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There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular
polysaccharides has proved to be a simple but effective strategy against the host’s innate immune system. A
comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the
synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across
phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC) is
encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against
the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in
bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides.
In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex
multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in
most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis,
we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to
speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious
diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the
human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization
of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate
immune defense against microbial invasion.
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Introduction

Colonization of hosts by microorganisms is a complex
process that determines if the microorganism will coexist
with the host as commensal, become an invasive pathogen, or
be efficiently eliminated by the host’s immune defense [1,2].
Consequently, microorganisms have developed a variety of
measures to cope with the increasingly sophisticated defense
strategies of the host’s immune system [3–7]. Amongst them,
the generation of an extracellular coat made of polysacchar-
ides has proved to be a simple but effective strategy. Bacterial
surface polysaccharides can be either amorphous exopoly-
saccharides, anchored in the lipid layer (lipopolysaccharides,
another known regulator of the immune system), or
organized as a capsule (capsule polysaccharides [CPSs]). The
latter have been shown to mediate adherence to cells and,
more importantly, protection against the host’s innate
immune system [8–11].

Different strategies to escape host immune surveillance
have evolved through vertical evolution but also through
horizontal gene transfer [12–15]. Though a subject of long-
standing controversy, there is increasing evidence suggesting
that horizontal gene transfer also occurs from eukaryotes to
prokaryotes [16]. Even though the recombined bacteria
seemed to have preferentially retained individual domains
of proteins [16], a first example was recently reported in
which certain bacterial strains kept an entire open reading
frame [17].

Here we describe a novel protein family named ‘‘Stealth.’’
Based on a comparative genomics approach, we propose a
biological function and an evolutionary scenario for this new
protein family.

Results/Discussion

Identification of Stealth
In a screen of the human genome for Notch-related

proteins, a novel protein containing two copies of Lin-12/
Notch repeats was identified. The protein also showed strong
sequence similarity to a number of animal and bacterial
proteins, including several virulence factors of human
pathogens published under different names. This previously
unknown protein family was named ‘‘Stealth’’ because
experimentally characterized members of this family appear

Received July 11, 2005; Accepted October 20, 2005; Published November 18, 2005
DOI: 10.1371/journal.pcbi.0010063

Copyright: � 2005 Sperisen et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: CPS, capsule polysaccharide; CR, conserved region

Editor: Peer Bork, EMBL Heidelberg, Germany

* To whom correspondence should be addressed. E-mail: philipp.bucher@isrec.ch

[ These authors contributed equally to this work.

¤ Current address: Helvea, Geneva, Switzerland

PLoS Computational Biology | www.ploscompbiol.org November 2005 | Volume 1 | Issue 6 | e630492



to render bacterial and protozoan invaders invisible to the
host’s immune surveillance system.

Stealth proteins are characterized by four conserved
regions (CRs) referred to as CR1 to CR4 (Figure 1). The N-
terminal CR1 consists of a short but strongly conserved
sequence motif, IDVVYTF or very similar. The second region,
CR2, is approximately 100 residues long and constitutes the
most conserved part of this protein family. A standard
BLAST search [18] with any CR2 domain identifies all other
members of the Stealth family in the current database with
highly significant E-values. CR3 is about 50 residues long but
less well conserved. Finally, the C-terminal CR4 includes an
almost universally conserved tetrapetide, CLND or CIND.
Adjacent and between these domains are divergent sequence
regions of variable length that may contain additional
domains (Figures 1 and 2A).

