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Early identification of adverse effect of preclinical and commercial drugs is crucial in developing highly efficient
therapeutics, since unexpected adverse drug effects account for one-third of all drug failures in drug development. To
correlate protein–drug interactions at the molecule level with their clinical outcomes at the organism level, we have
developed an integrated approach to studying protein–ligand interactions on a structural proteome-wide scale by
combining protein functional site similarity search, small molecule screening, and protein–ligand binding affinity
profile analysis. By applying this methodology, we have elucidated a possible molecular mechanism for the previously
observed, but molecularly uncharacterized, side effect of selective estrogen receptor modulators (SERMs). The side
effect involves the inhibition of the Sacroplasmic Reticulum Ca2þ ion channel ATPase protein (SERCA) transmembrane
domain. The prediction provides molecular insight into reducing the adverse effect of SERMs and is supported by
clinical and in vitro observations. The strategy used in this case study is being applied to discover off-targets for other
commercially available pharmaceuticals. The process can be included in a drug discovery pipeline in an effort to
optimize drug leads and reduce unwanted side effects.
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Introduction

Early identification of the adverse effects of preclinical and
commercial drugs is crucial in developing highly efficient
therapeutics, since unexpected adverse drug effects contrib-
ute to one-third of all drug failures in the late stage of drug
development [1]. Conventional practices for identifying off-
targets rely on a counterscreen of compounds against a large
number of enzymes and receptors in vitro [2–4]. Computa-
tional approaches could not only save time and costs spent
during in vitro screening by providing a candidate list of
potential off-targets but also provide insight into under-
standing the molecular mechanisms of protein–drug inter-
actions. It has been shown that potential off-targets can be
identified in silico by establishing the structure–activity
relationship of small molecules [5–12]. However, the success
of ligand-based methods strongly depends on the availability
and coverage of the chemical structures used in training, and
few of them directly take the target 3D structure into
account. Although the assessment of protein–ligand inter-
actions by docking studies at the atomic level is extremely
valuable for understanding the molecular mechanism of
adverse therapeutic effects [13,14], protein–ligand docking on
a large scale is hindered by the biased structural coverage of
the human proteome [15] and a lack of practical method-
ologies to accurately estimate the binding affinity [16]. Here
we approach the problem from a different direction by
postulating that proteins with similar binding sites are likely
to bind to similar ligands [17]. In this study we test this
postulate by predicting potential off-target binding sites for
selective estrogen receptor modulators (SERMs). Several
commercial drugs targeting estrogen receptor alpha (ERa)

have been developed to treat breast cancers and other
diseases [18]. However, therapy from these drugs such as
Tamoxifen (IUPAC name: (Z)-2-[4-(1,2-diphenylbut-1-enyl)-
phenoxy]-N,N-dimethyl-ethanamine) (TAM) is associated with
undesirable side effects such as cardiac abnormalities [19],
thromboembolic disorders [20], and ocular toxicity [21]. To
identify off-targets of these SERMs and to attempt to
elucidate the molecular mechanisms explaining their adverse
effects, we searched for similar ligand binding sites across
fold and functional space using a template for the known
SERM binding site in ERa (Protein Data Bank id: 1XPC). The
search used a robust and scalable functional site prediction
and comparison algorithm developed recently in our
laboratory [22; Xie and Bourne, submitted]. Consequently, a
similar inhibitor site is detected for Sacroplasmic Reticulum
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(SR) Ca2þ ion channel ATPase protein (SERCA). The
prediction is further verified with detailed protein–ligand
docking and surface electrostatic potential analysis. Our
prediction correlates well with clinical and biochemical
observations, providing molecular insight into reducing the
adverse effect of SERMs. The strategy used in this case study
could be applied to discover off-targets for other commer-
cially available pharmaceuticals and to repurpose existing
drugs to treat different diseases [Xie, Kinnings, and Bourne,
in preparation]. The process could also be included in a drug
discovery and development pipeline in an effort to optimize
drug leads and reduce unwanted side effects.

