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Abstract

Shotgun metagenomics has been applied to the studies of the functionality of various microbial communities. As a critical
analysis step in these studies, biological pathways are reconstructed based on the genes predicted from metagenomic
shotgun sequences. Pathway reconstruction provides insights into the functionality of a microbial community and can be
used for comparing multiple microbial communities. The utilization of pathway reconstruction, however, can be
jeopardized because of imperfect functional annotation of genes, and ambiguity in the assignment of predicted enzymes to
biochemical reactions (e.g., some enzymes are involved in multiple biochemical reactions). Considering that metabolic
functions in a microbial community are carried out by many enzymes in a collaborative manner, we present a probabilistic
sampling approach to profiling functional content in a metagenomic dataset, by sampling functions of catalytically
promiscuous enzymes within the context of the entire metabolic network defined by the annotated metagenome. We test
our approach on metagenomic datasets from environmental and human-associated microbial communities. The results
show that our approach provides a more accurate representation of the metabolic activities encoded in a metagenome, and
thus improves the comparative analysis of multiple microbial communities. In addition, our approach reports likelihood
scores of putative reactions, which can be used to identify important reactions and metabolic pathways that reflect the
environmental adaptation of the microbial communities. Source code for sampling metabolic networks is available online at
http://omics.informatics.indiana.edu/mg/MetaNetSam/.
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Introduction

Metagenomics aims to analyze the microbial communities

directly extracted from their living environment, bypassing the

requirements of isolating and culturing the microbes. With the

recent progress of the next generation sequencing (NGS)

technologies, the shotgun sequencing of a whole microbial

community has become a routine exercise. As a result, the list of

metagenomics studies is growing rapidly [1,2]. This provides

ample opportunities for researchers to develop new computational

methods to analyze the sequences from metagenomics projects.

To understand the functional and metabolic potential of a

microbial community given the sequencing data, a key analysis is

to predict - from raw NGS reads or assembled contigs - protein

coding genes and their functions. Functional annotations are often

achieved by similarity search (using BLASTX [3], or faster tools

like BLAT [4] or RAPSearch [5]) against gene families collected in

the databases of biological pathways, such as Kyoto Encyclopedia

of Genes and Genomes (KEGG) [6], MetaCyc [7], or SEED [8] so

that biological pathways can be reconstructed from the predicted

functions. Although the principle is the same, different annotation

systems may use different practices: for example, the HUMAnN

pipeline directly predict gene families and pathways from short

sequence reads based on similarity searches [9], while MG-RAST

first predicts protein coding region from short reads de novo, and

then predicts the functions of the predicted proteins based on

similarity searches [10].

Differential functions or biological pathways can be identified

by comparing annotations of metagenomes, providing insights into

the differences of functionality of various microbial communities

[11–13]. For example, in recent work, the community-level

metabolic networks of the microbiome were constructed from

metagenomic data, and both gene-level and network-level

topological differences were identified as associated with the

host-based environments [14]. For quantitative analysis, the

abundances of genes (often measured as the reads counts) need

to be normalized according to gene lengths (more reads will be

sampled from longer genes), and the quantification of pathways

needs to further consider the different sizes of the pathways (i.e.,

the number of gene families each pathway contains) and the

overlaps among different pathways [15,16].

In this paper, we present a computational method for inferring

the functional activities in a metagenome on the basis of the

metabolic reactions catalyzed by predicted genes from the dataset,

instead of the genes themselves. By directly working on reactions

in the context of a global network, our method is immune to the

problem of pathway reconstruction caused by the overlaps

between pathways - pathways are important for understanding

the biological processes, however, their definition can be rather

arbitrary, and the overlaps between pathways are artificially
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created. More importantly, our new method computes the

likelihood of each reaction for all potential reactions catalyzed

by predicted functions. Clearly, using all potential reactions can

lead to an unfaithful estimation of the functionality of a microbial

community: functional predictions are noisy and contain mistakes;

on the other hand, there are genes that indeed have multiple

functions [17], but not all these functions are carried out by the

microbial community. Our previous approach MinPath [16],

which has been incorporated in HUMAnN [9], improves pathway

reconstruction for metagenomes by removing spurious pathways;

MinPath, however, does not provide confidence for individual

reactions inferred from metagenomic datasets.

We propose a probabilistic approach to estimate the likelihood of

each reaction in a metagenome-scale metabolic network given

predictions of enzymes. Our method computes the marginal

probability of each reaction observed in a collection of randomly

sampled subnetworks from the metagenome-scale metabolic

network. In these subnetworks, for each annotated gene family,

there exists at least one reaction that is carried out by the product

of the gene (i.e. the enzyme). However, if the product of a gene is

annotated to catalyze multiple reactions, some of these reactions

may be excluded from the sampled subnetwork, as long as at least

one of these reactions is included. We note that, according to this

condition, each sampled subnetwork represents a putative

reconstruction of the collective metabolic network of the

metagenome, among which we assume the subnetworks contain-

ing fewer metabolites are more likely to represent the actual

metabolism of the microbial community than the ones containing

more metabolites. Based on this parsimony concept, we devised a

Markov Chain Monte Carlo algorithm [18], by which we

randomly sample a large set of subnetworks and estimate the

likelihood of each reaction.