Taxonomic Distribution
Stealth proteins are found encoded in the genomes of

chordates, echinodermates, hydras, fungi, and flies but
appear to be absent from nematodes and plants. Interest-
ingly, a few organisms contain multiple Stealth genes (Table
1). Stealth proteins also occur in the protist genomes of
Dictyostelium, Giardia, Leishmania, Entamoeba, and Phytophthora,
and among the hitherto sequenced bacteria, they are found in
the following phyla: alpha-, beta-, and gamma-proteobacteria
(mostly pathogens), firmicutes (mostly the commensals), and
actinobacteria (some animal pathogens) (Table 1; Figure S1).
It is noteworthy that the large majority of completely
sequenced bacterial genomes do not harbor Stealth. The
species that do contain a member of this family are not
necessarily closely related, and include Gram-positive as well
as Gram-negative bacteria.

Stealth in Bacteria
Several of the documented bacterial Stealth genes belong

to capsule group II biosynthesis operons generating carbohy-
drate-phosphodiester-containing CPSs [19–24]. In the case of
Stealth-expressing bacteria, these CPSs turned out to inhibit

complement-mediated lysis, as shown for serogroup A and X
of Neisseria meningitidis [23,24] and to correlate with serum
and phagocyte survival abilities as shown for Aeromonas
hydrophila [25].
The majority of Stealth-expressing bacteria that have been

analyzed so far for the composition of their exopolysacchar-
ides turned out to build phosphoglycans consisting of
phosphodiester-linked hexose mono- or disaccharide build-
ing blocks [26–29]. On the other hand, certain bacteria living
in a biofilm community contain CPSs consisting of phospho-
diester-linked hexa- or heptasaccharide repeating units
[30,31]. These carbohydrates, also called receptor polysac-
charides, are synthesized by a series of different glycosyl-
transferases, with Stealth amongst them [22]. Strains
encoding Stealth carry a hexose phosphodiester linker [31]
in their receptor polysaccharides, whereas strains lacking
Stealth build receptor polysaccharides with a pentose
phosphodiester linker.
Definite proof for an essential function of Stealth in CPS

biosynthesis was shown in N. meningitidis serogroup A by
selective deletion of the gene sacB (i.e., Stealth), giving rise to
virtually unencapsulated mutants [23], and by deletion of part
of the gene xcbA (i.e., Stealth), together with flanking open
reading frames in a serogroup X strain, which resulted in
complement-sensitive mutants [24]. Moreover, when the gene
cps1A (i.e., Stealth) was deleted in Actinobacillus pleuropneumo-
niae, the resulting strains lost their pathogenicity in pigs [20].
Taken together, all of the above data suggest that Stealth is

a D-hexose-1-phosphoryl transferase that generates intergly-
cosidic phosphate diester linkages.

Characteristics of Metazoan Stealth
Unlike the bacterial Stealth proteins, the vertebrate

members of this family are not properly represented in
current protein databases. We have manually reconstructed
the gene and protein sequences for a number of species with
the aid of EST sequences and cross-genome comparisons
(Table 1). The human gene consists of 21 exons (Figure 2B),
and the translated protein sequence is identical to the RefSeq
entry NP_077288. The intron–exon structures of genes
found in other vertebrates are essentially the same. In the
mouse, however, there is a facultative intron near the start
codon spliced out predominantly in transcripts from den-
dritic cells. This alternative splicing leads to two protein
variants with different N-termini (Figure 2C). The hypo-
thetical Drosophila melanogaster and D. yakuba Stealth genes,
however, have a completely different intron–exon structure
(Figure 2B). Finally, pieces of Stealth-encoding sequences
were also found in the preliminary genomes or ESTs of other
mammals (Table 1).
Metazoan Stealth proteins are characterized by additional

domains. There is a predicted signal peptide and, near the C-
terminus, a transmembrane helix. One or two Notch/Lin-12
repeats [32] are inserted between CR2 and CR3, and an EF-
hand domain [33] appears between CR3 and CR4. So far, all
reconstructed Stealth proteins contain these domains, and in
some of the cases where only pieces of sequences are available
one can identify these motifs. The strong conservation of the
Stealth domain architecture suggests that this protein plays
an essential role.
No experimental knowledge is available about the function

of metazoan Stealth proteins today (note, however, that
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Synopsis

