

tances has been shown to lower the input resistance and time

constant of recorded cells by 50–80% [69] compared to the same

cell types in vitro, or in vivo in the presence of local injections of

tetrodotoxin [68]. The random inhibitory and excitatory conduc-

tance processes already present as noise sources in the model

neurons were modified so that the average conductance of these

processes was substantially larger (see gavg values in Table 1),

Figure 5. Recovery time after inhibition in pyramidal neurons controls network frequency. A Recovery time after inhibition was
determined by simulating an inhibitory synaptic conductance waveform in isolated model pyramidal neurons and in quiescent biological neurons in
vitro via dynamic clamp. The example illustrated was taken from a representative dynamic clamp experiment. These simulated synaptic conductances
varied in their magnitude, decay kinetics, and in the amount of tonic background conductance present. B Predictions of network frequency (lines),
taken as the inverse of measured recovery time after inhibition, match the frequency of network oscillations determined in full simulations (solid
dots) when RSP neurons are in either a low conductance state (gray) or high conductance state (blue). C The derivative of membrane voltage
following inhibition in model pyramidal neurons in the oscillating model network depends upon the conductance state of those cells. RSP neurons in
a low-conductance state (gray, green) recover slowly following inhibition, while RSP neurons in a high-conductance state (blue, red) recover relatively
quickly. D Mean values of the inverse of recovery time after inhibition in model RSP neurons (i) and biological layer II/III pyramidal neurons (ii) as a
function of decay time constant and synapse magnitude (axes) and background conductance (surfaces). Recovery time is controlled by the decay
time constant of inhibition and total level of membrane conductance but not the magnitude of phasic conductance in model and biological neurons.
doi:10.1371/journal.pcbi.1002354.g005
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thereby reducing the input resistance and time constant of both

RSP and FS neurons in an in vivo-like manner (Rin of RSP neurons

reduced by 63.7%, FS neurons reduced by 66.0%). Following this

manipulation, the frequency of model network oscillations

increased substantially (Fig. 4 A,C). When both cell types were

in a ‘high-conductance state’, varying network size, network

connectivity, membrane noise, and DC bias produced network

oscillations spanning the range of 20–60 Hz (data not shown),

more closely resembling the frequency range of experimentally-

recorded gamma oscillations. Furthermore, examining the effect of

background conductance on each model cell type individually

revealed an increase in network frequency when one of the two

cell types was placed in a high-conductance state and an additional

increase in frequency in simulations in which both model cell types

received increased background conductance (Fig. 4 A,C). The

trends in network frequency described here were also present in

Figure 6. Conductance in interneurons increases network frequency by decreasing the latency with which inhibition is recruited. A
The delay between peak excitatory and inhibitory currents in pyramidal neurons is shorter in simulations in which background conductance is added
to the interneuronal population. B Average inhibitory and excitatory current waveforms (i) onto a single pyramidal neuron in network simulations
with all cells in the low-conductance state (black) and with only interneurons in a high-conductance state (green). The additional peak in the high-
conductance state depicts the following network period (clipped for the low-conductance state due to its longer period). Decreasing the latency with
which inhibition is recruited balances excitatory and inhibitory currents to a much greater degree (ii), resulting in more modest postsynaptic effect of
inhibition (iii). C Adding background conductance to interneurons in the low conductance state increases the frequency of network oscillations (i).
This effect on network frequency is reversed by the addition of an extra artificial delay in synapses between model interneurons and pyramidal
neurons (ii). This result indicates that, indeed, the conductance state of interneurons controls the frequency of network oscillations by affecting the
temporal balance between excitatory and inhibitory currents in model pyramidal neurons.
doi:10.1371/journal.pcbi.1002354.g006
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networks containing electrical synapses between FS interneurons

(Supporting Fig. S1).