Results

We first selected 10,730 structures from the RCSB Protein
Data Bank (PDB) [23] as available structural models from the
human proteome by mapping sequences of all PDB structures
to Ensembl human proteins using a sequence identity above
95% (see Methods). This resulted in non-human proteins
being included, but with this high level of sequence identity,
similarity of structure, and binding site in particular, can be
assumed. These structures form 2,586 sequence clusters using
a sequence identity of 30%. Of the 10,730 structures, we
determined that 1,585 belong to the existing druggable
proteome and correspond to 929 unique drug targets (see
Methods). Using a sequence identity cutoff of 30%, 825
structures are chosen as the representative set of human
druggable proteins. It is estimated that the 825 structures
represent approximately 40% of the known existing drug-
gable targets and 10% of the human druggable genome
(Table S1). However, we estimate that, based on sequence
similarity, and hence structure similarity, six human proteins
can be mapped to one drug target. Thus, by taking homology
models into account, we estimate that the structural coverage
of the druggable human genome is approximately 40% (see
Methods). Thus, while no means complete, we have a

significant number of secondary protein targets that can be
analyzed for off-site binding. In our case study, this was
sufficient to find a candidate secondary target.
These 825 structures were scanned for similarity to the

ligand binding site of ERa (PDB id: 1XPC) with our sequence
order independent profile–profile alignment algorithm
(SOIPPA) [Xie and Bourne, submitted]. A Sarcoplasmic
Reticulum (SR) Ca2þ ion channel ATPase protein (SERCA)
(PDB id: 1WPE) showed the most significant similarity with p-
value , 0.001. The significance of SERCA was confirmed
using a search with a larger set of 2,586 non-redundant
human homologous proteins that included both druggable
and non-druggable proteins (Figure S1). Besides SERCA,
several other proteins exhibited significant similarity to the
ERa ligand binding sites (Table S2). These sites are the subject
of an ongoing investigation. It is noted that the SERCA
structure 1WPE is from Oryctolagus cuniculus (rabbit), as the
human SERCA is absent from the PDB. A BLAST [24] search
against the Ensembl version of the human genome [25]
revealed that human and rabbit SERCA share 96% sequence
identity without insertion or deletion. Moreover, the trans-
membrane domains and known ligand binding site residues
were found to share 98% and 100% sequence identity,
respectively (Figure S2). Therefore, the rabbit SERCA
structure was used as a reasonable structural model for
human SERCA throughout this study.
SERCA plays a key role in regulating cytosolic calcium

levels by accumulating calcium in the lumen [26]. SERCA
consists of four SCOP domains [27]: a double-stranded beta-
helix; a HAD-like domain; an ATP-binding domain N of
metal cation-transporting ATPase; and a transmembrane
domain M with an up–down bundle architecture. The
predicated binding site is located in the all-helix trans-
membrane domain. It is noted that the ERa ligand binding
domain itself adopts a similar all-helical orthogonal bundle
architecture, but its similarity to SERCA cannot be estab-
lished directly from structural comparison since the rmsd is
5.8 Å, the Z-score 3.7, and the sequence identity 7.1% as
determined by CE alignment [28].
A search through protein–ligand complex structures in the

PDB reveals that two co-crystal inhibitors, thapsigargin (TG1)
and 2,5-ditert-butylbenzene-1,4-diol (BHQ) (PDB id: 2AGV)
[29] bind in the vicinity of the predicted binding sites and are
in contact with part of the predicted site (Figure 1). If amino
acid residues whose atomic distances to the inhibitors are less
than 6.0 Å are considered as the binding site, 30% of residues
overlap between known and predicated site. Thus SERM is
predicted to bind to a site similar to these two inhibitors. It is
suggested that the two calcium ions, which bind in the region
of the putative binding site (Figure 2), are prevented from
binding by SERM with consequences that are outlined
subsequently.
In a reverse search, we scanned the set of proteins

comprising the druggable proteome against the TG1 and
BHQ sites of SERCA. ERa receptors were ranked at the top
with a p-value , 0.001 for the TG1 site but a p-value of 0.052
for the BHQ site (Figure 3). Figure 4 illustrates that the SERM
binding site is part of the predicated site. This complemen-
tarity of binding confirms the similarity between the SERCA
inhibitor and the SERM binding site with high confidence.
As a further test, we compared the electrostatic potential