The immune system is a complex and highly developed system of
specialized cells and organs that protects an organism against
bacterial, parasitic, fungal, and viral infections. Broadly speaking, the
different types of immune responses subdivide the immune system
into two categories: innate (or nonadaptive) and adaptive immune
system. The innate immune system serves as a first line of defense
but lacks the ability to recognize certain pathogens and to provide
the specific protective immunity that prevents reinfection. Just as
metazoans have developed many different defenses against
pathogens, so have pathogens evolved elaborate strategies to
evade these defenses. Based on a comparative genomics approach
and data mining, the authors have discovered a new family of
proteins with a striking phylogenetic distribution, occurring in most
eukaryotes and in subsets of mostly pathogenic or commensal
prokaryotes. While the precise functions of these proteins remain
unknown, prokaryotic versions have been implicated in the
synthesis of extracellular polysaccharides known to be potent
regulators of the innate immune system. This previously unrecog-
nized link hints towards a potentially novel regulatory mechanism of
the innate immune system. It remains to be shown if drugs
selectively inhibiting Stealth in pathogens will help fight Stealth-
mediated infections.

In Silico Identification of Novel Protein Family



Stealth-deficient mice have been generated by O. Z. and
coworkers and will be made available upon request). In view
of the high degree of sequence similarity to their bacterial
homologs, it is reasonable to speculate that they have a
similar molecular function and thus are also implicated in
exopolysaccharide synthesis. Public expression profiles de-
rived from SAGE experiments indicate a rather broad tissue
distribution. The Stealth-dependent polysaccharides could be
host-specific structural surface elements exploited by the

immune system for self-recognition. In this case, the Stealth-
dependent resistance of human pathogens to complement-
mediated lysis and other host defense mechanisms would be a
straightforward case of molecular mimicry. Alternatively,
host-encoded Stealth proteins may play an active role in
down-regulating the immune response. The presence of
Stealth in both insects and urochordates further suggests
that this protein interferes with processes related to innate
rather than adaptive immunity [34,35].

Figure 1. Multiple Alignments of CRs

Multiple alignments of the four CRs for a representative set of protein sequences (.15% dissimilarity over all four CRs) are shown. Sequences are
identified by a species code (see Table 1), protein name (from literature as proposed in this paper), and database accession number, where available.
The lengths of the sequences omitted between or within CRs are indicated in square brackets. The last row shows the secondary structure prediction
obtained by jnetpred [65] for the human Stealth protein, where H stands for helices and E for beta-sheets. The color scheme used is the ClustalX default
scheme, with the colors for conserved amino acids being more intense than those for nonconserved ones.
DOI: 10.1371/journal.pcbi.0010063.g001

Figure 2. Domain Architecture and Genome Structure

(A) CR1 to CR4, found through multiple alignments, are represented by rectangles ranging from light blue (CR1) to dark blue (CR4). Other motifs are
represented as follows: predicted signal peptides as magenta rectangles, transmembrane regions as orange rectangles, Lin-12/Notch repeats as red
pentagons, and EF-hands as green circles.
(B) The genome structure of the human and fly Stealth homologs is represented, with the exons depicted as green rectangles separated by introns of
indicated size.
(C) Two splice variants lead to different N-terminal sequences, as supported by mouse EST sequences. Splicing reconstructs a codon for tyrosine (Y).
Both proteins contain a predicted signal peptide.
DOI: 10.1371/journal.pcbi.0010063.g002
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Table 1. Summary of All Species Containing Stealth Proteins