A microbial community adapts its collective metabolic profile to

its living environment. Therefore, the similarity measure based on

either protein content or metabolic activities in metagenomes can

be used to cluster the metagenomes, consistent to similarity of the

environments [19]. We applied our method to analyze 44 samples

from several metagenomics studies: we used different measures to

calculate the similarity of samples, and our results show that the

distance measure based on the probability of reactions leads to the

most discriminating clustering of the samples. Notably, the

functional variations among metagenomes from different environ-

mental niches cannot be fully explained by their differences in

taxonomic composition, because the clustering of these metagen-

omes based on their metabolic taxonomic composition is not as

discriminating as our method. We also show detailed comparison

of the samples from two ecosystems, to demonstrate that how the

probabilities of reactions can help identify important metabolic

pathways that reflect the environmental adaptation of the

microbial communities.

Results

Probabilistic Inference of Biochemical Reactions in
Different Environments

From the IMG/M metagenome repository [2], we downloaded

44 metagenomic datasets, which were acquired in 10 separate

metagenomics studies of different host-associated or environmen-

tal ecosystems: human and animal gut, soil, ocean, freshwater and

saline lake water (Table S1). All these studies were conducted by

using Illumina sequencers with massive amount of reads acquired

(short reads data file size ranging from 250 MB to over 200 GB).

For each sample, IMG/M provides the assembled metagenome,

and the protein-coding genes are characterized with additional

functional annotations, such as KEGG ortholog groups of

enzymes. Based on these identified KEGG ortholog groups and

the KEGG reference metabolic pathways, we constructed a

metagenome-scale annotated global metabolic network for each

metagenomic sample. Note that these annotated global metabolic

networks contain a similar number of multi-functional enzymes

(Table S1). For each metabolic network, we applied the MCMC

sampling method and computed the marginal probabilities of all

annotated reactions. These probabilities can be used to compare

the similarity of the microbial communities in the corresponding

environments.

Clustering of Metagenomics Samples from Different
Environments

We clustered the 44 samples based on different similarity

measures of their enzyme contents or metabolic reactions. Five

types of measures were used to estimate the distance between the

metagenomics samples and compare the clustering results (for

details see Methods): 1) the Bray-Curtis dissimilarity Dq(e) that

compares the quantities of the metabolic enzymes encoded in each

pair of the metagenomics samples; 2) the binary distance Db(e)
between the binary vectors representing the presence/absence of

each enzyme in the metagenomes; 3) the binary distance Db(r)
between the binary vectors representing the presence/absence of

each reaction in the annotated global metabolic network based on

the naive annotation of enzymes; 4) the taxonomic distance Dt(e)
based on the phylogenetic composition of the prokaryotes involved

in metabolism; and 5) the Euclidean distance Dp(r) that compares

the marginal probabilities of the reactions estimated by using the

MCMC algorithm.

The hierarchical clustering of the metagenomics samples (for

details see Method) using the five distance measures are shown in

Figure 1. It is clear that the clusters created by using Db(e)
(Figure 1 (b)) and Dp(r) (Figure 1 (e)) are more consistent with the

actual environmental similarities than the ones using the other

distance measures. Between these two, the clusters generated using

Dp(r) are more accurate because it can separate all metagenomic

samples based on their habitats while the other method failed to.

Research has shown that lake water microbial communities are

highly affected by inoculation of microbes from soils [20],

therefore, soil samples and lake water samples are considered to

be from similar environments in previous studies [21]. This

correlates well with the Dp(r)-based clustering result, in which the

soil samples and lake water samples are intermixed in one large

cluster (Figure 1 (e)). Figure 1 (d) shows that the taxonomic

composition derived from the genes involved in metabolic

pathways cannot discriminate the microbial communities to their

habitat groups very well, which implies that the functional

Author Summary

We present a probabilistic sampling approach to profiling
metabolic reactions in a microbial community from
metagenomic shotgun reads, in an attempt to understand
the metabolism within a microbial community and
compare them across multiple communities. Different
from the conventional pathway reconstruction approaches
that aim at a definitive set of reactions, our method
estimates how likely each annotated reaction can occur in
the metabolism of the microbial community, given the
shotgun sequencing data. This probabilistic measure
improves our prediction of the actual metabolism in the
microbial communities and can be used in the compara-
tive functional analysis of metagenomic data.