In order to make these comparisons, mean firing rates of RSP

neurons were held approximately constant by the injection of DC

current (Fig. 4B) and the amplitude of excitatory and post-synaptic

conductances were normalized so as to produce similarly-sized

deviations in membrane potential in the presence of increased

background synaptic conductance. For this reason, the low- and

high-conductance networks cannot be thought of as the same

network immediately prior to and following a sudden change in

conductance of synaptic origin. Instead, in to order investigate the

mechanisms by which higher frequency oscillations arise in the

Figure 7. Noise magnitude affects oscillation frequency by shortening recovery time following inhibition. A Spike rastergrams of
simulations with increasing noise magnitudes (i–iv). Indicated standard deviations were determined in the absence of synaptic input. B DC currents
were adjusted so that the distributions of spike rates in RSP neurons (i) remained approximately unchanged across these conditions while spike rates
in FS interneurons were distributed between zero and the network frequency (ii). C Power spectra of the field potential approximations from the
simulations shown in A indicate an increase in network frequency with increasing noise magnitude. D Mean membrane potential of RSP neurons in
representative simulations depicted in A (i) with voltage minima aligned for clarity and mean synaptic currents received by RSP neurons in the same
simulations (ii).
doi:10.1371/journal.pcbi.1002354.g007
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high-conductance state, we have constructed several distinct

networks each characterized by realistic firing rates, levels of

variability, and post-synaptic potential magnitudes, while varying

only the time scale of the neuronal membranes.

Because increasing membrane conductance in each cell type

individually increased network frequency independent of the

conductance state of the other cell type, we hypothesized that

conductance affected network frequency by distinct mechanisms

when added to RSP neurons or FS interneurons. We next

endeavored to understand these mechanisms in the model network

and determine the applicability of these results to biological cells

by performing related dynamic clamp experiments.

Conductance in pyramidal cells controls network
frequency by affecting recovery time after inhibition

A series of experimental studies has established an important

role for inhibitory synapse kinetics in determining the period of

network gamma oscillations. Related theoretical work has

suggested a mechanism for this dependence; the interspike interval

of cells in the network is dominated by synaptic inhibition

(originating either via a feedback mechanism or from an

autonomously synchronized inhibitory population; [16,17]). Fol-

lowing the onset of inhibition, further spiking initiates only when

inhibitory currents have sufficiently decayed. This mechanism

typically assumes that the decay time constant of inhibition is the

longest relevant time constant in the network [70]. However, our

experimental measurements of the membrane time constant in

RSP neurons in the quiescent slice (Fig. 1D ii) indicate that this

time scale (28.669.1) in pyramidal neurons is longer than the

decay time constant of inhibition (4–12 ms) [50,71]. If the

timescale of the membrane is indeed longer than the timescale

of synaptic inhibition, then the slow response speed of the

membrane should lengthen the period of network oscillations

substantially. To reconcile this discrepancy, it has been argued

Figure 8. Stability of model oscillation. Unbalancing excitation and inhibition in time or in amplitude transitions the network from stable
oscillations to an unstable state in which oscillations are mixed with hypersynchronous bursts of activity. A Spike rastergrams of RSP neurons (black)
and FS interneurons (blue) from simulations in which excitation and inhibition are approximately balanced (i), unbalanced (ii), and highly unbalanced
(iii). B Summary of simulations in which synaptic delay and recurrent excitation were varied. Unbalancing excitation and inhibition temporally by
adding an extra delay to the inhibitory-to-excitatory cell synapse, or in amplitude by increasing the strength of recurrent inhibitory synapses,
produces instability in the network. The parameter combinations for the three simulations in A are depicted in B. C The response latencies of FS
interneurons and RSP neurons in vitro to simulated excitatory postsynaptic conductance waveforms introduced via dynamic clamp. The fast-spiking
electrophysiological phenotype responds with smaller latency, thereby providing feedback inhibition that effectively balances excitatory currents
temporally to maintain stability (n = 8 pyramidal neurons; n = 6 interneurons). *p,0.05 (Wilcoxon rank-sum test).
doi:10.1371/journal.pcbi.1002354.g008
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that the membrane time constant of cells embedded in an

oscillating network may be shortened by the transient inhibitory

conductances necessary for establishing the gamma rhythm,

minimizing the impact of the membrane time constant on network

period [70].

We wished to better understand the action of transient (i.e.

arising from phasic, feedback inhibition) and constant (i.e arising

from incoherent background synaptic input) conductance sources

on network oscillations in models based on in vitro recordings. To

accomplish this, we quantitatively tested the manner in which the

synaptic decay time constant, the magnitude of phasic inhibitory

synaptic conductance, and the magnitude of tonic background

conductance each affect the length of time required for the

membrane of model RSP neurons to recover after a brief

inhibitory synaptic conductance input (Fig. 5A). We simulated

the membrane potential of the excitatory model cell after receiving

a brief inhibitory synaptic conductance of variable magnitude,

decay kinetics and in the presence of variable tonic background

conductance. We further defined ‘recovery time’ as the amount of

time it took for the resulting transient membrane hyperpolariza-

tion to decay by 63.2% of its maximal value (one time constant).

