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Abstract

The use of mutagenic drugs to drive HIV-1 past its error threshold presents a novel intervention strategy, as suggested by
the quasispecies theory, that may be less susceptible to failure via viral mutation-induced emergence of drug resistance
than current strategies. The error threshold of HIV-1, mc, however, is not known. Application of the quasispecies theory to
determine mc poses significant challenges: Whereas the quasispecies theory considers the asexual reproduction of an
infinitely large population of haploid individuals, HIV-1 is diploid, undergoes recombination, and is estimated to have a
small effective population size in vivo. We performed population genetics-based stochastic simulations of the within-host
evolution of HIV-1 and estimated the structure of the HIV-1 quasispecies and mc. We found that with small mutation rates,
the quasispecies was dominated by genomes with few mutations. Upon increasing the mutation rate, a sharp error
catastrophe occurred where the quasispecies became delocalized in sequence space. Using parameter values that
quantitatively captured data of viral diversification in HIV-1 patients, we estimated mc to be 7|10{5{1|10{4

substitutions/site/replication, ,2–6 fold higher than the natural mutation rate of HIV-1, suggesting that HIV-1 survives close
to its error threshold and may be readily susceptible to mutagenic drugs. The latter estimate was weakly dependent on the
within-host effective population size of HIV-1. With large population sizes and in the absence of recombination, our
simulations converged to the quasispecies theory, bridging the gap between quasispecies theory and population genetics-
based approaches to describing HIV-1 evolution. Further, mc increased with the recombination rate, rendering HIV-1 less
susceptible to error catastrophe, thus elucidating an added benefit of recombination to HIV-1. Our estimate of mc may serve
as a quantitative guideline for the use of mutagenic drugs against HIV-1.
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Introduction

The high mutation rate of HIV-1 coupled with its massive

turnover rate in vivo results in the continuous generation of

mutant viral genomes that are resistant to administered drugs and

can evade host immune responses [1,2]. The design of drugs and

vaccines that exhibit lasting activity against HIV-1 has remained a

challenge [3–6]. A promising strategy to overcome this challenge

has emerged from insights into viral evolution gained from the

molecular quasispecies theory [7,8]. The theory predicts that a

collection of closely related but distinct genomes, called the

quasispecies, exists in an infected individual when the viral

mutation rate is small. When the mutation rate is increased

beyond a critical value, called the error threshold, the quasispecies

delocalizes in sequence space, inducing a severe loss of genetic

information–a phenomenon termed error catastrophe–and com-

promising the viability of the viral population. It is widely believed

therefore that viral mutation rates may have been evolutionarily

optimized to lie close to but below their error thresholds so that

viral diversity, and hence adaptability, is maximized while

genomic identity is maintained [9–11]. Consequently, a small

increase in the viral mutation rate may trigger an error

catastrophe. In accordance, 4-fold increase in the mutation rate

induced a dramatic 70% loss of poliovirus infectivity in vitro [9].

Chemical mutagens have been employed successfully to enhance

the mutation rates of a host of other viruses [10–13] including

HIV-1 [14–17]. An HIV-1 mutagen is currently under clinical

trials [18].

Identification of the host restriction factor APOBEC3G (A3G)

has suggested that mutagenesis might also be a natural antiviral

defence mechanism (reviewed in [19,20]). A3G (and, to a smaller

extent, APOBEC3F) induces G to A hypermutations in HIV-1,

which when unchecked can severely compromise the viability of

HIV-1. Interestingly, HIV-1 appears to have evolved a strategy to

resist A3G. The HIV-1 protein Vif targets A3G for proteasomal

degradation and suppresses its mutagenic activity. Vif thus

presents a novel drug target. Inhibiting Vif may enable A3G to

exert mutagenic activity adequate to compromise HIV-1. Indeed,

significant efforts are underway to develop potent HIV-1 Vif-

inhibitors [21].

The use of mutagenesis as an antiviral strategy requires caution

because increasing the mutation rate to values below the error

threshold could prove counterproductive. The quasispecies theory

predicts that a suboptimal increase in the mutation rate would

result in an increase in viral diversity that may not be accompanied
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by a substantial loss of genetic information, which in turn may

facilitate the emergence of mutant genomes resistant to drugs and/

or host-immune responses [22]. The mutagenic activity of drugs

and of host-factors like A3G is dose-dependent [9,17,23]. It is

important, therefore, to identify the minimum exposure to

mutagenic drugs that would ensure that the error threshold of

HIV-1 is crossed. The error threshold of HIV-1 is not known.

Translation of the predictions of the quasispecies theory to

HIV-1 has remained a challenge: The theory considers the asexual

reproduction of a haploid organism with an infinitely large

population size, whereas HIV-1 is diploid, undergoes recombina-

tion [24–27], and is estimated to have a small effective population

size in vivo, ,102–105 cells [28–37]. Several studies have

advanced the quasispecies theory to account for the diploid nature

of HIV-1 and recombination [38–50]. The small effective

population size of HIV-1 in vivo, however, renders the determin-

istic formalism of the quasispecies theory inadequate. Population

genetics-based stochastic simulations have been resorted to as an

alternative [37,40,41,47,49,51–53]. Such simulations often make

significant departures from the quasispecies theory that may

render an error catastrophe untenable. For instance, a sharp error

catastrophe may not occur with certain fitness landscapes [54–58].

Further, in the large population size limit, the simulations may not

converge to the predictions of the quasispecies theory [59]. Indeed,

whether population genetics- or quasispecies theory-based ap-

proaches are more appropriate for describing viral evolution has

been the subject of an ongoing debate [56].

We have recently developed stochastic simulations of HIV-1

evolution in vivo that incorporate key aspects of the HIV-1

lifecycle and the underlying evolutionary forces, namely, mutation,

multiple infections of cells, recombination, fitness selection using a

landscape representative of HIV-1, and random genetic drift

[37,47,49]. The simulations quantitatively described data of the

evolution of viral diversity and divergence in HIV-1 infected

individuals over several years following seroconversion, indicating

that the simulations faithfully mimicked HIV-1 evolution in vivo

[37]. Here, we applied the simulations to determine the structure

of the HIV-1 quasispecies and estimate its error threshold. In the

limit of large population sizes and in the absence of recombination,

our simulations converged to the quasispecies theory, thus

bridging the gap between population genetics- and quasispecies

theory-based approaches to describing viral evolution and

suggesting the existence of an error threshold for HIV-1. We

estimated the error threshold of HIV-1 to be ,2–6-fold higher

than its natural mutation rate. HIV-1 thus appears to survive close

to its error threshold and may be readily susceptible to mutagenic

drugs.