Probabilistic Inference of Biochemical Reactions
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similarities of the metabolisms cannot be completely attributed to

the taxonomic composition of the metagenomes. The poor

outcome when Dq(e) (enzyme quantities-based distance, Figure 1

(a)) is used as the distance measure indicates that prudence should

be taken when using the enzyme abundances estimated in

metagenome assemblies as a measure of metabolism in the

microbial communities, even though it is shown to be useful in

comparing relative abundance of metabolic functions in addition

to binary functional reconstructions [9,13,14]. The poor perfor-

mance of the clustering when the enzyme-coding genes are naively

annotated to all the reactions (Figure 1 (c)) confirms our

proposition that the naively annotated metabolic network cannot

reflect the nature of the metabolic adaptation of the microbial

community to its environment. The clustering results show that by

computing the likelihood of the reactions occurring in the

metabolism, the adaptation of the metabolism that was hidden

in the global metabolic network can be revealed. This leads to a

more accurate assessment of the functional similarities among the

metagenomic samples.

Comparative Functional Analysis Based on Metabolic
Reactions

To investigate how the distance measure Dp(r) improved the

clustering results compared to Db(r), we focused our analysis on

the metagenomic samples from two ecosystems: the permafrost soil

samples from Alaska, and the saline lake water samples from an

Antarctic deep lake. The first group of samples was collected from

three different layers (two samples in each layer) in permafrost in

the sediment of a creek in Alaska [22]. The second group of lake

water samples was collected at six different depths ranging from 5

to 36 meters in Antarctic lakes [23]. Note that when using Db(r) as

the distance measure, 3 saline water samples were incorrectly

grouped into the cluster of permafrost samples; but the distance

measure Dp(r) can accurately separate the samples from the two

environments (Figure 1, (c) and (e)).

We used statistical tests to assess whether a metabolic reaction is

differentially likely to occur in the two environments. Because the

presence/absence of the reactions in the metabolic network is

represented by a binary vector, we identified 110 reactions using

the Fisher’s exact test [24] that are statistically different (P-

valuev0.05) in the two groups (for details see Methods), indicating

these reactions are likely to occur only in one of the two

environments. We then used t-test to check if the marginal

probability of each metabolic reaction is significantly different

between the two groups. The t-test identified 447 reactions

showing statistically different likelihoods to occur in the two

environments (Table S2). The two tests agree on 109 reactions,

and 338 reactions are considered to be different between these two

sets of samples only by the t-test (Figure 2) on the likelihood of

reactions, whereas only one reaction is detected as significantly

different only by the Fisher’s exact test.

Note that 166 of these 338 reactions are annotated to be

catalyzed by one or more catalytically promiscuous enzymes in all

of the metabolic networks (Table S2). In other words, there is no

difference if we compare whether they exist (based on the

annotation of genes) in the metabolic networks in both groups.

However, the marginal probabilities of these reactions, which were

assigned by the MCMC algorithm, are different among the two

groups of samples, indicating these reactions show different

likelihood to occur in the metabolism of the samples between

the two groups. For example, one reaction in the Benzoate

degradation pathway (KEGG reaction R06989) is observed in all

12 metabolic networks with different likelihoods in both environ-

ments; the reaction is on average 2.5-fold more likely to occur in

Figure 1. Hierarchical clustering of 44 IMG/M metagenomics samples represented in dendrograms. Five different distance measures of
the metabolic patterns were used in the clustering. Sample taxon IDs are colored according to the metagenomics study. The environments of the
samples are represented in shapes. (a) Clustering with distance measure Dq(e) based on quantities of metabolic enzymes; (b) Clustering with distance
measure Db(e) based on presence/absence of enzymes; (c) Clustering with distance measure Db(r) based on presence/absence of reactions; (d)
Clustering with distance measure Dt(e) based on the taxonomic compositions; (e) Clustering with distance measure Dp(r) based on the likelihood of
metabolic reactions. See text for details about the distance measures.
doi:10.1371/journal.pcbi.1002981.g001

Probabilistic Inference of Biochemical Reactions
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the permafrost samples than in the lake water samples, if we

compare their marginal probabilities (Table S2). This reaction is

catalyzed by the enzyme muconate cycloisomerase (KEGG

ortholog K01856), a promiscuous enzyme that also catalyzes four

other reactions (Figure 3). All five reactions involve the isomer-

ization of cis,cis-muconate and its derivatives (Figure S1). In

particular, the reaction R06989, which is an important step in

benzoate degradation, transforms cis,cis-muconate, which is

enzymatically produced from catechol. The functions of benzoate

and catechol metabolism are also found to be enriched in the

permafrost microbial communities by other studies [25]. The

results of the MCMC simulation show that the differences of the

marginal probabilities of the other four reactions are much smaller

compared to R06989. Also note that the probabilities of the five

reactions are almost the same in the Antarctic lake samples,

whereas, in the Alaska permafrost samples, the reaction that

isomerize cis,cis-muconate (R06989) apparently has greater

probabilities (Figure 3). This shows how the results of our method

can be used to analyze the potential adaptation of the functions of

promiscuous enzymes in different environments, which cannot be

revealed when analyzing only the enzyme-encoding genes.