(ES) between the binding site in ERa and SERCA, as ES is an
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Author Summary

Early identification of the side effects of preclinical and commercial
drugs is crucial in developing highly efficient therapeutics, as
unexpected side effects account for one-third of all drug failures in
drug development and lead to drugs being withdrawn from the
market. Compared with the experimental identification of off-target
proteins that cause side effects, computational approaches not only
save time and costs by providing a candidate list of potential off-
targets, but also provide insight into understanding the molecular
mechanisms of protein–drug interactions. In this paper we describe
an integrated approach to identifying similar drug binding pockets
across protein families that have different global shapes. In a case
study, we elucidate a possible molecular mechanism for the
observed side effects of selective estrogen receptor modulators
(SERMs), which are widely used to treat and prevent breast cancer
and other diseases. The prediction provides molecular insight into
reducing the side effects of SERMs and is supported by clinical and
biochemical observations. The strategy used in this case study is
being applied to discover off-targets for other commercially
available pharmaceuticals and to repurpose existing safe pharma-
ceuticals to treat different diseases. The process can be included in a
drug discovery pipeline in an effort to optimize drug leads, reduce
unwanted side effects, and accelerate development of new drugs.
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important identifier of ligand binding [30]. As seen in Figure
5, the SERM binding site is relatively negatively charged.
Similarly, the binding pocket of SERCA also shows a negative
potential. These observations are consistent with the binding
site similarity predicated from SOIPPA at the residue level.

To understand the molecular mechanism of SERM’s
inhibition on SERCA, we performed a detailed protein–
ligand interaction study by docking a series of SERM
molecules to both SERCA and ERa proteins with eHits 6.2
[31] and Surflex 2.1 [32] docking software. These two free
software packages were selected because of their relatively
high accuracy, speed, and ease of use in a large-scale study
[33,34]. Moreover, these two packages adopt different
strategies during conformational search, offering independ-
ent confirmation of our findings. The conformational search
in eHits is performed by breaking molecules into rigid
fragments and docking them independently. The final bind-
ing pose is determined by linkage and optimization of the
reconstructed ligands from the fragments. The conforma-
tional search in Surflex relies on generation of an idealized
binding site ligand called protomol and alignment of the
ligand to the protomol to achieve maximum molecular
similarity. The most similar poses are subject to local energy
minimization. Both eHits and Surflex use empirical scoring
functions but with different terms and parameterization. The
molecules studied included TAM and its metabolite 4-
hydroxytamoxifen (OHT), raloxifene (RAL), bazedoxifene
(BAZ), ormeloxifene (ORM), and lasofoxifene (LAS). Figure
6 depicts their chemical structures. These molecules consist
of two moieties: a phenoxy-ethanamine moiety (N-moiety)
and a more hydrophobic fragment with two benzene rings (C-
moiety). Bonds to break these two moieties are marked by the
red bar in Figure 6. Table 1 shows docking scores from eHits.
Both of the predicated inhibition sites (TG1 and BHQ) from
SERCA are able to bind to TAM and its analogs. However, it is
more likely that the TG1 site is the preferred off-target
binding site for SERMs because its binding affinity is
consistently greater than that of the BHQ site. Analysis of
their binding poses when bound to the TG1 site indicates that
the N-moiety of these molecules adopt similar binding poses
with a specific salt interaction between Glu255 and the amine

Figure 1. Comparison of the Predicted SERCA Ligand Binding Site with That of Known SERCA Inhibitors TG1 and BHQ