We considered recovery time to be a surrogate for network period

in this simple simulation.

To test whether this assumption was valid, we compared the

predicted network frequency, computed as the inverse of recovery

time, with the frequency of oscillations in simulations of the full

network (Fig. 5B) while varying the inhibitory synaptic decay

kinetics in cases of low- and high-RSP cell conductance (grey and

blue, respectively). Predictions of network frequency calculated

from recovery time were found to match the network frequency in

simulations of the full network extremely well, given the simplicity

of this abstraction, across all values of the parameters tested. Thus,

we concluded that the inverse of recovery time after inhibition, as

described above, could give us important insights into how other

pertinent parameters affect the frequency of emergent network

oscillations.

Consistent with previous experimental results [18,20], the decay

time constant of inhibition had a considerable effect on the

simulated recovery time after inhibition (Fig. 5B,D i). Likewise, the

amount of tonic background conductance, representing the

conductance change originating from a barrage of synaptic input

incoherent with the ongoing oscillation, was found to have a

Figure 9. Network sensitivity is determined by the balance between excitation and inhibition. A Schematic of manipulation in which
additional constant current drive was added to a subpopulation of excitatory cells of variable size. B When a small subpopulation (1% of all RSP
neurons) receives additional current input, they respond with a relatively large change in firing rate (high gain) (i). When the whole network (100%)
receives this additional input, proportional recurrent excitation and feedback inhibition are recruited onto each cell, resulting in smaller changes in
firing rate (lower gain). The difference in gain between small and large subpopulations depends upon the balance between excitation and inhibition
(shifted by manipulating the level of recurrent excitation, represented by the parameter GEE). Gain is unaffected by GEE when the subpopulation is
small (1%; lines are overlapping). (ii) Gain of the firing-frequency current relationship as function of subpopulation size and recurrent excitation. In
order to recruit recurrent excitation and feedback inhibition in a manner that affects network sensitivity, the subpopulation must be greater than
,20% of the cells in the network.
doi:10.1371/journal.pcbi.1002354.g009
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dramatic effect on recovery time (Fig. 5D i, surfaces). In contrast, we

found that the brief inhibitory conductances themselves were

unable to meaningfully affect the membrane’s recovery time

following hyperpolarization. If this were the case, and the feedback

inhibition arriving in a phasic manner and necessarily present

during a gamma rhythm were capable of producing an effective

high-conductance state, as suggested [72,73], then increasing the

magnitude of the brief, phasic inhibitory input would be expected

to not only increase the magnitude of the resulting hyperpolar-

ization, but also quicken the recovery from this inhibition as well.

However, we have found that this scenario is not possible under

the conditions we describe.

These measurements were repeated in in-vitro experiments using

dynamic clamp to present simulated transient inhibitory synaptic

and tonic background conductances to layer II/III pyramidal cells

(Fig. 5D ii). Results from these experiments closely matched

simulations. This finding indicated that there were no subthresh-

old ionic currents active in recorded layer II/III pyramidal

neurons, but unaccounted for in our model, that might

qualitatively affect measurements of recovery time. In the full

network, examining the voltage trajectory following synaptic

inhibition-induced hyperpolarization of RSP neurons, we found

that the average derivative of membrane voltage during the

recovery phase following inhibition was substantially increased

under conditions of added background conductance (Fig. 5C).

This finding is consistent with our interpretation that high tonic

conductance in RSP neurons results in faster recovery of the

membrane following inhibitory synaptic input. For this compar-

ison, we used the average derivative as a measurement of recovery

speed rather than recovery time after inhibition as recovery time

could not be calculated in an accurate manner during population

oscillations. We therefore conclude that the recovery time is a very

good predictor of network (but not cellular) frequency in

stochastically synchronous, fluctuation-driven networks. Further-

more, we conclude that both the time constant of the RSP neuron

membrane and the decay kinetics of inhibition have a substantial

impact on network frequency, and that gamma frequency

oscillations emerge in such networks only in the in vivo-like high-

conductance state.