Another interesting observation is that the difference between

the marginal probabilities of the 338 reactions can be used to

correctly cluster the samples into two groups (Figure 2). In

addition, if we focus on the samples extracted from Alaska

permafrost, all 6 samples are correctly separated into three

clusters, with each containing two samples from the same layer in

the permafrost. This shows that those reactions only identified by

Figure 2. Heatmap of the reactions found to differentially occur in Antarctic deep lake and permafrost samples only by the t-test on
the marginal probabilities of reactions. 338 reactions are shown in rows, and the 12 metagenomes are shown in columns. These reactions are
not found to be different in the two environments if only their occurrences in the metabolic networks are compared. The two groups of
metagenomics samples from two environments are separated in the clustering results. The 6 permafrost samples are grouped into 3 clusters
correctly, with each cluster contains two samples from the same layer in the permafrost soil.
doi:10.1371/journal.pcbi.1002981.g002

Figure 3. Probabilities of the 5 reactions catalyzed by muconate cycloisomerase (K01856). The difference of the probabilities of the
reaction R06989 between the two groups is more significant than the other reactions.
doi:10.1371/journal.pcbi.1002981.g003

Probabilistic Inference of Biochemical Reactions
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comparing the estimated marginal probabilities contain the critical

information in the metabolic adaptations of these samples to their

environments.

Among those 447 reactions that are identified to be different by

the t-test on the marginal probability, 327 reactions show higher

marginal probabilities to appear in the Alaska permafrost samples

than in Antarctic deep lake samples. The remaining 120 reactions

show lower probabilities in the Alaska permafrost samples than the

Antarctic deep lake samples (Table S2). We built two networks

using these two sets of reactions. In these networks, vertices

represent the reactions, and a pair of reactions is connected by an

edge if there are one or more common metabolites in the two

reactions(Figure 4). The connected components in these networks

represent chains of metabolic reactions that can be considered to

have significant higher probabilities to occur in the environment of

one group compared to the other.

Several interesting chains of reactions were revealed in both

networks. For example, the chain R07916-R04786-R04787

(R07916, R04786, R04787 are KEGG reaction IDs) has a higher

probability to occur in the metabolism of microbial communities

from Antarctic deep lakes (Figure 5), which is a part of the beta-

carotene biosynthesis module belonging to the carotenoid

biosynthesis pathway. Carotenoids are essential metabolites for

photosynthetic bacterial because they provide photo-protection

and accessory light harvesting [26]. The bacterial community in

fresh water is known to carry out photosynthetic activities even in

deep water. The Antarctic deep lake metagenomics study also

revealed trace of photosynthetic microorganisms in their samples

[23]. Therefore, it is not surprising to observe that photosynthesis

related pathway modules have a higher likelihood to occur in the

deep lake microbial communities than in the permafrost soil

samples, which exist in an environment deprived of light. Several

chains of reactions were found to have higher probabilities to

occur in permafrost samples, among which were chains in

methanogenesis, and keratan sulfate degradation. Slow rates of

methanogenesis by cold-adapted methanogens occur in permafrost

and active layer soils [22], and keratan is regarded as a carbon

source for certain bacteria isolated from soil [27]. Note that these

chains all contain reactions that are identified only by comparing

the reaction marginal probabilities but not the enzymes or the

existence of reactions. Some chains even contain only reactions

that are identified by comparing the reaction marginal probabil-

ities (Figure 4). Therefore, our method successfully expands the

horizon of discovering important pathways that contain critical

information of the adaptive metabolism of microbes.

Discussion

In this paper, we focus on the analysis of metagenomics samples

based on the metabolic reactions annotated to be catalyzed by the

predicted genes in the metagenomes. We proposed a method that

assigns marginal probabilities to reactions to estimate the

likelihood of the reactions to occur in the metabolism of a

microbial community. The Markov Chain Monte Carlo (MCMC)

sampling algorithm establishes a framework that can be used to

study the different aspects of metabolic networks. The subnetwork

universe can be sampled by the MCMC algorithm with different

constraints based on various assumptions. For example, in recent

work, flux balance analysis (FBA) is used to constrain the viability

Figure 4. Network of reactions that are different in the two environments. Each vertex represents a reaction. An edge is connected
between two vertices if the two reactions share one or more metabolites. Square shaped vertices represent the reactions discovered to be different
by using t-test on marginal probabilities, but not different when using the Fisher’s test on the enzyme occurrences; Circle shaped vertices represent
the reactions considered to be different in both statistical tests. (a) 327 reactions with higher marginal probabilities in Alaska permafrost samples; (b)
120 reactions with lower marginal probabilities in Alaska permafrost samples.
doi:10.1371/journal.pcbi.1002981.g004

Probabilistic Inference of Biochemical Reactions
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of the sampled genome-scale metabolic networks in a MCMC

based method [28].