The predicted binding site is represented by white spheres, BHQ by purple spheres, and TG1 by cyan spheres. (A) and (B) are two different perspectives
centered on BHQ and TG1, respectively.
doi:10.1371/journal.pcbi.0030217.g001

Figure 2. Comparison of the Predicted SERCA Ligand Binding Site (White

Spheres) and the Two Calcium Ions (Orange Spheres)

doi:10.1371/journal.pcbi.0030217.g002
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groups, as shown in Figure 7. This charge neutralization is
also observed in ERa when binding to SERMs and is
considered the origin of the antiestrogenic effect of SERMs
[35]. The binding poses of the C-moiety are more variable due
to different conformational constraints. Some of them, such
as TAM and BAZ, may have stronger aromatic interactions
with the receptor than other SERMs. The predicated binding
poses are cross-docked with both eHits 6.2 and Surflex 2.1
and show consistent patterns in binding poses and affinities.

Binding affinity alone may not be conclusive because of the
poor accuracy of the scoring function [16,36,37]. However,
binding poses are able to be predicated reasonably accurately
by most docking programs [16,38]. To leverage the strength
and weakness of existing docking algorithms, we docked more
than 1,000 decoy molecules for both the N-moiety and the C-
moiety into the predicated SERCA off-target and primary
ERa target sites, respectively. In this way, similar binding sites
will show a strong docking score correlation independent of
the scoring function, assuming that binding poses are
consistent between the two sites. Alternatively, the correla-
tion will be weak if the docking pose is random or the two
sites are dissimilar. There were two reasons to break down the
molecule into N- and C-moieties. First, the conformational
search space of the molecules used in docking will be reduced
by using a small fragment and is more likely to predicate their
binding pose consistently. Second, the N-moiety has been
predicated to have more favorable interactions than the C-
moiety. The separate evaluation of their binding affinities will
further verify the predicated binding poses and provide
insight into designing highly specific SERMs to minimize off-
target binding. As shown in Figure 8, the correlation of the
eHits docking scores of the N- and C-moiety analogs between

the SERM and SERCA TG1 sites is strong relative to that of
the BHQ site (Figure 8A and 8C). Taking into account that
the correlation between docking scores and experimental
affinity is around 0.4–0.6 for most of docking programs
[16,36,37], the N-moiety correlation coefficient of 0.46
between SERM and TG1 sites is close to the limit of docking
score accuracy. Moreover, the docking score distribution is
centered around an optimal correlation line between two
identical binding sites (green line in Figure 8) with a standard
deviation of 0.88, much less than the 2.33 between the SERM
and the BHQ site. Docking score correlations from Surflex
show the same pattern as those from eHits. The N-moiety
correlation coefficients are 0.50 and 0.44 for the TG1 and
BHQ sites, respectively. The corresponding standard devia-
tions are 1.51 and 2.14, respectively. These results are
consistent with the predicated binding poses and the relative
binding affinities, further supporting the notion that the
SERCA TG1 site is similar to the SERM binding site.
There is experimental evidence to support our theoretical

off-target binding site. It has been shown that pretreatment
with TAM inhibits TG19s effect in increasing the intracellular
Ca2þ concentration [39–41]. One potential mechanism for
this observed effect is that TAM binds to the same site as TG1,
thus blocking its effect, although it is not clear how TG1
inhibition of SERCA leads to an increase in Ca2þ concen-
tration from these experiments. Our findings indicate that
TAM is able to bind directly to the TG1 site and for the first
time suggests an inhibition mechanism in atomic detail.
Moreover, residue 309 (Glu-309) is included in the BHQ
binding sites. It is known that this residue acts as a
cytoplasmic gate that allows the release of calcium ions [29].
It is postulated that if TAM interacts with Glu-309 or its
interacting partner, it can affect the function of Glu-309 and
thus the transport function of the calcium pump as a whole.
Maintaining the level of calcium in the cell is critical to

normal cell function. Previous clinical findings have shown
that TAM therapy is associated with undesirable side effects
such as cardiac abnormalities [19], thromboembolic disorders