Conductance in inhibitory cells controls network
frequency by affecting spike latency

As activity in the FS interneuron population was not limited by

inhibition, but rather driven by excitation, we hypothesized that

changing the rate at which inhibitory cells recover from inhibition

could not have a large effect on network frequency. This

hypothesis was supported by simulation results, which showed

that the kinetics of inhibitory synapses impinging on inhibitory

cells did not significantly affect network frequency (data not

shown). For this reason, we concluded that a different mechanism

must be responsible for the increase in network frequency

observed when background synaptic conductance was added to

model FS interneurons.

One striking difference between network simulations containing

low- or high-conductance interneuron models was found to be the

degree of temporal balance between excitation and inhibition.

More specifically, the delay between peak excitatory current and

peak inhibitory current in ‘voltage-clamped’ model RSP neurons

decreased by approximately 40% when an in vivo-like level of

background conductance was added to the interneuron population

(Fig. 6A). While this reduction in the delay between excitatory and

inhibitory currents was modest compared to the network period,

the temporal balance between excitation and inhibition was found

to be greatly enhanced under this condition (Fig. 6B i) leading to a

dramatically altered average postsynaptic current waveform in the

pyramidal cell population (Fig. 6B ii). The total time-integrated net

current, calculated over the portion of the oscillation cycle in

which current was net inhibitory, was reduced from 20.385 nA-

ms in the low conductance condition to 20.1456 nA-ms in the

case of high-conductance interneurons - a 62% reduction.

Whereas increasing background conductance in the pyramidal

cell population altered the time scale of membrane recovery after

inhibition, we hypothesized that increasing background conduc-

tance in interneurons decreased their latency to spiking after

receiving excitatory synaptic input. A decrease in spike latency

would thereby balance the excitation and inhibition received by

excitatory neurons more precisely in time (Fig. 6B i), and as a

result, reduce the amount of net current perceived by postsynaptic

RSP neurons (Fig. 6B ii). This hypothesis was easily tested in the

model network by adding an additional, artificial, synaptic delay

into the synapse model to imitate the effect of increased spike

latency in model interneurons. Fig. 6C illustrates that adding

background conductance to the interneuron population increases

the resultant network frequency regardless of the conductance

state of the pyramidal cell population (Fig. 6C i). Inclusion of a

subsequent synaptic delay lowers network frequency to values

similar to that observed in ‘low-conductance state’ interneuron

simulations (Fig. 6C ii). Moreover, examining cycle-averaged

membrane potential trajectories in the simulations supports the

interpretation that temporally-balanced excitation and inhibition

lead to shorter network periods as inhibition is less effective at

hyperpolarizing the post-synaptic cell (Fig. 6B iii). Examining the

cycle-averaged membrane potential trajectories (Fig. 6B iii) also

illustrates that RSP neurons recover from inhibition at the same

rate, regardless of the conductance state of the FS interneuron

population. Although adding background conductance to RSP

neurons also reduces spike latency, this alteration has very little

effect on network period as it does not change the temporal

balance between excitatory and inhibitory currents in those cells.

Membrane noise controls network frequency by
affecting recovery time after inhibition

Interestingly, we found that network frequency was sensitive to

the magnitude of membrane noise as well as membrane

conductance. For all parameter combinations, increasing the

firing rate of individual neurons increased network frequency.

However, when the membrane noise magnitude was increased in

the population of model RSP neurons (by manipulating param-

eters De and Di) and the commensurate increases in firing rate were

compensated for with a decrease in mean DC current, increases in

network frequency were found to persist (Fig. 7A–C). Although

this manipulation alters the noisy conductance processes control-

ling the conductance ‘state’ of model neurons, fluctuation

magnitudes remained small compared to the mean conductances

of these processes. For this reason, it was possible to control the

magnitude of membrane fluctuations without impacting mem-

brane time constant. The effect of membrane noise on oscillation

frequency can be easily understood in the context of recovery time

following inhibition. The quiescent portion of an oscillation cycle,

when inhibition is maximal, ends when the most depolarized cells

in the network are able to spike. Empirically, we found that this

condition was satisfied in the control network when inhibition-

induced membrane hyperpolarization had decayed by approxi-

mately 63.7% (one time constant). In essence, increasing the level

of membrane noise produces threshold crossings in the most

depolarized neurons earlier in the cycle. This effect can be seen in

Fig. 7D, which illustrates that cycles of the oscillation end earlier

when noise is increased, at a point in time when most of the cells
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remain increasingly hyperpolarized (Fig. 7D i; arrowheads). Cycles