Results

Simulations of the within-host evolution of HIV-1
We performed simulations as follows. Uninfected cells were

synchronously infected by a pool of identical virions, each cell

potentially infected by multiple virions. Viral genomic RNA in

cells were then reverse transcribed to proviral DNA. Reverse

transcription involved mutation and recombination. The proviral

DNA were transcribed to viral genomic RNA, which were

assorted into pairs and released as progeny virions. Virions from

the pool of progeny virions were selected according to their

relative fitness to infect a new generation of uninfected cells, and

the cycle was repeated. Following several thousand generations

and several such realizations, the expected structure of the viral

quasispecies at a given mutation rate was determined. Simulations

at different mutation rates allowed identification of the error

threshold. Details of the simulation procedure and parameter

values employed are presented in Methods.

Evolution of genome frequencies and the viral
quasispecies

We present first the evolution of the frequencies of genomes in

different Hamming classes in one realization of our simulations

(Fig. 1). Hamming class j contains genomes carrying j mutations

with respect to the fittest, or master, sequence; thus, 0ƒjƒL,

where L is the genome length. Without loss of generality, we let

the fittest sequence be the founder sequence (Fig. S1). Thus,

initially, the distribution of genome frequencies was localized at

Hamming class zero. As time (or the number of generations)

progressed, mutant genomes arose and higher Hamming classes

were populated (Fig. 1A). The average number of mutations

contained in the proviral pool gradually increased and the peak of

the frequency distribution shifted to higher Hamming classes.

After a certain number of generations, here ,500, the distribution

became steady; no net shift occurred from generation 500 to

10000. Correspondingly, the Shannon entropy, H, rose from zero

at the start and attained the steady value, H?, of &0:44 by

generation 500 (Fig. 1B). We averaged the above frequencies over

the last 1500 generations and over several realizations of our

simulations to obtain the expected frequency distribution at steady

state. The latter distribution yielded the structure of the viral

quasispecies (Fig. 1A).

Error catastrophe
Upon increasing the mutation rate, m, the quasispecies shifted to

higher Hamming classes indicating the increasing accumulation of

mutations (Fig. 2A). The peak Hamming class (i.e., the Hamming

class with the maximum frequency) shifted gradually from &20 to

&50 as m increased from 10{3 to 4:8|10{3 substitutions/site/

replication. (Note that L~200 nucleotides in Fig. 2A.) At this

point, a small increase in m to 5|10{3 substitutions/site/

replication produced a remarkable jump in the peak Hamming

class to &85. Subsequent increases in m again caused only gradual

shifts in the peak Hamming class. This jump was more dramatic

Author Summary

Currently available antiretroviral drugs curtail HIV infection
but fail to eradicate the virus. A strategy of intervention
radically different from that employed by current drugs
has been proposed by the molecular quasispecies theory.
The theory predicts that increasing the viral mutation rate
beyond a critical value, called the error threshold, would
cause a severe loss of genetic information, potentially
leading to viral clearance. Several chemical mutagens are
now being developed that can increase the mutation rate
of HIV-1. Their success depends on reliable estimates of
the error threshold of HIV-1, which are currently lacking.
The quasispecies theory cannot be applied directly to HIV-
1: the theory considers an infinitely large population of
asexually reproducing haploid individuals, whereas HIV-1 is
diploid, undergoes recombination, and is estimated to
have a small effective population size in vivo. We
employed detailed stochastic simulations that overcome
the limitations of the quasispecies theory and accurately
mimic HIV-1 evolution in vivo. With these simulations, we
estimated the error threshold of HIV-1 to be ,2–6-fold
higher than its natural mutation rate, suggesting that HIV-
1 survives close to its error threshold and may be readily
susceptible to mutagenic drugs.

Error Threshold of HIV-1
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with larger genome lengths. With L~1000 nucleotides, the peak

Hamming class jumped from &30 to &500 when m increased

from 7:2|10{4 to 7:6|10{4 substitutions/site/replication

(Fig. 2B). Correspondingly, H? jumped from 0.24 to &1 as m

increased from 7:2|10{4 to 7:6|10{4 substitutions/site/repli-

cation (Fig. 2C). H?~1 implied that all possible genomes

occurred with equal frequencies. The number of distinct genomes

in Hamming class j is
L

j

� �
. Thus, if all genomes occurred with

equal likelihood, the Hamming class frequencies would follow

xj~
L

j

� �
=
PL
j~0

L

j

� �
. Indeed, we found that the quasispecies

structure obtained by our simulations was identical to the latter

distribution of Hamming class frequencies (Fig. 2B inset),

confirming that all genomes occurred with equal likelihood when

H?&1. Thus, the jump in H? indicated the transition to error

catastrophe.

Error threshold
The transition from low H? to H?&1 occurred over a narrow

range of values of m. For m within this range, the quasispecies

structure was bimodal because error catastrophe occurred in some

realizations and not in others depending on the stochastic

variations encountered. For illustration, we present several

independent realizations of our simulations at three values of m,

namely, 10{4, 7:3|10{4 and 10{3 substitutions/site/replication

(Fig. 3), where the first is well below the transition from low H? to

H?&1, the second is in the transition region, and the third is well

above the transition in Fig. 2B. With m~10{4 substitutions/site/

replication, in each realization H rose from zero and reached

H?&0:1 in &500 generations (Fig. 3A). There was little variation

between the realizations. With m~10{3 substitutions/site/repli-

cation, H rose from zero and reached H?&1 in &1000
generations, again with little variation between the different

realizations (Fig. 3C). With m~7:3|10{4 substitutions/site/

replication, however, we found substantial variation between

realizations (Fig. 3B). H rose from zero and reached a plateau

value of &0:25 in &500 generations. In some realizations, H
remained at this value till the end, i.e., 10000 generations. In other

realizations, at some intermediate time, which differed from

realization to realization, H rose sharply from &0:25 and reached

1. H remained at 1 subsequently. Averaging the Hamming class

frequencies thus yielded the bimodal structure of the quasispecies

observed for m~7:3|10{4 substitutions/site/replication (Fig. 2B),

where realizations with H?&0:25 yielded the peak at Hamming

class &30 and realizations with H?&1 yielded the peak at

Hamming class &500.

Our aim was to identify the smallest value of m at which error

catastrophe was ensured. We found that when H?§0:9 stochastic

variations became insignificant and error catastrophe occurred

nearly invariably. We therefore identified the smallest m for which

H?§0:9 as the error threshold, mc. Thus, mc~7:5|10{4 and

4:9|10{3 substitutions/site/replication for L~1000 and 200
nucleotides, respectively, in Fig. 2C.