Figure 3. Distribution of Binding Site Similarity Scores from Searching

825 Representative Structures against SERCA for BHQ (A) and TG1 (B)

Sites, Respectively

The ERa is ranked top in both cases as shown by the arrows.
doi:10.1371/journal.pcbi.0030217.g003

Figure 4. Predicated ERa Ligand Binding Site from Reverse Search by

Querying the SERCA TG1 Site (White Spheres)

The known bound ligand is shown in a ball-and-stick representation
(gold).
doi:10.1371/journal.pcbi.0030217.g004
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[20], and ocular toxicity [21]. Recent physiological studies
suggest that TAM [42,43], anti-estrogens/b-estradiol [44],
phytoestrogens [45], and ovarian sex hormones [46] play
important roles in regulating calcium uptake activity of
cardiac SR. Given that the gradient concentration of calcium
ions in SR is important for muscle contraction [26], it is
possible that the cardiac abnormality is caused by its
inhibition of SERCA. It has been observed that TAM
significantly reduces intracellular calcium concentration
and release in the platelets, which is correlated with platelet
adhesion and aggregation [47]. The loss of calcium homeo-
statis in the platelets may originate from inhibition of SERCA
by TAM. In addition, there is evidence that diethylstilbestrol
increases intracellular calcium in lens epithelial cells by
inhibiting SERCA [48] and cataracts result from TG1-
inhibited SERCA upregulation [49,50]. We believe the
evidence for off-site binding of SERMs to SERCA and the
proposed impact that it has on calcium homeostatis leads to
the reported adverse effects. As shown in Table 1, in general,
the off-target TG1 binding affinity increases with an increase
in primary main target binding affinity. However, the binding
affinity difference for RAL between target and off-target
binding is larger than TAM. Thus, it is expected that RAL
exhibits less competitive binding of the SERCA protein,

resulting in less adverse effects than TAM. This predication is
consistent with clinical studies that show RAL has less adverse
effect of thromboembolic disorder and cataract formation
than TAM [18]. Among the molecules studied, ORM is
predicated as one of the least SERCA competitive binding
therapeutics. Clinical studies indeed show that ORM is safe
for long-term usage with less adverse effects [51]. LAS and
BAZ are newly developed breast cancer therapeutics cur-
rently in clinical trial. Although they show the strongest
binding to ERa, they also potentially bind strongly to off-
targets. It is expected that LAS and BAZ may have similar
competitive binding profiles to RAL when binding to SERCA.
If indeed this competitive binding and the associated side
effects prove to be consistent, the value of this approach to
lead optimization and drug development will be further
supported.

Discussion

Adverse effects of clinical drugs begins at the molecular
level, involve complex biological networks, and ultimately are
measured by clinical outcomes at the level of the whole
organism [52]. To correlate protein–drug interactions at the
molecule level with their clinical outcomes requires, as a first
step, a systemic study of protein–ligand interactions on a
proteome-wide scale [5]. Although small molecular similarity

Figure 5. Electrostatic Potential (ES) of the Ligand Binding Site in: (A) the

Original Drug Target ERa (PDB id: 1XPC), and (B) Predicated Off-Target

SERCA (PDB id: 2AGV)

The surface is colored according to the electrostatic potential calculated
from APBS [60]. Part of the surface that covers the binding site in 1XPC is
removed for better visualization. The green stick model is the co-
crystallized ligand (2S,3R)-3-(4-hydroxyphenyl)-2-(4-f[(2R)-2-pyrrolidin-1-
ylpropyl]oxygphenyl)-2,3-dihydro-1,4-benzoxathiin-6-ol (AIT). The white
stick model is the co-crystallized ligand thapsigargin (TG1). The color
scale is set from �30 to 30 kT/e using a linear scale to elucidate ES
around the ligand binding sites.
doi:10.1371/journal.pcbi.0030217.g005