Taxon Species Code Strain IDa Gene

Actinobacteria Arthrobacter sp. ARTSP FB24 Q4NLN2 NA

Mycobacterium leprae MYCLE TN Q50025 cpsY

Mycobacterium tuberculosis MYCTU H37Rv (CDC1551) O06628 (Q7D992) cpsY

Mycobacterium bovis MYCBO AF2122/97 Q7U184 cpsY

Nocardia farcinica NOCFA IFM 10152 Q5YQ21 NA

Nocardioides sp. NOCSP JS614 ZP_00660147 (GI:71369725) NA

Streptomyces coelicolor STRCO A3(2)/M145 O69851, O69852, O69853, Q9L1I2, Q9L1I4 SC1C3.09–11,

SCC88.05c-03c

Alpha-proteobacteria Rhodobacter sphaeroides RHOSH 36983 ZP_00005425 (GI:46193085) NA

Beta-proteobacteria Neisseria meningitidis serotype A NEIMA Z2491, M2677, M4775,

M1124, F8229

Q9JWW8, Q84CZ9, Q84D00, Q83U59, O68215 sacB

Neisseria meningitidis serotype L NEIML NA Q9RGR0 lcbA

Neisseria meningitidis serotype X NEIMX M7575 Q7X4S1 xcbA

Neisseria meningitidis serotype B NEIMB NA Q51151 NA

Gamma-proteobacteria Actinobacillus pleuropneumoniae ACTPL 4074, 8329 Q8KSB4, Q69AA9 cps1A, cps12A

Actinobacillus suis ACTSU SO4 Q84CH1 NA

Aeromonas hydrophila AERHY PPD 11/90, JCM3983 Q84BK9, Q848R7 lcbA

Haemophilus influenzae HAEIN 700222 Q714U9 fcs1

Saccharophagus degradans SACDE 14642 ZP_00318071 (GI:48864178) NA

Firmicutes Lactobacillus plantarum LACPL NCIMB8826/WCFS1 Q88XJ7 cps2G

Oenococcus oeni OENOE PSU-1 ZP_00319330 (GI:48865470) NA

Pediococcus pentosaceus PEDPE ATCC 25745 ZP_00322553 (GI:48869813) NA

Streptococcus gordonii STRGN 38 Q83YR8 wefC

Streptococcus mitis STRMI NCTC 12261 Q6L5Q5 wefF

Streptococcus sobrinus STRSO 6715 TIGR_246202 NA

Streptococcus pneumoniae STRPN 546/62, 34365, Sutcliff,

Colemore, Johnson

Q4K0R3, Q512F2, Q4K2S1, Q4JZ13, Q4K2U1 NA

Streptococcus oralis STROR NA Q6L5S6 wefC

Streptococcus thermophilus STRTR NCFB 2393 Q9EVX1 cpsJ

Streptococcus thermophilus

eps type V

STRTR NA Q8GPD3 eps5J

Streptococcus thermophilus

eps type IX

STRTR NA Pseudogene eps9J

(pseudogene)

Streptococcus thermophilus

eps type X

STRTR NA Q8GP72 eps10H (eps10N

pseudogene)

Eukaryotes Anopheles gambiae ANOGA PEST Q7Q098 (Chromosome 3L, MOZ2, NCBI build 2.2) NA

Apis mellifera APIME DH4 XP_625103 (unknown chromosome, Amel v2.0) NA

Bos taurus BOVIN NA Contigs 130770, 99679, 39654 (draft genome v1.0) NA

Canis familiaris CANFA NA Chromosome 15 (CanFam1.0, NCBI build 1.1) NA

Ciona intestinalis CIOIN NA Scaffold 341 (unknown chromosome,

draft genome v1.95)

NA

Cryptococcus neoformans CRYNE B-3501A (JEC21) Q55KX3 (Q5KAK6) (Chromosome 10, NCBI build 1.1),

Q55LC0 (Q5KA65) (Chromosome 10, NCBI build 1.1)

NA

Cyprinus carpio CYPCA NA EST: CF660934 NA

Brachydanio rerio BRARE Q5RGJ8 (Chromosome 4, NCBI build Zv4) NA

Dictyostelium discoideum DICDI AX4 Q86HR4, Q86KM0, Q86IW6 (Chromosome 2) NA

Drosophila melanogaster DROME NA Q9V553 (Q8SXI4) (Chromosme 2L, NCBI build 4.1) NA