The marginal probabilities are assigned by our method to

reactions that are catalyzed by catalytically promiscuous enzymes.

As shown in the results, the reactions occurring in a microbial

community are a better representation of the metabolism in the

community, because one reaction may be catalyzed by different

enzymes encoded by different microbial organisms in the

community. An extension of this method is to compare the

likelihood of the reactions to be catalyzed by the same enzyme and

allow us to investigate how promiscuous enzymes function in

different environments.

By applying the parsimony assumption, our method successfully

takes several intrinsic properties of the metabolic network into

consideration. It should be noted that this method indirectly favors

highly connected metabolic networks, where the number of non-

terminal metabolites that can be produced and consumed by the

microbial community is maximized. Similar assumptions have

been used in other studies. For example, in the metabolic network

reconstruction, gaps in metabolic paths are usually filled to

decrease the number of isolated reactions or metabolites [29].

Notably, this assumption is particularly practical for the study of

the metabolism in a microbial community rather than individual

microbial organisms, because the microbes living in the same

environment likely co-evolved into a condition under which

microbes can make use of the metabolites from other microbes

and only a small number of metabolites are required from the

external environment by the whole community.

We note that our method lacks the compartmentalization of the

biochemical reactions and the resolution of individual species. In

previous studies, multi-species models have been applied to

investigate the interactions within the community or between host

and microbiomes [30]. In comparison, when studying the system-

level behavior of the whole microbial communities, researchers

often treat the microbial communities as individual adaptive

organisms (also referred as supra-organism), ignoring the boundaries

between species altogether [14,31,32]. In this study, we take a

similar approach, which allows us to investigate the collective

metabolic behavior of the microbial communities. This approach

is also a necessity because genomic information is not available for

all the species in the community and methods for decomposing

complex metagenomic samples into compartmentalized organ-

elles/prokaryotic cells are yet to be developed.

There are, however, several limitations of the method that are

worth noting. In our metabolic network definition, the reactions

are considered to be indirect, which indicate that all reactions are

reversible. However, conditions in the cell are often such that it is

thermodynamically infeasible for flux of reactions to flow in

certain direction so the reaction becomes irreversible. Therefore,

there might be dead-end metabolites in the network, the metabolites

that are not the product of the other reactions or are not used by

other reactions as substrates. In our model, they are misinterpreted

as the metabolites that connect two reactions, which could

decrease the accuracy of the reaction and pathway annotated by

our method. Another issue is that this method does not consider

the abundance of enzymes predicted from the metagenomic

sequences. We observed large variance in the abundance of the

same enzyme among samples as well as pairs of enzymes that share

same metabolites as substrates or products. We are working on a

revision of our current method to take the abundance of enzymes

into account.

Methods

Problem Formulation
We start the problem formulation with a formal definition of a

metabolic network.

Definition 1. A reference metabolic network is a labeled undirected

graph G~(VR,VC ,B) where VC~fck : k~1,2,:::,Lg represents a set of

L vertices, each labeled by a metabolite (compound), and

Figure 5. R07916-R04786-R04787 reaction chain. It is part of the beta-carotene biosynthesis module, and is observed to be different in the
metagenomic samples from the two environments, Antarctic lakes and Alaska permafrost. (a) Reactions and metabolites. Values above the reaction
boxes are the average marginal probabilities of the reactions in the two groups. Values under the reaction boxes are the p-values from the t-test. (b)
The marginal probabilities of the reactions in different samples.
doi:10.1371/journal.pcbi.1002981.g005

Probabilistic Inference of Biochemical Reactions
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VR~frj : j~1,2,:::,Ng represents a set of N edges, each labeled by a

biochemical reaction. The graph topology is represented in a matrix form

B~fbjk : j~1,2,:::,N; k~1,2,:::,Lg,

bjk~
1 if ck is a substrate or a product in rj

0 otherwise

�

We then annotate the enzymes corresponding to the predicted

genes in a metagenomic dataset on the reference metabolic

network (in the database such as the KEGG [6]), and define the

annotated global metabolic network as follows.

Definition 2. Considering the set of P metabolic enzymes annotated in

a metagenome as VE~fei : i~1,2,:::Qg, the reactions in the reference

network that are annotated by enzymes are represented as a matrix

A~faij : i~1,2,:::Q; j~1,2,:::,Ng

aij~
1 if ei is annotated to catalyze rj

0 otherwise

�

We callM~(G,A,VE) an annotated global metabolic network of

the metagenome.