Figure 6. Six Selective Estrogen Receptor Modulators Either Commer-

cially Available or in Clinical Trial

N- and C-moieties are broken down by bonds marked with red bars and
on the left and the right sides of 2D schema, respectively.
doi:10.1371/journal.pcbi.0030217.g006
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alone can provide valuable clues for identifying off-targets
[5–12], structural similarity does not always imply the same
pattern of biological activity. Conversely, chemicals with
dissimilar structures may show the same biological mecha-
nisms of action [53,54]. In principle, the direct assessment of
protein–ligand interactions for every ligand and every target

in the human proteome will be most valuable for under-
standing the molecular mechanisms of therapeutic adverse
effects by identifying off-target cross-reactivity [13,14]. How-
ever, in silico screening through protein–ligand docking is
not feasible on a proteome-wide scale. Geometric properties
of the protein structure, such as pockets and cavities, and
evolutionary linkages between proteins across fold and
function space provide rational constraints to address the
docking problem [22; Xie and Bourne, submitted]. Thus,
identification of similar ligand binding sites significantly
reduces the search space that docking needs to address. In
this study, we demonstrate the utility of our method to
identify the possible mechanism of adverse effect of
commercial drugs by combining functional site similarity
searching on a structural proteome-wide scale, small mole-
cule screening, and conventional protein–ligand docking.
With advances in structural genomics [15,55] and homology
modeling [56], it is possible for us to scan a significant and
increasing fraction of the whole human proteome to identify
for the likely off-targets and to systematically study adverse
drug effects at the organism level.

Table 1. Docking Scores (Unit of log(Kd)) for the SERM Binding
Site to ERa and Predicated Off-Target Binding Sites of SERCA

SERM ER Site SERCA TG1

Site

SERCA BHQ

Site

Bazedoxifene (BAZ) �9.44 6 0.54 �7.23 6 0.13 �4.72 6 0.22

Lasofoxifene (LAS) �8.66 6 0.40 �6.54 6 0.20 �3.58 6 0.38

Ormeloxifene (ORM) �8.67 6 0.18 �5.84 6 0.33 �4.69 6 0.22

Raloxifene (RAL) �8.08 6 0.64 �5.78 6 0.23 �4.49 6 0.40

4-hydroxytamoxifen (OHT) v7.67 6 0.47 �5.40 6 0.15 �3.42 6 0.69

Tamoxifen (TAM) �7.30 6 0.28 �5.64 6 0.28 �3.06 6 0.17

The docking scores are taken from eHits [31].
doi:10.1371/journal.pcbi.0030217.t001

Figure 7. Docking Poses of Six SERMs at the SERCA TG1 Site

(A) TAM, (B) OHT, (C) ORM, (D) LAS, (E) RAL, and (F) BAZ. SERCA is represented as a white backbone. Side chains of Phe256/834 and Glu255 are
represented with stick models. SERMs are represented as ball and stick models. Carbon atoms are colored green; oxygens red; nitrogens blue; sulphur
orange. The potential salt bridge interaction between the amine and Glu255 is indicated by an orange dashed line.
doi:10.1371/journal.pcbi.0030217.g007