Drosophila pseudoobscura DROPS MV2–25 EAL25704 (GI:54636301) (unknown chromosome,

draft genome release 1)

NA

Drosophila yakuba DROYA NA chromosome 2L (April 2004 freeze) NA

Entamoeba histolytica ENTHI HM-1:IMSS Q50WE0, Q51DI0, Q50UW0, Q512F2, Q51GM7 NA

Fugu rubripes FUGRU NA Prediction based on assembly version 3.0 NA

Fundulus heteroclitus FUNHE NA EST: CN983537, CN953211, CN972229, CN957210 NA

Gallus gallus CHICK NA Chromosome 1 (prediction based on

February 2004 freeze)

NA

Giardia lamblia GIALA WBC6 Q7R5W0 NA

Halocynthia roretzi HALRO NA EST: AV382587 NA

Haplochromis chilotes HAPCH NA EST: BJ674470 NA

Homo sapiens HUMAN NA NP_077288 (GI:38202211) (Chromosome 12, NCBI build 35.1) NA

Hydra magnipapillata HYDMA NA EST: CN560699, CN560453 NA

Ictalurus punctatus ICTPU NA EST: BM495651, BM495632, BM496752 NA

Leishmania major LEIMA Friedlin Q4QB44 (Chromosome 23), Q4QB45

(Chromosome 23)

NA

Mus musculus MOUSE NA BAD32410 (GI:50510849) (Chromosome 10, NCBI build 34.1) NA

Oncorhynchus mykiss ONCMY NA EST: CA388556 NA

Pan troglodytes PANTR NA Chromosome 15 (prediction based on NCBI build 1.1) NA

Phytophthora sojae PHYSO NA EST: BE585238, CF841845, CF860858 NA

Pongo pygmaeus PONPY NA EST: CR547617, CR763766, CR762931 NA

Rattus norvegicus RAT NA Chromosome 7 (prediction based on

NCBI build 3.1, RGSC v3.4)

NA
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Stealth and Protists
Although higher eukaryotes haven’t yet been investigated

for the presence of phosphoglycan structures similar to the
CPSs, such structures have been identified in D. discoideum and
in Leishmania species. In D. discoideum such polysaccharides
were found on lysosomal cysteine proteinases and spore coat
proteins [36,37]. The lysosomal enzymes of D. discoideum have
two types of carbohydrate modifications [38,39] found in two
separate sets of lysosomal vesicles [40,41]. The major compo-
nent of Leishmania lipophosphoglycan is a heteropolymer of

10–40 phosphodiester-linked disaccharide units, depending
on species and developmental stage [42]. Lipophosphoglycan
is predominantly expressed by promastigotes, is essential for
intracellular survival in macrophages and for the virulence of
Leishmania major and L. donovani, and disappears when the
pathogen intracellularly differentiates into amastigotes within
host phagolysosomes [43–47]. The genes encoding these
hexose-phosphoryl transferases have been identified neither
in D. discoideum nor in Leishmania. Given, however, Stealth’s
presumed enzymatic activity and its comparative biochemical
characterization from three different Leishmania species using
synthetic acceptor substrate analogs [48], the two Stealth
proteins found in Leishmania and those found in D. discoideum
are good candidates for this function.