Influence of model parameters on the error threshold
Genome length. Upon increasing L, the transition to error

catastrophe became sharper and occurred at lower values of m
(Fig. 4). For instance, mc&0:01 substitutions/site/replication when

L~100 nucleotides and mc&7:5|10{4 substitutions/site/repli-

cation when L~1000 nucleotides (Fig. 4A). Further, ln mcð Þ
decreased linearly with ln Lð Þ with a slope of 21.07 (Fig. 4B)

indicating that mc is approximately proportional to 1=L. These

predictions that the transition sharpens with increasing L and that

mc*1=L are in agreement with the quasispecies theory [7,8].

Population size. Increasing the cell population, C, increased

mc (Fig. 5). For instance, mc increased from &3:1|10{3 to

&5:4|10{3 substitutions/site/replication as C rose from 100 to

10000 cells (Fig. 5A). Eventually, the dependence of mc on C
weakened and mc appeared to plateau asymptotically as C

increased (Fig. 5B). Further, mc decreased linearly as 1=
ffiffiffiffi
C
p

Figure 1. Viral genomic diversification in one realization of our
simulations. (A) The frequencies of proviral genomes in different
Hamming classes at various times (generations) indicated in one
realization of our simulations with L~200 nucleotides, C~2000 cells,
m~10{3 substitutions/site/replication and M~3 infections/cell. Other
parameters are mentioned in Methods. The quasispecies (thick black
line) is the average frequency distribution over the last 1500
generations. (B) The corresponding evolution of the Shannon entropy
(purple) and its mean over the last 1500 generations (black).
doi:10.1371/journal.pcbi.1002684.g001

Error Threshold of HIV-1
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increased (Fig. 5B inset), as suggested by previous extensions of the

quasispecies theory to finite populations [59,60]. A fit to the data

in Fig. 5B yielded mc~5:544|10{3 1{
4:52ffiffiffiffi

C
p

� �
(Fig. 5B inset).

Extrapolation provided an estimate of mc for C~?, which for the

parameters in Fig. 5B was 5:544|10{3 substitutions/site/

replication.

Recombination and multiple infections of

cells. Increasing the recombination rate, r, or the number of

infections per cell, M, also increased mc (Fig. 6). mc rose from

&1:9|10{4 to &7:5|10{4 substitutions/site/replication as r

increased from zero to 10{3 crossovers/site/replication when

M~3 infections/cell (Fig. 6A and C). Similarly, mc rose from

&5:3|10{4 to &7:5|10{4 substitutions/site/replication as M
increased from &1 infection/cell, following a distribution with few

multiple infections, to 3 infections/cell when r~8:3|10{4

crossovers/site/replication (Fig. 6B, C, and D). The quasispecies

structure at fixed mvmc shifted to smaller peak Hamming classes

and widened upon increasing r (Fig. 6C inset), consistent with our

previous observations that recombination increased the mean

fitness and the diversity of the quasispecies with small C [47] (also

see Discussion). Consequently, higher mutation rates were

necessary to induce an error catastrophe as r increased. Increasing

M effectively increased recombination [51,61] and hence also

resulted in an increase in mc.

Mutation and genome sequence composition. The HIV-

1 genome is known to be A rich [62]. Besides, not all mutations

occur at the same rate; G to A transitions are the most frequent

[63]. We therefore performed simulations with a founder sequence

containing nucleotides at frequencies corresponding to those in

HIV-1 and with nucleotide-specific transition rates mimicking

HIV-1 (Methods). When all nucleotides were equally represented

but mutations occurred in a nucleotide-specific manner, we found

that mc&7:2|10{4 substitutions/site/replication (Fig. S6), which

is close to mc~7:5|10{4 substitutions/site/replication when

mutations occurred in a nucleotide independent manner (Fig. 2).

Further, mc&8:2|10{4 substitutions/site/replication when the

founder sequence mimicked the HIV-1 nucleotide frequencies and

mutations occurred in a nucleotide-specific manner (Fig. S6).

Thus, mc did not depend significantly on the nucleotide

composition of the founder sequence (as also observed in Fig.

S1) and on whether mutations occurred in a nucleotide-

independent manner or the observed nucleotide-specific manner.

Fitness landscape. The above simulations employed a

fitness landscape derived from data [64] of in vitro replicative

fitness assays (see [37] and Methods). To examine whether our

predictions were specific to the fitness landscape employed, we

performed simulations with several alternative theoretical land-

scapes. First, we modified our present landscape to allow genomes

to have zero fitness: we set the fitness of all genomes below a

particular threshold, fT , in the above landscape to zero (Methods).

The resulting landscape is similar to the truncated landscape

Figure 2. Structure of the quasispecies and the error threshold.
The structure of the quasispecies at different values of m indicated
(substitutions/site/replication) with (A) L~200 and (B) L~1000
nucleotides. Inset in (B) compares the quasispecies structure predicted
by our simulations for m~10{3 substitutions/site/replication (line) with
that expected when all genomes occur with equal likelihood (i.e.,

xj~
L

j

� �
=
PL
j~0

L

j

� �
; see text) (symbols). (C) The mean Shannon

entropy, H?, corresponding to the quasispecies in (A) and (B). Other
parameters are the same as in Fig. 1.
doi:10.1371/journal.pcbi.1002684.g002

Error Threshold of HIV-1
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employed previously (e.g., see [65]). The minimum fitness in the

above landscape was 0.24. We performed simulations with

fT~0:3 and fT~0:4 with L~100 nucleotides and found little

variation in mc from the above estimate (Fig. S7A) (also see

Figure 3. Stochastic evolution near the error threshold. Time-
evolution of the Shannon entropy, H , in several independent
realizations of our simulations at three values of m, namely, (A) 10{4,
(B) 7:3|10{4 and (C) 10{3 substitutions/site/replication. The other
parameters are the same as in Fig. 2B. The different realizations in (A)
and (C) nearly overlap and are indistinguishable.
doi:10.1371/journal.pcbi.1002684.g003

Figure 4. Dependence of the error threshold on the genome
length. (A) The mean steady state Shannon entropy, H?, as a function
of the mutation rate, m, for different genome lengths, L (nucleotides),
indicated. Other parameters are the same as in Fig. 1. The
corresponding structures of the quasispecies are shown in Fig. S2. (B)
The resulting dependence of the error threshold, mc , on L. Inset in
(B) shows a linear fit (line) to the data (symbols) yielding
ln mcð Þ~{1:07 ln Lð Þz0:283.
doi:10.1371/journal.pcbi.1002684.g004

Error Threshold of HIV-1
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Discussion). In a previous study, we found that an exponential

fitness landscape, which assigns a fixed fitness penalty for every

mutation (see below), does not agree with patient data and thus

may not be representative of HIV-1 in vivo [37].