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e2172329

Molecular Mechanism for Adverse Drug Effect



We believe our integrated approach is immediately
valuable to the drug discovery and development process.
The predicated panel of off-targets can be used to prioritize
in vitro screening experiments, thus reducing costs and
increasing our ability to identify adverse drug effects.
Furthermore, the predicated off-target binding mechanisms
provide insights for optimizing drug leads by taking into
account not only targeted receptors but also off-targets so
that unwanted side effects can be reduced in the early stage of
drug development. In our SERM case study, the N-moiety
binding sub-sites of ERa and SERCA are more similar than
the C-moiety sub-sites. Thus, it is more likely that we will
achieve highly specific SERMs by optimizing the C-moiety. In
certain cases the primary and off-target binding sites may be
highly similar. As a result, it is difficult, if not impossible, to
reduce the competitive binding of the off-target by lead
optimization. Other strategies have to be applied to minimize
the off-target binding; for example, through an increase in
bioavailability of drugs, or optimization of the administration
regimen. Knowledge of off-targets will be invaluable for this
purpose. For instance, SERCA’s competitive binding to
SERMs can be reduced by delivering SERMs enveloped with
hydrophobic agents. SERMs have to first pass through the
lipid bilayers of the cytoplasm membrane where the
predicated SERMs off-target binding site in SERCA is located.
Conceivably, the envelope will reduce off-target binding and
permit more of the respective drugs to reach the final ERa
target in the nucleus.

Conclusion
SERMs are potent anti-cancer drugs. By combining, first,

functional site similarity searching on a structural proteome-

wide scale, second, small molecule screening, and, finally,
protein–ligand docking, a potential mechanism for the
adverse effect of SERMs has been established. Specifically,
we provide evidence for off-target binding of SERMs,
resulting in the inhibition of a SERCA transmembrane
domain which leads to a disruption in calcium homeostasis.
The computational prediction presented here is supported
by experimental observations from in vitro and clinical
studies. Our methodology provides opportunities to develop
further refined SERMs with fewer side effects. On a larger
scale there exists the opportunity to explore off-targets
binding for any existing pharmaceutical or compound of
pharmaceutical interest for which a 3D structural model is
available. At this time we are beginning to systematically
analyze all commercially available pharmaceuticals in an
effort to explain any observed side effects.

Methods

Structural models of the human proteome. Sequences of all PDB
[23] structures are mapped to Ensembl [25] human protein sequences
(43,738 proteins) using BLAST [24]. A total of 10,730 PDB structures
map to 3,158 Ensembl human proteins with a sequence identity above
95%. These 10,730 structures are considered as structural models for
the human proteome. They form 2,586 sequence clusters when using
a sequence identity of 30%.

Structural coverage of the druggable human proteome. The
existing druggable human proteome is determined by mapping
Ensembl [25] human protein sequences against all sequences of drug
targets from Drugbank [57] using BLAST [24]. Homologous sequences
from the human proteome, with e-values less than 0.001, constitute
the druggable human proteome—a total of 13,865 human proteins
corresponding to 2,002 unique drug targets. Among the 10,730
human protein structural models, 1,585 belong to the existing
druggable human proteome and correspond to 929 unique drug

Figure 8. Correlation of Binding Affinity Scores by Docking Molecular Analogs of N-Moiety and C-Moiety of SERMs to ERa and SERCA Proteins

(A,B) N- and C-moieties to ERa and SERCA TG1 sites, respectively.
(C,D) N- and C-moieties to ERa and SERCA BHQ site, respectively. The red line represents the linear regression of docking scores. The green line indicates
the optimal score correlation between two identical binding sites. The docking score is from eHits [31]. Docking score correlations from Surfex [32]
show the same trends although the absolute values are different (unpublished data).
doi:10.1371/journal.pcbi.0030217.g008
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targets. 825 sequence clusters are formed after clustering the
druggable structures with a sequence identity of 30%. One structure
is randomly selected from each of the clusters to constitute a
representative set of druggable structures. These structures represent
approximately 10% of the complete druggable human proteome and
40% of existing drug targets. A flow chart depicting this selection
process is given in Figure S3.

Ligand binding site similarity. Protein structures are represented
by Delaunay tessellation of Ca atoms and characterized with
geometric potentials [22]. The similar residue clusters for any protein
to a ligand binding site are detected with a SOIPPA algorithm [Xie
and Bourne, submitted]. To evaluate the p-value for the similarity
score calculated from the site comparison method, we estimate the
background distribution using a non-parametric method. First, the
drug target of interest is compared against the 825 representative sets
of human druggable structures. We remove those hits that are in the
same fold as the query because they will probably be true positives.
Then a kernel density estimator is used to estimate the background
probability distribution of the binding site alignment scores. A
Gaussian kernel with fixed bandwidth is used. The optimal bandwidth
is estimated from the data by using a least square cross-validation
approach [58]. Finally, this estimated density function is used to
calculate a p-value for the particular pair of ligand sites being
compared.