In the annotated metabolic network, each reaction is annotated

to be catalyzed by one or more enzyme, whereas each enzyme is

naively annotated with all of its putative catalytic functions. The

annotated metabolic network provides a global view of the

metabolic activities encoded in a metagenome. Note that in an

annotated network, there are usually a substantial number of

catalytically promiscuous enzymes that are annotated to catalyze

more than one reaction. The promiscuity of the enzymes is due to

the factors such as the environmental conditions such as pH and

temperature, and under certain circumstances, a promiscuous

enzyme more likely catalyzes one of its annotated reaction than

the others [17]. Altogether, the annotated global metabolic

network represents the universe of all metabolic profiles; but it

does not reflect the adapted metabolism to certain environmental

conditions because all functions of the promiscuous enzymes are

considered to occur equally likely.

Below we introduce the concept of a subnetwork of the

annotated global metabolic network as a representation of one

putative metabolic profile of the metagenome. A subnetwork

consists of a subset of reactions, metabolites and enzymes from the

global network; a subnetwork is defined as valid if each predicted

enzyme is annotated to catalyze at least one reaction in the

subnetwork. Their formal definitions are given as follows:

Definition 3. Given the annotation A~faijg on a gene set VE in an

annotated metabolic networkM, we define an annotated metabolic subnetwork

M0~(G0,vE ,A’), where G0~(vR,vC ,B’) is a subgraph of the metabolic

network G (i.e., vR(VR, vC(VC , and B’ is a submatrix of B),

vE(VE , and A’ is a submatrix of A.

Definition 4. An annotated metabolic subnetworkM0~(G0,vE ,A’)
of a annotated global metabolic network M~(G,VE ,A) is called valid, if

vE~VE :
The set of valid subnetworks from an annotated global

metabolic network constitutes the universe of valid subnetworks

S~fM0g. Within the scope of our study, the probability of a

subnetwork in the universe S is the likelihood of the subnetwork to

represent the real metabolism of the metagenome, denoted as

P(M0DM). Assuming the probability distribution of P(M0DM) is

known, we can calculate the marginal probability of each reaction

given the annotated global metabolic network M based on the

Bayes’ theorem (equation (1)):

P(rj DM)~
X
M0

P(M0DM):f (rj DM0) ð1Þ

where f (rj DM0) is the probability of a reaction rj to occur in the

subnetwork. Because the configuration of the subnetwork is

already known, it can be represented as an indicator function,

f (rj DM0)~
1 if rj[vR

0 otherwise

�

Due to the complexity of metabolic networks, it is intractable to

compute P(M0DM), because the subnetwork universe is huge – the

total number of potential subnetworks is PQ
i~1 (2ni {1), where Q is

the number of enzymes in the annotated global metabolic network,

and ni is the total number of reactions that enzyme ei catalyze.

Given the number of multi-functional enzymes that an annotated

global metabolic network contains, it’s not tractable to enumerate

all potential subnetworks to compute P(M0DM). Here, we resort to

a Markov Chain Monte Carlo (MCMC) algorithm to sample

subnetworks from the subnetwork universe S, and compute the

marginal probabilities based on the subnetwork samples.

The Parsimony Assumption and Inequality of the
Likelihood of Metabolic Subnetworks

Before we discuss the details of the MCMC algorithm, we

introduce an inequality of likelihood of the metabolic subnetworks

based on a parsimony assumption. We observe that within

microbial communities, metabolic enzymes work collectively to

catalyze a series of reactions to transform some compounds that

are available in their living environment into other compounds

that can be utilized to maintain their cellular functions. Although

the enzymes act on different substrates and products, the products

of some reactions are usually used as substrates in the subsequent

reactions, resulting in a sequence of reactions devising the complex

but efficient metabolic network. The adaption of a living microbial

organism to its living environment often leads to a unique and

nearly optimal metabolic network, in which only a small number

of necessary compounds need to be taken from its environment,

while the other compounds can be synthesized through metabolic

reactions inside the microbial community. Based on these

observations, we adopt a parsimony assumption: the valid

subnetworks involving fewer compounds are more likely to

represent the metabolism of the microbial community.

Equivalently, given two valid subnetworksM0
i~(G0i,vE,i,A’i) and

M0
j~(G0j ,vE,j ,A’j) of the same annotated global network M~

(G,VE ,A), where G0i~(vC,i,vR,i,B’i) and G0j~(vC,j ,vR,j ,B’j), if

DvC,i DvDvC,j D,

then

P(M0
i DM)wP(M0

j DM) ð2Þ

Markov Chain Monte Carlo (MCMC) Sampling Based on
the Parsimony Assumption

We construct a Markov Chain (MC) of annotated subnetworks

to sample the valid annotated metabolic subnetwork in the

universe S and estimate the marginal probabilities of reactions. At

each step of the random MC walk, a new metabolic subnetwork is
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generated by inserting a new reaction to the current subnetwork, or

by deleting an existing reaction from the current subnetwork. We

repeat the insertion/deletion until a valid new subnetwork is

generated. The transition from the current subnetwork to a new

valid subnetwork is accepted or rejected based on the parsimony

inequality in equation (2). If the number of metabolites found in the

new subnetwork is smaller than the number of metabolites in the

current subnetwork, we accept the transition to the new subnet-

work; otherwise, we accept the transition with a probability e{(Dz1)

(called the candidate probability), where D is the difference between the

number of metabolites in the new and the current subnetwork.