The complex fitness interactions of HIV-1 mutations unraveled

recently [66] have been characterized using a fitness landscape

that accounts sequentially for the effects of individual mutations,

interactions between pairs of mutations, between triplets of

mutations, and so on [67], akin to spin glass-based and other

correlated landscapes employed earlier [60]. We found that such a

landscape reduced under limiting conditions to a polynomial in

the Hamming distance of genomes from the master sequence

(Methods). We identified the coefficients of the polynomial by

fitting mean fitness data (Fig. S7B inset) and performed simulations

with the resulting best-fit polynomial landscape. We found that

mc&8|10{4 substitutions/site/replication (Fig. S7B), close to

mc~7:5|10{4 substitutions/site/replication obtained with the

landscape above (Fig. 2), indicating only a minor influence of these

modifications to the fitness landscape on mc.

Comparison with quasispecies theory
To test whether our simulations converged to the quasispecies

theory, we performed simulations with parameter values that

mimic the assumptions employed in the quasispecies theory. We

let M~1 infection/cell and r~0 crossovers/site/replication to

represent the asexual reproduction of effectively haploid individ-

uals. We chose a large population size, C~105 cells, and a small

genome length, L~10 nucleotides, to approximate the infinite

population size limit (2L
vvC). We employed the single peak

fitness landscape, typically employed in calculations of the

quasispecies theory, which we implemented by letting viral

production be P~10 virions/cell for cells infected with the master

sequence and P~1 virion/cell for all other cells and then selecting

virions with equal probability from the viral pool. We also solved

the equations of the quasispecies theory using the latter fitness

landscape (Methods). Remarkably, our simulations were in

excellent agreement with the quasispecies theory for a wide range

of mutation rates (Fig. 7A).

To test the robustness of this agreement, we performed

simulations with two other fitness landscapes, an exponential

landscape, fi~ exp {diF sð Þ&1{diF s, where the relative fitness

declined nearly linearly (at rate svv1 per mutation) with the

number of mutations from the master sequence, diF , and the

experimental landscape above rescaled to the smaller genome

length. In both these cases, we let P~2 virions/cell in our

simulations and selected virions in proportion to their relative

fitness. Again, our simulations were in excellent agreement with

solutions of the quasispecies theory using the latter fitness

landscapes (Figs. 7B and C).

Thus, with large population sizes, our simulations were in

quantitative agreement with the quasispecies theory. With smaller

population sizes, our simulations predicted trends that were

consistent with previous finite population models of genomic

evolution. Further, with parameter values representative of HIV-1

infection in vivo, we showed previously that our simulations

quantitatively described patient data of the evolution of viral

diversity and divergence over extended durations (,10–12 years)

[37], giving us confidence in our simulations. We employed our

simulations to estimate the error threshold of HIV-1.

Estimate of the error threshold of HIV-1
We performed simulations with parameter values that mimic

patient data of viral genomic diversification quantitatively

(Methods). We previously analyzed data of viral diversity and

divergence from 9 patients [68] and found that with M~3
infections/cell, following observations of Jung et al. [24], the best-

fit values of C varied from 400–10000 cells across the patients with

a mean of C~2400 cells [37]. Accordingly, we performed

simulations here with C~400, 2400, and 10000 cells. We found

a sharp error catastrophe with mc~7|10{5, 7:1|10{5 and

7:1|10{5 substitutions/site/replication, respectively (Fig. 8A). A

smaller frequency of multiple infections of cells, mimicking the

observations of Josefsson et al. [69], was also able to capture the

same patient data with higher best-fit values of C [37]. Then,

except for one patient (Patient 11), for whom C was 105 cells, the

best-fit values of C were in the range of 1500–10000 cells.

Recognizing that the dependence of mc on C was weak for large C,

Figure 5. Dependence of the error threshold on the population
size. (A) The mean steady state Shannon entropy, H?, as a function of
the mutation rate, m, for different population sizes, C (cells), indicated.
Other parameters are the same as in Fig. 1. The corresponding
structures of the quasispecies are shown in Fig. S3. (B) The resulting
dependence of the error threshold, mc, on C. Inset in (B) shows a linear fit

(line) to the data (symbols) yielding mc~{2:5|10{2C{1=2z

5:544|10{3 .
doi:10.1371/journal.pcbi.1002684.g005

Error Threshold of HIV-1
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we performed simulations with C~1500, 5000, 10000 cells (where

5000 cells was the mean for the remaining 8 patients) using M

drawn from a distribution mimicking the observations of Josefsson

et al. We found again that a sharp error catastrophe occurred with

mc~7:1|10{5, 8:4|10{5 and 9:1|10{5 substitutions/site/

replication for the three cases (Fig. 8B), close to the estimates

above. The modest increase of mc with C again displayed the

1=
ffiffiffiffi
C
p

dependence (mc~1:0251|10{4 1{
12ffiffiffiffi

C
p

� �
, Fig. 8B inset)

and yielded mc~9:86|10{5 substitutions/site/replication for

C~105 cells and mc~1:0251|10{4 substitutions/site/replica-

tion for C~?. Taken together, our simulations predict that HIV-

1 undergoes a sharp error catastrophe and estimate the error

threshold to be in the range &7|10{5{1|10{4 substitutions/

site/replication.

Discussion

The success of mutagenic drugs against HIV-1 hinges on

reliable estimates of the error threshold of HIV-1, which are

currently lacking. The assumptions employed in the quasispecies

theory render it inadequate for describing HIV-1 evolution. Here,

we have employed population genetics-based simulations of HIV-1

evolution to examine the susceptibility of HIV-1 to mutation-

driven error catastrophe. With these simulations, we found that

HIV-1 experienced a sharp error catastrophe at a mutation rate of

&7|10{5{1|10{4 substitutions/site/replication. Our simula-

tions incorporated key evolutionary forces underlying the within-

host genomic diversification of HIV-1 and were shown previously

to be in agreement with longitudinal patient data of viral diversity

and divergence [37], giving us confidence in our estimate of the

error threshold. That the estimated error threshold is ,2–6 fold

higher than the natural mutation rate of HIV-1 in vivo,

&1:5|10{5{3|10{5 substitutions/site/replication [63,70],

suggests that HIV-1 exists close to its error threshold. The

mutation rate of HIV-1 thus appears to be evolutionarily

optimized to maximize diversity while retaining genomic identity.

A relatively small (2–6 fold) increase in the mutation rate may thus

drive HIV-1 past its error threshold, presenting a quantitative

guideline for mutagenic drugs.

The quasispecies theory has presented remarkable insights into

viral evolution and suggested new strategies of intervention [9,71–

74]. Yet, its ability to describe viral evolution comprehensively is

limited, as recognized by Eigen himself [75], by its assumptions of,

for instance, an infinitely large population size, asexual reproduc-

tion of haploid organisms, and an isolated peak fitness landscape

where all mutants are equally less fit than the master sequence.