Protein–ligand docking. Protein–ligand docking is conducted
using the eHits [31] and Surflex 2.1 [32] software packages. Default
parameter settings were applied when using Surflex. For eHits the
accuracy is set to the highest (accuracy ¼ 6) during docking. The
highest accuracy means that the most extensive conformational
search is performed to determine the ligand binding pose and
affinity. Structures of ERa and SERCA proteins were downloaded
from the RCSB PDB [23]. The PDB ids of ERa proteins are 1xpc, 3ert,
1r5k, 1err, and 2jfa. The PDB ids of SERCA proteins are 2agv, 1xp5,
1wpg, 1iwo, 2c88, and 2eat.

Small molecule screening. The decoy molecules are generated by
querying the N- and C-moiety of TAM against the ZINC database [59]
using a 2D subgraph similarity search through the associated Web site
(http://blaster.docking.org/zinc/). The query molecular structures of
the N- and C-moieties are shown in Figure 9. The query generates
1,638 hits to the N-moiety and 1,128 hits to the C-moiety,
respectively.

Electrostatic potential calculation and molecular visualization. The
electrostatic potential of the molecule is calculated using the
Gemstone interface (http://gemstone.mozdev.org) to the Adaptive
Poisson-Boltzman Solver (APBS) [60]. For calculation of the original
ERa drug target (PDB id: 1XPC), the dielectric constant is set to 2.0
for the protein and 78.54 for the solvent. For the off-target SERCA
(PDB id: 2AGV), the constant is set to 4.0 for the protein and 78.54 for
the solvent, as this molecule is embedded in the phospholipid bilayer.
Other parameters are set to defaults as provided by the Gemstone
interface. Visualization of the structures is performed using Chimera
[61].

Supporting Information

Figure S1. Background SOIPPA Raw Score Distributions of the Non-
Redundant Human 2,586 Set and the Druggable 825 Set When
Querying the ERa Ligand Binding Site

The distribution of the 2,586 set is slightly shifted to lower scores than
that of the 825 set, with means of 44.82 and 48.18, respectively. This is
expected because the 2,586 set includes proteins that may not be able
to bind drug-like molecules with high affinity.

Found at doi:10.1371/journal.pcbi.0030217.sg001 (1.0 MB TIF).

Figure S2. Alignment of Rabbit and Human SERCA Proteins

The transmembrane domain is underlined. The residues centered
around TG1 within 10 Å are colored red.

Found at doi:10.1371/journal.pcbi.0030217.sg002 (23 KB DOC).

Figure S3. Flow Chart Depicting the Selection Process of 825
Representative Human Druggable Structural Models

Found at doi:10.1371/journal.pcbi.0030217.sg003 (106 KB TIF).

Table S1. PDB Structures Representing the Druggable Human
Proteome

Found at doi:10.1371/journal.pcbi.0030217.st001 (130 KB DOC).

Table S2. Top Ten Off-Fold Hits Other Than SERCA Found by
Searching the ERa Ligand Binding Site Using SOIPPA

Top-ranked proteins that belong to the nuclear receptor fold are not
listed because they share the same fold as the template ERa

Found at doi:10.1371/journal.pcbi.0030217.st002 (1.0 MB TIF).

Accession Numbers

The protein accession numbers for estrogen receptor alpha are
UniProt (http://www.pir.uniprot.org/) P03372 and Protein Data Bank
(http://www.rcsb.org/pdb/home/home.do) id 1XPC, and for sarcoplas-
mic/endoplasmic reticulum calcium ATPase 1 are UniProt P04191
and PDB id 2AGV, 1WPE.
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