of the oscillation are terminated at an earlier point in time even

though the magnitudes of the synaptic currents received in each

condition are nearly indistinguishable across the simulations

(Fig. 7D ii). This result strongly supports our suggestion that

recovery time following inhibition is a good predictor of network

frequency. Furthermore, the results from Fig. 7 imply that the

magnitude of membrane potential fluctuations can control

network frequency even when average firing rates are unchanged.

This demonstrates another novel method by which the frequency

of network oscillations may be scaled. Because membrane noise

introduced by the variability in synaptic inputs could be

straightforwardly controlled by the pattern of ongoing activity in

a network, this provides a simple, and biophysically-plausible

manner in which network frequency could be controlled

independently of the firing rate and conductance level of neurons

in an intact network.

Network stability is determined by the balance of
excitation and inhibition in magnitude and in time

Some combinations of parameters were found to be unstable,

producing network-level oscillations mixed with hypersynchronous

burst firing across the entirety of both simulated populations

(Fig. 8A). We found that unbalancing the excitation and inhibition

received by model RSP neurons either in magnitude or in time

was sufficient to induce a transition into this unstable state. This

point is illustrated in Fig. 8B, which shows, for example, that

increasing the magnitude of recurrent excitation in the model or

increasing the inhibitory synapse latency, or a combination of

these two factors, generated an unstable condition.

In our model, recurrent excitation represents a positive feedback

mechanism for the level of network activity. Similarly, activity-

dependent inhibition originating from the FS interneuron

population provides negative feedback in proportion to pyramidal

cell activity. For this reason, it is unsurprising that an imbalance in

these mechanisms would result in an unstable system. However,

this observation might provide some insight into the utility of the

fast-spiking phenotype, characteristic of FS interneurons. If

neurons with a regular-spiking electrophysiological phenotype

were tasked with providing feedback inhibition, it is possible that

such a network would be unable to operate in a stable manner.

Indeed when spike latencies were measured following an

excitatory conductance-based synaptic input waveform in biolog-

ical layer II/III pyramidal cells and fast-spiking interneurons, we

found that the biological RSP neurons responded substantially

slower than fast-spiking interneurons (Fig. 8C). Our modeling

results (Fig. 8B) suggest that this difference in response times to

excitatory conductance inputs would be sufficient to impact

network stability in a substantial manner. Many electrophysiolog-

ical features of FS interneurons seem to be ‘tuned’ in such a way to

make them respond to excitatory inputs with the smallest possible

latency. They have small time constants, small spike widths, fast

synaptic kinetics, and dendrites that seem to be tuned to favor fast

conduction of inputs originating at distal locations [74–77]. All of

these factors could contribute to the fast onset of feedback

inhibition, ensuring that the network is endowed with an effective

negative feedback mechanism and that network stability is

maintained.

Network sensitivity is modulated by recurrent excitation
In addition to being a critical determinant of network stability,

the balance between excitatory and inhibitory current magnitudes

was found to control the sensitivity of the network to changes in

input. Sensitivity (gain) in the network was measured by first

randomly selecting a subpopulation of model excitatory neurons

and varying their level of activation with additional DC bias

current (Fig. 9A). Following this manipulation, we quantified the

change in the firing rate of cells in this subpopulation as a function

of the change in driving current (Fig. 9B i). When the

subpopulation was small, consisting of 1% of the total number

of excitatory cells, the additional excitation in the subpopulation

was too weak to affect the activity of other cells in the network. For

this reason, the frequency-current relationship in this small

subpopulation exactly mirrored the relationship of a cell isolated

from the local network (appearing as overlapping lines in Fig. 9B i),

responding with relatively high gain to changes in input current.