The last 40 years have seen significant efforts to relax these

Figure 6. Dependence of the error threshold on the recombination rate. The mean steady state Shannon entropy, H?, as a function of the
mutation rate, m, for different recombination rates, r, indicated (crossovers/site/replication) with (A) M~3 infections/cell and (B) M determined from
a distribution with few multiple infections (Methods). Here, L~1000 nucleotides, C~2400 cells, and the other parameters are the same as in Fig. 1.
The corresponding structures of the quasispecies are shown in Fig. S4 and Fig. S5, respectively. (C) and (D) The resulting dependence of the error
threshold, mc , on r in (A) and (B), respectively. Inset in (C) shows the quasispecies for different r (crossovers/site/replication) indicated with m~10{4

substitutions/site/replication and M~3 infections/cell.
doi:10.1371/journal.pcbi.1002684.g006
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assumptions and tailor the quasispecies theory to specific

organisms, especially HIV: Several, more complex and more

realistic fitness landscapes have been employed

[37,49,54,55,58,60,76–78]. Simultaneously, population genetics-

based approaches, which naturally consider stochastic effects

associated with finite populations, have been developed [59,60,79–

85]. The latter descriptions, however, while painting a more

realistic picture of the organisms considered, often make marked

deviations from the key predictions of the quasispecies theory. In

particular, finite population models may not converge to the

quasispecies theory in the infinite population limit [59], or with

more complex fitness landscapes, a sharp error catastrophe may

cease to occur [54–58]. Consequently, questions arise of the

relative merits and appropriateness of using the quasispecies

theory or population genetics-based approaches to describe viral

evolution (reviewed in [56]). Here, we showed that our simulations

converge to the quasispecies theory in the large population size

limit, indicating that quasispecies theory is not at odds with

population genetics-based descriptions at least of HIV-1. In a

related study, convergence of similar population genetics-based

descriptions to the quasispecies theory has been established

formally [86]. Importantly, with a fitness landscape representative

of HIV-1 [64], and with other parameters that mimic patient data,

our simulations predict that a sharp error threshold exists for HIV-

1.

In our simulations, the error threshold scaled linearly with

1=
ffiffiffiffi
C
p

, where C is the population size of cells, in agreement with

previous studies [59,60]. We note that some studies using

alternative simulation strategies found a linear scaling with 1=C
[80]. The origin of this discrepancy in the dependence of the error

threshold on C remains to be established. Nonetheless, the weak

dependence of the error threshold on C implies that our estimate

of the error threshold remains robust to any increase in the

effective population size in vivo either due to inter-patient

variations or due to uncertainties in the estimates of model

parameters. We showed previously that estimates of the effective

population size of HIV-1 in vivo were sensitive to the frequency of

multiple infections of cells, M, and the recombination rate [37].

Few estimates of M in vivo are available. While one study of

infected splenocytes in two patients found that most cells were

multiply infected with a mean of 3–4 proviruses per cell [24],

recent evidence from peripheral blood mononuclear cells of

several acute and chronically infected individuals suggests that

multiple infections of cells may be rare [69], and hence the

influence of recombination weak [51,61]. Using parameters

corresponding to either observation, we found that our simulations

captured patient data of viral diversification with appropriate

values of C [37]. Using both combinations of M and C that

matched patient data, we estimated the error threshold of HIV-1

here and found that the estimates were close, suggesting that

uncertainties in the frequency of multiple infections did not

significantly affect our estimate of the error threshold.

The role of recombination in HIV-1 evolution has remained

difficult to interpret [2,39,87]. Just as recombination can bring

favorable mutations together, it can also drive favorable combi-

nations of mutations apart, raising questions more generally about

the evolutionary origins of the ubiquitously present recombination

Figure 7. Comparisons of our simulations with the quasispecies
theory. Structure of the quasispecies for different values of m
(substitutions/site/replication) indicated determined by our simulations
(circles connected by lines) and by the quasispecies theory (pluses) for
(A) isolated peak fitness landscape, (B) exponential landscape with
s = 0.01, and (C) the experimental landscape with d50 = 3.
doi:10.1371/journal.pcbi.1002684.g007
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and sexual reproduction, often referred to as the paradox of sex

[39,88,89]. The benefit of sex has recently been suggested to arise

from the subtle interactions of random genetic drift, selection, and

recombination in finite populations [90]. When the population size

is small, negative linkage disequilibrium (D) is generated by the

Hill-Robertson effect [91]. Recombination lowers the absolute

value (magnitude) of D, which when Dv0 enhances diversity and

favors selection [89,92–94]. Indeed, our simulations showed that

as the recombination rate increased, the quasispecies shifted to

lower peak Hamming classes and spread wider, implying greater

average fitness and diversity. In agreement, we showed previously

that the mean fitness and diversity of the viral population

increased with recombination when the population size was small

[47]. An added advantage of recombination that we found here

was that the error threshold also increased with recombination,

rendering the quasispecies more resistant to mutation-driven loss

of genetic information. In an earlier study, recombination was

found in contrast to decrease the error threshold [38]. The latter

study, however, considered an infinitely large population size with

a single peak landscape, which is expected to generate Dw0.

Accordingly, the lowering of D by recombination decreases

diversity and is therefore expected to lower the error threshold.

Dv0 generated by the Hill-Robertson effect underlies the

enhancement of the error threshold due to recombination in our

simulations. Given that host factors such as A3G combat HIV-1

by increasing the viral mutation rate [19,20], recombination, in

synergy with Vif-induced degradation of A3G, may serve to stall

the onslaught of A3G and establish lasting infection.

The population sizes we employed were obtained by fits of our

simulations to patient data [37]. The census population size of

HIV-1 is ,107–108 infected cells [95]. Yet, the effective

population sizes obtained by several independent studies are small

and lie in the range of ,102–105 cells (reviewed in [35]). The

effective population size is defined as the size of the population in

an idealized model of evolution that has the same population

genetic properties as that of the natural population [96]. The

reasons underlying the differences between the census and

effective population sizes of HIV-1 remain to be established;

bottlenecks introduced by the immune system and other selection

pressures [36], asynchronous infections of cells [97], pseudohitch-

hiking [98], and metapopulation structure [99] may all contribute

to the small effective population sizes estimated, but their roles in

HIV-1 evolution are yet to be fully elucidated. We employed a

fitness landscape that is a measure of the relative replicative ability

of various HIV-1 mutants determined using in vitro assays [64].

The landscape suggests that the predominant fitness effects depend

on the number and not on the specific combinations of mutations,

allowing us to group genomes into Hamming classes [100].