Evolution of Stealth
The peculiar taxonomic distribution of Stealth (Figure 3)

could be the outcome of two different evolutionary scenarios:
(i) differential loss of an ancient protein already present in an
ancestral form of life, or (ii) horizontal gene transfer between
eukaryotes and eubacteria. The second hypothesis appears to
be the more plausible, but the direction of the transfer is
more difficult to assess. Overall, the protein tree largely
follows species phylogeny, at least with regard to the higher
level taxonomic groups. This indicates that transfer between
eukaryotes and prokaryotes must have been an ancient event.
However, several observations suggest that Stealth proteins
continue to be horizontally transferred within and between
certain bacterial groups. In Gram-negative bacteria, Stealth is
inserted into group II capsule operons, which exhibit strong
sequence similarity across many species, thus facilitating
horizontal gene transfer via homologous recombination
[49,50]. Moreover, certain Stealth genes have significantly
lower GþC content than the remaining part of the genome
[19,21,24,51], which is indicative of a recent acquisition from
another species, and some of these genes are flanked by
recombination-promoting IS insertion elements or residual
fragments thereof [21,24].

Materials and Methods

Sequence analysis. Multiple amino acid sequence alignments of the
four CRs were generated using T-Coffee [52]. The signal peptides
were predicted with SignalP v2.0 using the combined NN/HMM-based
method [53,54], the transmembrane predictions were made using
TMHMM v2.0 [55,56], and the Lin-12/Notch repeats were identified
using the profile PS50258 in PROSITE [57]. The EF-hand domains
were detected using the Pfam HMM PF00036 [58].

Table 1. Continued

Taxon Species Code Strain IDa Gene

Strongylocentrotus purpuratus STRPU NA XP_789061 (GI:72047182) incomplete NA

Sus scrofa PIG NA EST: BP153340, CF366264, CF364846, BI337006, CJ016803 NA

Poephila guttata POEGU NA EST: CK306898 NA

Tetraodon nigroviridis TETNG NA Chromosme 19 (genome v7.0) NA

Ustilago maydis USTIMA 521 Q4PEJ8 (contig 52, scaffold 3, assembly 1),

Q4PBY4 (contig 83, scaffold 4, assembly 1)

NA

Xenopus tropicalis XENTR NA EST: CR560067, AL874410 NA

aSwiss-Prot IDs appear in red, EMBL EST IDs in green, Genbank IDs in pink, RefSeq IDs in blue, chromosome entries in black, and others in magenta.

NA, not available.

DOI: 10.1371/journal.pcbi.0010063.t001

Figure 3. Phylogenetic Tree

Trees were calculated from amino acid sequence alignments of the four
CRs. As in Figure 1, sequences are identified by a species code (see Table
1), protein name (from literature as proposed in this paper), and
database accession number, and are color-coded. Dissimilarities are
represented by the length of the branches (all with posterior
probabilities above 0.95).
DOI: 10.1371/journal.pcbi.0010063.g003
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The human and the fly gene structures were constructed with the
aid of the trome database [59–61].

Sequence database searches. Other members of the Stealth protein
family were identified by searching with either the human or the
Streptomyces coelicolor CR2 using BLAST [18] on either nucleic acid or
protein databases.

Calculation of sequence trees. For each CR a separate multiple
amino acid sequence alignment was generated. These multiple
alignments were concatenated, resulting in a multiple alignment that
represents the four CRs. CRs that are absent in certain species are
represented as gaps in the multiple alignment. Processed alignments
were used to derive tree topologies using Bayesian inference of
phylogeny as implemented by MrBayes v3.0 [62,63]. MrBayes was used
with four heated chains over 200,000 generations, sampling every 20
trees. The likelihoods of these trees were examined to estimate the
length of the burn-in phase, and all trees sampled 20,000 generations
later than this point were used to create a consensus tree using the
50% majority rule. MrBayes was used with the mixed model of amino
acid substitution, assuming the presence of invariant sites and using a
gamma distribution approximated by four different rate categories to
model rate variation between sites, estimating amino acid frequencies

from the alignment. The consensus tree was displayed using DRAW-
GRAM of the PHYLIP package [64].

Supporting Information

Figure S1. Taxonomic Distribution of Stealth in Bacteria

Found at DOI: 10.1371/journal.pcbi.0010063.sg001 (57 KB DOC).
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