It is straightforward to show that this type of transition is ergodic,

i.e., any pair of subnetworks can be connected by a finite series of

such transitions. The candidate probability ensures that the

random walk samples the subnetworks based on the parsimony

assumption, as defined in equation (2). According to the

Metropolis-Hastings rule [33], the candidate probability also

ensures the subnetwork samples are drawn from a probability

distribution that is proportional to the likelihood of the subnetwork

in the subnetwork universe S.

The number of variables we are trying to estimate equals the

number of reactions that are catalyzed by promiscuous enzymes.

Metabolic networks constructed from metagenomic data normally

contain hundreds of such reactions. Here we discuss several

methodological issues of the Markov chain caused by the large

number of variables in the sampling universe. First, every step in

the random walk only changes the state of at most one reaction,

therefore, the correlation between the two consecutive sampled

subnetworks is obviously large. We use the subsampling (also called

batch sampling) technique to reduce the correlation and to

approximate independence between the successive samples of

the Markov chain [18]. We subsample from the Markov chain

with a deterministic batch size k, meaning that we consider only

one subnetwork from every k sampled subnetworks. As shown in

Figure 6 (a), when k~10,000 for a network containing 362

promiscuous enzymes (1183 enzymes in total), subsampling almost

completely eliminates the correlation of successive sampled

subnetworks. Another issue is the acceptance rate of the transitions

in the Markov chain, which is the ratio of the number of accepted

transitions from the current subnetwork to the new subnetwork,

over the number of proposed transitions. This ratio was shown to

affect the convergence pattern of the Markov chain [18], and it’s

heuristically recommended to be controlled to close to 1/4 for

models with high dimensions [34]. The acceptance rate is affected

by the candidate distribution, which in our model has the

exponential distribution form e{(Dz1), where D is the difference

Figure 6. Properties of the Markov chain. (a) Correlations of the probability of reaction in consecutive subnetworks sampled from the Markov
chain. As the batch size in subsampling increases, the correlation decreases and become insignificant (v0.1) for most reactions when batch size is set
to 10,000. (b) Ergodic averages of the marginal probability P(rj DM) for all reactions catalyzed by promiscuous enzymes in a metagenome.
(subsampling with batch size = 10,000) (c) Running time of the Markov chain of global metabolic networks of various sizes for 250 million iterations.
Top are the total numbers of reactions in each sample. Bottom are the numbers of reactions that are catalyzed by catalytically promiscuous enzymes.
doi:10.1371/journal.pcbi.1002981.g006
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between the number of metabolites in the new subnetwork and the

current subnetwork. We choose the candidate distribution in this

form because it can restrict the acceptance rate of our random

walk approximately within the range of 0.20 to 0.24. Note that

because we only sample the valid subnetworks, the rejected invalid

subnetworks in our algorithm (Figure 7) are not counted when

calculating the acceptance rate. Furthermore, it requires a large

number of samples from the subnetwork universe S for an

accurate estimation of the marginal probability. This, in addition

to the requirement of subsampling to avoid high correlation

between the samples, requires a careful monitoring of the

convergence of the Markov chain. We examine the ergodic

average of the estimated marginal probability P(rj DM) for all

reaction rj in a metabolic network of 609 reactions that are

catalyzed by multi-functional enzymes, and heuristically determine

that with subsampling of batch size k~10,000, the Markov chain

converges after 10,000 subnetworks are sampled (Figure 6 (b)). To

improve the convergence of our Markov chain, in practice, we

choose to discard samples from the first 10 million steps of the

Markov chain, i.e., the burn-in period, to make the random walk to

start from a better point in the subnetwork probability space S.

Last but not least, because of the requirements of large batch size

in subsampling, low acceptance rate, and large amount of samples,

the running time of the Markov chain requires special examina-

Figure 7. Metropolis-Hastings Algorithm.
doi:10.1371/journal.pcbi.1002981.g007
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tion. We find that when we control all these factors, the running

time is linearly correlated to the number of reactions in the

subnetwork, or in some sense the size of the subnetwork (Figure 6

(c)). For a large network with over 1,200 reactions, of which more

than 600 are catalyzed by multi-functional enzymes, the algorithm

can finish 250 million iterations in approximately 10 hours.