Simpler fitness landscapes, such as multiplicative landscapes, were

not compatible with patient data [37]. More comprehensive fitness

interactions are beginning to be unraveled [66,101]. The resulting

fitness values [66] have been shown to be correlated with the viral

load in vivo [102]. Under certain limiting conditions, we found

that the latter interactions yielded a fitness landscape consistent

with the landscape we employed above (Methods and Fig. S7).

Further, our estimates of the error threshold were robust to minor

variations in the fitness landscape. For instance, allowing lethal

mutations using a truncated landscape, where genomes with fitness

below a certain threshold were assumed replication incompetent,

did not substantially alter the error threshold (Fig. S7). We

recognize that lethal mutations can occur more frequently; for

instance, 40% of random mutations in an RNA viral genome were

found to be lethal [103]. Such a scenario is estimated to increase

the error threshold for an infinitely large population size and a

single peak fitness landscape by a factor of ,5/3 [104,105].

Understanding the influence of major variations in the fitness

landscape is computationally prohibitive and awaits future studies.

Figure 8. Estimates of the error threshold of HIV-1. Mean steady
state Shannon entropy, H?, as a function of the mutation rate, m, for
different population sizes, C (cells), indicated with (A) M~3 infections/
cell and (B) M determined from a distribution with few multiple
infections of cells, where 77% of the cells were singly, 19% doubly, and
4% triply infected. Other parameters are as follows: L~10000

nucleotides; r~8:3|10{4 crossovers/site/replication; P~10 infec-
tious rogeny virions/cell; the fitness landscape fi~1{ 1{fminð Þ

diFð Þn

diFð Þnz d50ð Þn , where fmin~0:24, d50~30, and n~3 (Methods). The

corresponding structures of the quasispecies are shown in Fig. S8 and
Fig. S9, respectively. Inset in (B) shows a linear fit (line) to the data

(symbols) yielding mc~{1:23|10{3C{1=2z1:025|10{4.
doi:10.1371/journal.pcbi.1002684.g008
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Finally, we recognize that we have assumed uniform recombina-

tion rates and either uniform or nucleotide-specific mutation rates

across the HIV-1 genome, whereas mutation [63] and recombi-

nation hot-spots [106,107] are known to exist within HIV-1.

Estimation of the error threshold of HIV-1 from experimental

studies of viral mutagenesis-induced loss of viral infectivity has not

been possible because of several confounding effects. For instance,

2–3 fold increase in the mutation rate obliterated HIV-1 infection

in vitro [14,15], in agreement with our present findings. The

agreement, however, is not conclusive because establishing that

the loss of infectivity in vitro is due to an error catastrophe is not

straight-forward. The loss of infectivity may be due to an error

catastrophe, as demonstrated with poliovirus [9], but may also

arise from other effects: At mutation rates above the natural

mutation rate but below the error threshold, production of

defective genomes may drain resources within cells, compromising

the production of viable genomes and causing extinction of the

viral population [13]. Thus, whether viral extinction necessarily

implies crossing the error threshold remains unclear. Conversely,

crossing the error threshold may not imply viral extinction; the

latter may require crossing an alternative ‘extinction’ threshold,

where each viral particle produces less than one progeny that

infects a cell, akin to the epidemiological threshold for extinction of

disease [108]. (Note that in our present simulations, infection was

sustained by keeping the pool of infected cells constant.) Viral

extinction may also be determined by the influence of mutations

on protein stability and its impact on viability [109,110].

Establishing which of these phenomena underlies the observed

loss of viral infectivity in vitro remains a challenge.

Finally, we recognize that the dynamics of the transition to error

catastrophe, which remains poorly characterized, is also of

importance to mutagenic strategies targeting HIV-1. For instance,

9–24 serial passages were required for loss of viral infectivity in

vitro [14]. In a recent clinical trial with an HIV-1 mutagen, no

viral load decline was observed in patients following 124 days of

treatment although the mutational patterns were altered [18]. This

absence of apparent antiviral activity was attributed to the lack of

knowledge of both the level and the duration of exposure of the

drug necessary to compromise the viability of HIV-1 [18],

reiterating the importance of reliable estimates of the error

threshold and of the timescales of the transition. Our estimate of

the error threshold together with the dose-response data of the

drug may help determine the level of drug necessary to induce an

error catastrophe in HIV-1. Further, although we focused here on

identifying the structure of the HIV-1 quasispecies and estimating

its error threshold, our simulations present a framework for

determining the time required to ensure completion of the

transition to error catastrophe, thus elucidating guidelines for the

duration of treatment with mutagenic drugs.

Methods

Simulation protocol
Creation of the viral pool. We represented an HIV-1

genome as a sequence of L nucleotides. We generated such a

sequence with each nucleotide chosen randomly from A, G, C and

U with equal probability or with probabilities representative of the

nucleotide content in HIV-1 (see below). We let the resulting

sequence be the master sequence and set its relative fitness to

unity. We represented a virion by the pair of RNA genomes it

contained. We let the initial pool of V virions all carry the master

sequence.

Infection of cells. We considered a pool of C uninfected

cells. We randomly selected M virions, each with a probability

equal to its relative fitness (see below), from the viral pool to infect

one of the uninfected cells. M was either constant or drawn from a

predetermined distribution (see below). The genomes of the

chosen virions were transferred to the cell and the virions were

removed from the viral pool. This process was repeated for each of

the remaining cells.

Reverse transcription. Following infection, the viral RNA

were mutated and recombined. We considered one of the M pairs

of viral RNA within an infected cell. We selected one of the two

genomes in the pair randomly and began copying its nucleotide

sequence bit by bit to the resulting recombinant DNA genome. At

each position, we switched templates to the other RNA strand with

probability r, the recombination rate, thus producing a recom-

binant genome that was a mosaic of the two parent viral RNA

genomes. Next, we mutated the recombinant genome with

probability m at every position, where m was the mutation rate.

In some simulations, we let the probability be nucleotide-specific

(see below). The resulting sequence was the proviral DNA

produced by reverse transcription. We repeated this process for

the remaining pairs of viral RNA within the cell and in all the

other cells.

Viral production. Each infected cell produced P progeny

virions. For each virion produced from a cell, we randomly chose

two of the M proviral DNA present in the cell and assigned their

sequences as the viral RNA genomes of the virion. When M = 1,

the same provirus was chosen twice. The transcription of proviral

DNA to viral RNA is catalyzed by host proteins and introduces far

fewer mutations than reverse transcription. We therefore assumed

that no mutations occurred during proviral DNA transcription.

The resulting progeny virions constituted the new viral pool for

infecting the next generation of uninfected cells.

We repeated the process for a large number of generations (see

below) and averaged over many such realizations to obtain the

expected evolution for a given set of parameter values. We

performed the simulations using a computer program written in

C++ (Text S1).