In simulations in which large subpopulations (.20% of all

excitatory cells) received additional drive, substantial additional

recurrent excitation and feedback inhibition were recruited as

activity in the subpopulation increased. When the contribution of

excitatory and inhibitory currents were balanced in magnitude

(GEE = 62.5 nS/cell), network gain was closer to the gain of

isolated neurons and small subpopulations (Fig. 9B i). In contrast,

in simulations in which recurrent excitation was smaller in

magnitude, thereby unbalancing the magnitudes of excitation

and inhibition, the presence of inhibitory feedback proportional to

firing rate decreased the gain of the subpopulation (darker lines).

In this condition (i.e. small recurrent excitation), we observed a

marked difference between the gain of the subpopulation and the

gain of isolated cells or small subpopulations. The separate

dependencies of network gain on subpopulation size and recurrent

excitation are summarized in Fig. 9B ii. These simulations

illustrate that inputs impinging upon small subpopulations are

coded with high sensitivity while inputs highly correlated across

the network may be coded for less strongly when synaptic

excitation and inhibition are unbalanced. The implication of this

result is that strong recurrent inhibition may limit the sensitivity

with which highly correlated inputs are coded across a population.

Excitation recruited in equal proportion to inhibition reverses this

effect. However, it remains unclear under exactly what conditions

excitation and inhibition are closely balanced in a cortical network

and how this balance may be adjusted.

Discussion

In this study, we have investigated the paradigm in which the

gamma rhythm arises when feedback inhibition is recruited by

principal cell activity, with spikes in all cells driven by noisy

fluctuations or synaptic input. Using electrophysiological mea-

surements to provide biophysical constraints on network param-

eters, we simulated a mixed network of regular-spiking pyramidal

(RSP) neurons and fast-spiking (FS) interneurons. These simula-

tions were additionally constrained by published experimental

results indicating that individual neurons fire at low rates and with

a high degree of irregularity [78–82]. Under these assumptions, we

have found that oscillations arising from a feedback mechanism

emerge robustly in the beta frequency band (15–35 Hz) and not

the gamma band (30–80 Hz) when the parameters of model cells

are taken from biological cells in a quiescent brain slice.

In further simulations, we have shown that adding a substantial

constant conductance source to either cell type, similar to the

synaptic conductance received by cells in vivo [46,69], increases the

frequency of network oscillations substantially. When the full

network was simulated with all cells in the high-conductance state,

emergent oscillations occur at a substantially higher frequency

even when we control for variables determining the firing rate of

individual cells and the efficacy of individual synapses. In fact,

simulating the model network with all cells in the high-
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conductance state produced coherent population-level oscillations

ranging from 20–60 Hz depending on the particular choices of

DC driving currents, noise, and synapse size. Therefore it seems

that under very general conditions, gamma-frequency population

oscillations are enabled when constituent neurons are in a high-

conductance state, relative to the quiescent state we measure in

vitro.

The point that small effective membrane time constants

promote gamma has been suggested before [70], and some

existing models of network gamma include membrane time

constants much lower than we measure in the slice [e.g.

9,26,72]. The current study makes three novel contributions to

this discussion. First, we explicitly measure membrane responsive-

ness in the brain slice, and show in particular that resting values of

membrane conductance in pyramidal cells are too low to support

gamma oscillations. Second, we demonstrate that high-conduc-

tance membranes in both excitatory and inhibitory neurons

contribute to stable oscillations at gamma frequencies, for

dramatically different reasons in the two cell types. Third, we

show that the inhibitory synaptic conductances responsible for

hyperpolarizing principal neurons in a phasic, cycle-to-cycle

manner are insufficient to lower membrane time constants in a

manner that produces higher-frequency gamma-frequency oscil-

lations (see Fig. 5D), as proposed elsewhere [70,72]. The apparent

discrepancy between these studies and our own could lie in the fact

that those studies focused on systems of coupled oscillators. In stark

contrast, no cell in our network fires periodically in the absence of

input; all activity in the network is generated by fluctuating

membrane conductances in the pyramidal neuron population.