The formal Metropolis-Hastings algorithm is shown in Figure 7.

After sampling, we can compute the estimated marginal

probability P(rj DM) by

P(rj DM)~
cj

T
ð3Þ

for Vj such that rj[VR, where T is the total number of sampled

valid subnetworks.

In addition to the marginal probability P(rj DM), we can also

extract a subnetwork sample with the maximum likelihood in the

samples, which is the subnetwork with the smallest number of

compounds.

Distance Measures, Clustering Algorithm and Statistical Tests
For any pair of metagenomes ma,mb, the Bray-Curtis dissim-

ilarity is D(ma,mb)~
2Cij

SizSj
, where Cij is the sum of the lesser value

for only those enzymes in common in both samples. Si and Sj are

the total number of enzymes counted in both samples [35]. In this

paper, this distance is denoted as Dq(e). The quantities of enzymes

in each metagenomic dataset were obtained from IMG/M,

computed based on the number of assembled contigs aligned to

each family of enzymes. The Jaccard distance is used to estimate

the binary distance of the samples, based on enzymes (denoted as

Db(e)) and reactions (denoted as Db(r)). We also computed the

Euclidean distance of reactions Dp(r), which is based on the

marginal probabilities of the reactions.

The taxonomic distances, denoted as Dt(e) were calculated in

several steps: for each metagenome downloaded from IMG/M, to

ensure the comparison is based on the organisms involved in the

collective metabolic processes, we removed the genes that are not

annotated with a metabolic function in the IMG/M KEGG

ortholog group annotations. Then we used BLAST (version

2.1.18) to search the genes against the KEGG genes database (E-

value v1e{5). From the BLAST results, we built a phylogenetic

tree by gathering the genome of the top hits and mapping them to

the Greengenes core set [36]. Using the phylogenetic trees, we

calculated the pairwise taxonomic distances between samples with

unweighted Fast UniFrac method [37,38] (PyCogent [39] version

1.5.3), a metric that measures the phylogenetic relatedness of

whole communities and has been widely applied in studies to

compare taxonomic differences between complex microbial

communities [40].

We used the Ward’s minimum variance method as the linkage

criteria in our hierarchical clustering, which tries to minimize the

total within-cluster variance. Note that when applying other

common linkage criteria in the hierarchical clustering, even

though the performance varies, the order of performances using

the four distance measure was still observed.

Fisher’s exact test [24] is used to determine if there are

nonrandom associations between two binary variables. For each

reaction, we used Fisher’s test to compare its presence/absence in

the two groups of samples from the two environments. The p-

value gives the exact probability of observing the particular ratio of

the presence/absence of the reaction in the samples from the two

environments, on the null hypothesis that the chances of the

reaction to exist in both environments are the same. We consider

reactions with p-valuev0.05 as ones that have significant different

probability to be found in the two environments. We also used

Fisher’s test in comparing the binary representation of each

enzyme in the two environments.

We used the independent two-sample t-test to determine

whether the quantities of enzymes are statistically different in

two environments under the assumptions that these quantities are

independent and normally distributed, and the distributions of the

quantities in the two groups of samples have the same variance. So

for each enzyme, we consider its quantities in samples in the two

environments as two groups of values, and the t-statistic

determines whether the means of the two groups of values are

different. Similarly, we also used t-test for analyzing whether each

reaction has a different probability in the two environments.

Implementation of MCMC Sampling
The MCMC sampler of metabolic networks is implemented in

Java, and based on the HYDRA MCMC library [41]. Running

time of the program is dependent on the size of the network and

the configuration of the MCMC sampler, including the subsam-

pling size and burn-in period (Figure 6). For a large network with

about 2,500 reactions, the sampling takes approximately 10 hours

on a dual core Dell Latitude laptop, and requires a small amount

of memory (v50 MB). Source codes can be downloaded at

http://omics.informatics.indiana.edu/mg/MetaNetSam/.

Supporting Information

Figure S1 Reactions catalyzed by muconate cycloisome-
rase (KEGG Orothlog K01856). All five reactions are found in

all samples in the metagenomics samples from the Antarctic deep

lake and Alaska permafrost studies. KEGG reactions: (a) R05300;

(b) R05390; (c) R06989; (d) R08116; (e) R09229.

(PDF)

Table S1 IMG/M metagenomics samples used in our
study. Data were downloaded on 4/10/2012.

(PDF)

Table S2 Reactions in Antarctic deep lake and Alaska
permafrost samples. The first p-value is from the Fisher’s test

that checks if the occurrences of the reactions in the two groups of

samples are different. This p-value equaling 1 means the reaction

occurs in all the samples in the two groups. The second p-value is

the t-test based on the marginal probability of the reactions. The

last two columns are the average marginal probabilities of the

reactions in the two groups of samples.

(PDF)
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