Measures of viral evolution and quasispecies structure
Hamming class frequencies. In each generation we deter-

mined the number of proviral genomes, Nj , belonging to different

Hamming classes, j, where 0ƒjƒL. Note that Hamming class j
contains genomes carrying j mutations with respect to the master

sequence. The frequency of genomes in Hamming class j was

xj~Nj=
XL

k~0

Nk.

Shannon entropy. By definition, the per-bit Shannon

entropy is H~{
1

L

X2L

i~1

vilog2vi, where vi is the frequency of

genome i. We assumed that transitions alone occurred (see below),

thus restricting the total number of distinct genomes to 2L (also see

[100]). The Hamming class frequency xj~
X

diF ~j

vi, where diF is

the Hamming distance of genome i from the master sequence so

that the summation extends over all i belonging to Hamming class

j. Because all genomes in a given Hamming class were equally fit

we assumed that they were equally likely to occur, so that

vi~xj=
L

j

� �
, where

L

j

� �
~

L!

j! L{jð Þ! is the number of possible

distinct genomes in Hamming class j. (This assumption neglects

the influence of recombination.) Substituting for vi and simplifying

yielded H~{
1

L

XL

j~0

xj log2 xj=
L

j

� �� �
. Note that H~0 when
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the master (or any other) sequence alone exists and H~1 when all

possible genomes occur with equal likelihood, the latter signifying

an error catastrophe. We evaluated factorials using Stirling’s

approximation, log (k!)&k log (k){k for large values of k (which

sometimes yielded Hw1).

Simulation parameters
We employed parameter values representative of HIV-1

infection in vivo [37]. Variations are mentioned below and in

the text and figures. We let L~10000 nucleotides and

r = 8.361024 crossovers/site/replication [46]. We fixed M to 3

infections/cell following Jung et al. [24], or let M follow a

distribution–similar to that observed by Josefsson et al. [69]–where

77% of the cells were singly, 19% doubly, and 4% triply infected

[37]. With each M, we chose an appropriate C that matched

patient data [37]. Following recent estimates of the basic

reproductive ratio of HIV-1 in vivo [111], we let P = 10 infectious

progeny virions/cell. A majority of HIV-1 mutations are

transitions [70]; as a simplification, we therefore ignored

transversions, insertions and deletions. We spanned a wide range

of mutation rates in order to identify the error threshold. We let

selection follow the fitness landscape derived in [37] to capture

corresponding experimental data from [64]. Accordingly,

the relative fitness of genome i is represented by

fi~1{ 1{fminð Þ diFð Þn

diFð Þnz d50ð Þn, where fmin~0:24 is the mini-

mum fitness of sequences, d50~30 is the Hamming distance at

which fi~ 1zfminð Þ=2, and n~3 is analogous to the Hill

coefficient [37]. The fitness of a virion is determined by the

average Hamming distance of its two genomes from the master

sequence. We let simulations proceed to 10000 generations (,30

years).

We examined the influence of variations in some of these

parameters as mentioned below.

Nucleotide frequencies in HIV-1. In a recent study, 1357

whole genome sequences of HIV-1 were analyzed for their

nucleotide composition and found to contain on average ,36%

A’s, 24% G’s, 18% C’s and 22% U’s [62]. To mimic this

composition, we generated founder sequences by choosing A, G, C

and U at each position with probabilities equal to 0.36, 0.24, 0.18

and 0.22, respectively.

Nucleotide-specific mutation rates. The frequency of

occurrence of different types of mutations in a single round of

HIV-1 replication has recently been characterized [63]. In a

representative experiment, of the 274 transitions observed,

10.58% were A to G, 53.28% were G to A, 29.56% were C to

T and 6.57% were T to C transitions. We implemented nucleotide

specific mutation rates mimicking these frequencies as follows. We

let mA, mG , mC , and mT be the mutation rates of A, G, C and T,

respectively. (We used T and U interchangeably.) We defined the

average mutation rate m~
P

K~A,G,C,T

nK mK , where nK is the

frequency of nucleotide K in the unmutated sequence. If nK~0:25
(equal representation of all nucleotides), then mK are expected to

be proportional to the above frequencies of transitions observed. In

other words, mA=mG~10:58=53:28, and so on. Using this in

the definition of the average mutation rate, we

obtained m~0:25mA(1zmG=mAzmC=mAzmT=mA)~2:36mA, or

mA~0:42m. Similarly, we found mG~2:11m, mC~1:17m, and

mT~0:26m. Thus, given m, we determined whether a mutation

occurred at any position containing a particular nucleotide using

the corresponding values of mA, mG, mC , and mT . As an

approximation, we employed the latter values when nK were not

all equal as well.

Fitness landscape. We performed simulations with two

alternative fitness landscapes. First, we modified the fitness

landscape above by setting the fitness of genomes below a

particular threshold to zero, akin to truncated landscapes

employed previously [57,65,104,105]. Thus, fi~1{ 1{fminð Þ
diFð Þn

diFð Þnz d50ð Þn if fi§fT and fi~0 otherwise. We performed

simulations with fT~0:3 and fT~0:4 and with L~100 nucleo-

tides.

Second, we followed recent studies of Bonhoeffer and colleagues

[66,67,102], who assessed the in vitro replicative capacity of about

70000 HIV-1 sequences and argued that the resulting

fitness landscape may be described by an equation of the

form ln fi ~ Iz
XL

k~0

mkskz
XL

h~0

XL

k~hz1

ehkshsk z
XL

j~0

XL

h~jz1

XL

k~hz1

jjhksjshskz . . . , where sk~1 if there is a mutation at position k and

is zero otherwise; mk is the loss of fitness due to a mutation at position

k; ehk are terms quantifying pair-wise epistatic effects; the third term

quantifies ternary effects; and so on. Under conditions when mk~m,

independent of k, the second term above becomesXL

k~0

mksk~m
XL

k~0

sk~mdiF , because the latter summation then

simply counts the number of mutations in genome i, which is equal

to diF, the Hamming distance from the master (and also the founder)

sequence. Similarly, assuming that pair-wise epistatic effects are

also position independent, the third term becomesXL

h~0

XL

k~hz1

ehkshsk~e
XL

h~0

XL

k~hz1

shsk~ediF (diF {1)=2, because the

latter double summation now counts the number of ways in which two

mutations can be chosen from the diF mutations in genome i.

Proceeding similarly, it follows that the above expression for fitness

becomes a polynomial in diF, namely, ln fi~adiF zbd2
iF zcd3

iF z . . .
Note that the constant term is set to zero to ensure that the master

sequence (diF ~0) has the maximum relative fitness (fi~1). We found

that the latter polynomial with terms up to degree 3 provided a good

fit to the mean replicative fitness data obtained earlier [64] (Fig. S7).