At a mechanistic level, we found that the salient effect of altering

the time scale of the neuronal membrane was different in the

excitatory and inhibitory cells in the network. Specifically, we

found the relevant consequence of increasing the conductance of

the RSP neuron membrane to be a reduction in the time that the

neuronal membrane remained less excitable following coherent

inhibitory synaptic input. In contrast to the role of conductance in

principal neurons, simulations indicate that background synaptic

conductance impinging upon interneurons impacts network

frequency in a fundamentally different manner. The decrease in

time constant of the interneurons providing feedback inhibition

resulted in a decreased latency to spiking following the strong

excitatory synaptic inputs which have been shown to impinge

upon inhibitory neurons [31,83]. Decreasing spike latency

improves the temporal precision of the circuit’s negative feedback

mechanism, thereby allowing inhibitory currents to balance

excitatory currents in a more effective manner. Under this

condition of improved temporal balance, inhibitory currents

maintained principal neurons in an inhibited state for a shorter

period of time due to a smaller magnitude hyperpolarization,

resulting in increased network frequency.

It may seem counterintuitive that the time scale of the principal

cell membrane, on the order of tens of milliseconds, would impact

the frequency of network oscillations when individual cells fire

action potentials with inter-spike intervals of 100 ms or more.

However, it is not the time between action potentials that is the

relevant quantity in this scenario, but the time between the

temporal windows in which the cell is most excitable. Due to the

divergence in interneuron-to-pyramidal neuron connections in the

network, inhibition is received approximately synchronously by all

principal cells in the network every cycle of the oscillation,

regardless of whether or not individual neurons have fired an

action potential recently or not. Principal neurons are most

excitable when inhibition and the associated membrane hyperpo-

larization have maximally decayed, and because the time constant

of the membrane controls this process, it also controls the periods

between membrane excitability, and hence, the period of network

oscillations.

A key aspect of the analysis contained herein is our stated

assumption that constituent neurons, and in particular excitatory

neurons, fire sparsely (i.e on a small fraction of the total cycles),

during the ongoing oscillation. In the converse case, when

excitatory neurons fire at high rates, the conclusions derived from

our analysis of recovery times after inhibition do not hold

generally. In the sparse-firing scenario, in which spikes are

initiated following noise-induced threshold crossings, the trans-

membrane voltage of principal cells recovers to a stable,

subthreshold voltage following inhibitory input. The time constant

of the principal cell membrane has a substantial effect on this

recovery time after inhibition. In contrast, the recovery time of a

tonically-spiking neuron following an inhibitory input is less

sensitive to membrane time constant. Instead, an inhibitory input

will perturb the timing of the next spike in a manner described by

its phase-resetting curve [15,84,85], which is unlikely to be altered

qualitatively by the presence of added conductance, provided one

controls for changes in firing rate. Interestingly, this discrepancy

implies that reduced gamma network models, in which single

oscillating neurons are used to represent the summed activity of a

coherent population [e.g. 21], are unlikely to depend on

membrane conductance or noise magnitude in the same manner.

Although the simulated interneurons in this study fire at higher

average rates than the excitatory cells, they are still excited by

noise and synaptic input rather than intrinsic drive, implying that

phase-response analyses and highly reduced models of the

GABAergic population are also likely to lead to different results

than those we observe.

Our approach in this study has largely been an experimentally-

anchored variety of the analytical approach previously developed

by Brunel and colleagues [35,36,86]. Although the work of Brunel

and colleagues shares points of interest with the current one, there

are important differences between our approaches and findings as

well. In order to make the problem analytically tractable, Geisler

et al. focused on the effects of the ratio between excitatory and

inhibitory currents in the network while imposing the condition

that this ratio be equal in both excitatory and inhibitory neurons.

Increasing this ratio was found to either increase or decrease

network frequency, depending on the relative phases of the two

components. They further showed that factors including the

effective membrane time constant can change the effect of the

drive ratio by changing phasing, but did not report the effects of

membrane time constant on network frequency. We constrain our

study to empirically measured phase relationships and, in

accordance with measured data [26,31], break the constraint of

equal ratios in the two classes of postsynaptic neurons. Consistent

with past results [26,36], we find that even temporary increases in

the relative level of excitatory drive gave rise to lower network

frequencies in the subsequent cycles of the population rhythm.

Regardless of the approach, our results are in general agreement

with those from Geisler et al. that intrinsic properties of constituent

neurons may impact network-level gamma-frequency oscillations,

in contrast with previous suggestions that the only relevant time

scales determining network frequency relate to the kinetics of

synaptic inhibition.

An advantage of studying network activity in a spiking model is

the capability to investigate the fine structure of events, such as the

hypersynchronous bursting observed in the model network.

During epochs of excessive excitation, the model interneuron

population spikes coherently in the 150–250 Hz frequency band

before individual cells enter a state of depolarization block (Fig. 8A
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ii). Similar population-wide activation is observed in the neocortex

of some patients with epilepsy during interictal spikes in the EEG

waveform. In these recordings, measured local field potentials

display an increase in energy at high frequencies (.150 Hz) (B.

Greger, personal communication). Interestingly, as in this model,

depolarization block of local neurons has been proposed as a

generative mechanism for this observed field potential waveform

(B. Greger, personal communication). Additionally, activation of

spike-frequency adaptation mechanisms in model neurons follow-

ing hypersynchronous activation produces a period of relative

network quiescence commonly lasting several hundred millisec-

onds, another feature observed experimentally (B. Greger,

personal communication). As an imbalance in excitatory and

inhibitory elements has been proposed as an underlying cause of

many forms of epilepsy, it is possible that the instability we observe

in the model could be related to the pathological activation

underlying interictal bursting in epileptic individuals.

Balanced excitatory-inhibitory networks may arise, generally, as

a result of two disparate mechanisms. This balance may occur

when an external excitatory input source drives proportional

feedforward inhibition, a phenomenon thought to be necessary for

the temporal gating of feedforward inputs [87,88]. Alternatively,

balanced excitation and inhibition may occur in feedback

networks in which principal cell activity recruits proportional

feedback inhibition [26,36,86,89] or in networks in which a

balance is achieved through a combination of feedforward and

feedback inhibition [90]. If this balance is achieved in a feedback

manner and if the delay associated with feedback inhibition is

sufficiently large, the activity of such a network will be prone to

periodic oscillation [62,86,91]. This follows generally from control

theoretical results; systems including delayed negative feedback

oscillate under broad conditions, particularly when the system

involves substantial positive feedback as well [92].

The interpretation that increased conductance in the fast-

spiking interneuron population leads to faster network oscillations

by decreasing spike latency is consistent with these ideas. Control

theory states that reducing the inherent delay of the negative

feedback process will lead to a system with smaller amplitude,

faster oscillations, as is illustrated in Fig. 6. If the excitatory-

inhibitory delay were decreased further, we would predict that the

network described in this study would approach the asynchronous,

balanced state described elsewhere [86,89]. Control theory also

states that a decrease in the delay associated with negative

feedback will generally improve the stability of a system containing

both positive and negative feedback mechanisms. We found the

increase in interneuron membrane response speed associated with

added background synaptic conductance sufficient to impact the

stability of our modeled network by a substantial amount. In fact,

given the broad range of membrane time constants described

across neuronal cell types, our results indicate that feedback

inhibition mediated by non-fast-spiking neurons would be unlikely

to maintain the stability of a network with any appreciable

recurrent excitatory connectivity. Interestingly, the fact that

control theoretical results from simple systems involving positive

and negative feedback elements are consistent with results from

our simulations and with experimental findings on the gamma

rhythm bolsters the argument that, in some conditions, population

oscillations may arise in the brain as a result of recurrent excitation

and the commensurate feedback inhibition necessary to maintain

stability [26,35,36,62].

Supporting Information

Figure S1 The dependencies of network frequency on conduc-

tance state of RSP neurons and FS neurons are qualitatively

similar in the presence of electrical synapses and faster FS-FS

inhibition. A Power spectra of field potential approximation from

simulations in which all constituent neurons are in a low-

conductance state (black curve) and high-conductance state (red),

when only RSP neurons are in a high-conductance state (blue),

and when only FS interneurons are in the high conductance state

(green). Results are qualitatively similar to that shown in Fig. 4C.

B Distributions of firing rates RSP neurons (i) and FS interneurons

(ii) in the simulations described in A. Compare with Fig. 4B.

C Average RSP neuron membrane potential derivative during

recovery phase (i) and excitation-inhibition delay (ii) for the four

cases described in A. Compare with Figs. 5C and 6A. D Cycle-

averaged RSP neuron membrane potential for the four cases

described in A. Panels C–D illustrate that the same mechanisms

controlling frequency in Figs. 4–6 (main text) are responsible for

the change in frequency described in A.

(TIF)

Table S1 Maximal synaptic conductance values used for

Supporting Fig. S1.

(DOC)

Text S1 Detailed description of the simulations depicted in Fig.

S1.

(DOC)
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