We performed simulations with the resulting best-fit polynomial with

non-monotonicities suppressed.

Predictions of the quasispecies theory
According to the quasispecies theory [7,8], the structure of the

quasispecies is obtained as the dominant eigenvector of the value

matrix, W~QA. We constructed the mutation matrix Q by

recognizing that its ijth element, Qij~mdij 1{mð ÞL{dij , is the

probability that genome j mutates to genome i, with dij the

Hamming distance between genomes i and j. The selection matrix

A is a diagonal matrix with elements Aii~fi, the relative fitness of

the respective genomes. We employed three different fitness

landscapes: the experimental landscape above, the isolated peak

landscape, and the exponential landscape (see above). We computed

the dominant eigenvector v of W and normalized it so that

X2L

i~1

vi~1. The Hamming class frequencies were then xj~
X

diF ~j

vi.

We performed computations using a program written in MATLAB.

Supporting Information

Figure S1 Dependence of the structure of the quasis-
pecies on the founder sequence. Structures of the quasis-

pecies obtained when the founder sequence was the master

sequence (circles connected by lines) or was a sequence obtained
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by mutating the master sequence at 10% of the sites chosen

randomly (pluses) with L~100 nucleotides for a range of values of

m indicated (substitutions/site/replication). The other parameters

are the same as in Fig. 1. Inset shows the corresponding

dependence of the mean steady state Shannon entropy, H?, on

m obtained with the master sequence (circles connected by lines) or

the mutated sequence (diamonds) as the founder sequence. The

structure of the quasispecies and the error threshold are thus not

influenced by the choice of the founder sequence.

(PDF)

Figure S2 Quasispecies structure as a function of the
genome length. Structures of the quasispecies obtained with

different genome lengths, L, and over a range of values of m
(substitutions/site/replication) indicated. (Some intermediate val-

ues of m are omitted for clarity.) The corresponding steady state

Shannon entropy, H?, and the resulting dependence of the error

threshold, mc, on L are presented in Fig. 4.

(PDF)

Figure S3 Quasispecies structure as a function of the
population size. Structures of the quasispecies obtained with

different population sizes, C, and over a range of values of m
(substitutions/site/replication) indicated. (Some intermediate val-

ues of m are omitted for clarity.) The corresponding steady state

Shannon entropy, H?, and the resulting dependence of the error

threshold, mc, on C are presented in Fig. 5.

(PDF)

Figure S4 Quasispecies structure as a function of the
recombination rate with M = 3 infections/cell. Structures

of the quasispecies obtained with different recombination rates, r
(crossovers/site/replication), and over a range of values of m
(substitutions/site/replication) indicated. (Some intermediate val-

ues of m are omitted for clarity.) The corresponding steady state

Shannon entropy, H?, and the resulting dependence of the error

threshold, mc, on r are presented in Figs. 6A and C.

(PDF)

Figure S5 Quasispecies structure as a function of the
recombination rate with M,1 infection/cell. Structures of

the quasispecies obtained with different recombination rates, r
(crossovers/site/replication), and over a range of values of m
(substitutions/site/replication) indicated, with M drawn from a

distribution (Methods). (Some intermediate values of m are omitted

for clarity.) The corresponding steady state Shannon entropy, H?,

and the resulting dependence of the error threshold, mc, on r are

presented in Figs. 6B and D.

(PDF)

Figure S6 Dependence of the error threshold on the
nucleotide composition of the founder sequence and
nucleotide-specific mutation rates. The mean steady state

Shannon entropy, H?, as a function of the mutation rate m
obtained with the founder sequence containing all nucleotides with

equal frequencies and mutating at equal rates (blue), reproduced

from Fig. 2C (L~1000 nucleotides). The corresponding H? when

the founder sequence contained nucleotides at frequencies

representative of HIV-1 (,36% A’s, 24% G’s, 18% C’s and

22% U’s) mutating at equal rates (green) or at nucleotide-specific

rates (mA~0:42m, mG~2:11m, mC~1:17m, and mT~0:26m) (red).

The other parameters are the same as in Fig. 2C.

(PDF)

Figure S7 Dependence of the error threshold on the
fitness landscape. (A) The mean steady state Shannon entropy,

H?, as a function of the mutation rate m obtained with the fitness

landscape fi~1{ 1{fminð Þ diFð Þn

diFð Þnz d50ð Þn if fi§fT and fi~0

otherwise, with fT~0 (red), 0.3 (blue), and 0.4 (green). Note that

fT~0 corresponds to the simulations in Fig. S1. With larger

lengths, the fitness landscape has to be appropriately rescaled to

avoid the extinction of the viral population due to severe fitness

penalties (not shown). (B) H? as a function of m obtained with the

landscape fi~1{ 1{fminð Þ diFð Þn

diFð Þnz d50ð Þn (blue) and the polyno-

mial fitness landscape ln fi~adiF zbd2
iF zcd3

iF (red). Note that the

former data is the same as in Fig. 2C with L~1000 nucleotides.

Inset in (B) shows best fits of the two landscapes (blue and red lines,

respectively) to data (symbols) excluding outliers (open symbols)

from Bonhoeffer et al. (Science 306: 1547–1550 (2004)) modified

to account for the observed frequencies of synonymous and non-

synonymous mutations (see Balagam et al., PLoS ONE 6: e14531

(2011)). The best-fit parameter estimates are fmin~0:24, d50L~30

and n~3 (blue); and a~{0:0022, b~{5:47|10{4 and

c~4:62|10{6 (red). Because data was available only until

Hamming distance ,90 to which the polynomial can be fit,

extrapolating the polynomial to higher Hamming distances

yielded an unrealistic increase of fitness. To avoid this non-

monotonic behavior, the fitness of genomes beyond the minimum

(which occurred at Hamming distance 82) was set equal to the

minimum.

(PDF)

Figure S8 Quasispecies structures yielding estimates of
the error threshold of HIV-1 with M = 3 infections/cell.
Structures of the quasispecies obtained with different population

sizes, C, and over a range of values of m (substitutions/site/

replication) indicated. (Some intermediate values of m are omitted

for clarity.) The corresponding dependence of the steady state

Shannon entropy, H?, on m is presented in Fig. 8A.

(PDF)

Figure S9 Quasispecies structures yielding estimates of
the error threshold of HIV-1 with M,1 infection/cell.
Structures of the quasispecies obtained with different population

sizes, C, and over a range of values of m (substitutions/site/

replication) indicated, with M drawn from a distribution

(Methods). (Some intermediate values of m are omitted for clarity.)

The corresponding dependence of the steady state Shannon

entropy, H?, on m is presented in Fig. 8B.

(PDF)

Text S1 The computer program employed for our
simulations.
(PDF)
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