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Abstract

Modular organization in biological networks has been suggested as a natural mechanism by which a cell coordinates its
metabolic strategies for evolving and responding to environmental perturbations. To understand how this occurs, there is a
need for developing computational schemes that contribute to integration of genomic-scale information and assist
investigators in formulating biological hypotheses in a quantitative and systematic fashion. In this work, we combined
metabolome data and constraint-based modeling to elucidate the relationships among structural modules, functional
organization, and the optimal metabolic phenotype of Rhizobium etli, a bacterium that fixes nitrogen in symbiosis with
Phaseolus vulgaris. To experimentally characterize the metabolic phenotype of this microorganism, we obtained the
metabolic profile of 220 metabolites at two physiological stages: under free-living conditions, and during nitrogen fixation
with P. vulgaris. By integrating these data into a constraint-based model, we built a refined computational platform with the
capability to survey the metabolic activity underlying nitrogen fixation in R. etli. Topological analysis of the metabolic
reconstruction led us to identify modular structures with functional activities. Consistent with modular activity in
metabolism, we found that most of the metabolites experimentally detected in each module simultaneously increased their
relative abundances during nitrogen fixation. In this work, we explore the relationships among topology, biological
function, and optimal activity in the metabolism of R. etli through an integrative analysis based on modeling and
metabolome data. Our findings suggest that the metabolic activity during nitrogen fixation is supported by interacting
structural modules that correlate with three functional classifications: nucleic acids, peptides, and lipids. More
fundamentally, we supply evidence that such modular organization during functional nitrogen fixation is a robust
property under different environmental conditions.
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Introduction

With the advent of bioinformatics and high-throughput

technologies, plentiful sources of information stored in databases

are now available to help unveil how a variety of biological entities

interact among each other and to elucidate how these interacting

networks support phenotypic behaviors in microorganisms.

Notably, a variety of studies accomplished with these networks

have contributed to elucidation of some fundamental organizing

principles by which the cell presumably regulates and coordinates

its vital biological functions. Among these organizing properties,

structural modularity is a systemic property that has been observed

in a variety of biological networks, which range from genetic

transcriptional regulation to metabolic activity [1,2,3,4,5]. On an

even more fundamental level, there is evidence that these modules

inferred from network topology can be associated with functional

modules; these latter are defined as a set of biological components

(metabolites, proteins, or genes) that coordinately participate in

accomplishing a specific biological function in the cell [6].

On the other hand, the idea that optimization principles guide

metabolic activity in microorganisms has been an interesting

hypothesis that, in combination with genome-scale metabolic

reconstructions, has resulted in a successful framework for a

systematic, quantitative, and predictive scheme in systems biology

[7]. Briefly, the optimization problem in this context is reduced to

identification of the metabolic flux along the network that ensures

maximal production of a specific array of metabolites representing

a specific phenotypic state in the microorganism. An optimal

metabolic phenotype constitutes the basis of constraint-based

modeling, and its application domain has been extended to a

variety of organisms in the past few decades [8,9].

In this context, an immediate and fundamental question

emerges: how do these structural modules organize and coordinate

among themselves to support an optimal metabolic phenotype in

microorganisms?. Even though this enterprise is far from being

solved, some remarkable advances have been reported in the field.

For instance, a recent experimental and in silico study on a

metabolic reconstruction for Escherichia coli supported the idea that

feedback inhibition in metabolic units, called modules, constitutes

a mechanism capable of inducing an optimal growth rate [10].

Equally relevant, there are studies that have pointed out that

modular organization on a genomic scale may be a natural

strategy for coordinating the transcriptional and metabolic

activities required for ensuring that cells evolve and efficiently
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respond to environmental perturbations [1,5]. Despite these and

other advances, the study of the principles governing the metabolic

organization in cells is in its infancy, and additional discoveries are

required for surveying how structural modules in a metabolic

network link together to efficiently achieve their biological

functions [10].

In this work, by using a systems biology description, we supply

computational and experimental evidence that suggests that

structural and functional modularities are robust properties when

the cell operates under its optimal metabolic phenotype at

different physiological conditions. To support our conclusions,

we carried out an integrative study involving computational

modeling and high-throughput sequencing technology for char-

acterizing the metabolic activity of Rhizobium etli CFN42 during

symbiotic nitrogen fixation in symbiotic association with Phaseolus

vulgaris (bean plant). Here, this organism is our benchmark model,

a decision that was favored based on the availability of 1) a

computational description of its genome-scale metabolic recon-

struction, 2) an integrative description among high-throughput

technologies at nitrogen fixation stages, and 3) the valuable

physiological knowledge already available that describes the

metabolic activity during nitrogen fixation by this organism in

symbiotic association with P. vulgaris [11].

Hence, to elucidate the metabolic activity of R.etli during

nitrogen fixation, constraint-based modeling was applied on an

updated version of the metabolic reconstruction for this organism

(iOR450) [11]. At present, the metabolic reconstruction of R. etli is

an integrated network of 402 reactions involving the participation

of 450 genes and 377 metabolites. Unlike our previous studies,

here we used metabolome technology to experimentally support

our in silico interpretations of R.etli metabolism under two

physiological conditions: when it fixes nitrogen in symbiosis with

P. vulgaris, and under free-living conditions with succinate and

ammonium as carbon and nitrogen sources, respectively (see the

Materials and Methods section).Thus, by applying capillary

electrophoresis and mass spectrometry (CE-MS) [12,13] to R.etli

and its products, we report the relative abundances of 220

metabolites under these physiological conditions. To improve the

interpretations obtained from the constraint-based modeling, we

used metabolome data to identify metabolites with meaningful

biological roles in bacterial nitrogen fixation. Consequently, this

information was used to guide the reconstruction of a more proper

objective function (OF) to computationally simulate this biological

process. Next, with the results of our integrative analysis carried

out between the constraint-based modeling and the metabolome

data for R. etli, we concluded that the metabolic activity at optimal

nitrogen fixation is supported by structural modules with well-

defined functional activities. Furthermore, our in silico study let us

show that those modular structures tend to be robust during

changes in environmental conditions. Overall, our study supplies

evidence that modular organization in metabolic networks is

required for promoting an optimal metabolic phenotype in

microorganisms.

Results

Metabolome profile in bacterial nitrogen fixation
In addition to transcriptome and proteome approaches,

metabolome technology represents a third complementary ap-

proach to characterize the phenotypic state of a microorganism,

through quantitative and qualitative descriptions of its metabolite

concentrations. In order to elucidate the metabolic capabilities and

organizing properties of R. etli metabolism, we investigated the

metabolome profiles of this bacterium in two physiological

situations: during nitrogen fixation with P.vulgaris and under free-

living conditions (see the Materials and Methods section and

reference [11]). Biological samples from each physiological

condition were analyzed in triplicate using CE-MS technologies

[12,13], and the output was used to sense the relative abundance

levels of metabolites under each physiological condition. Metabo-

lome measurements were carried out through a facility service at

Human Metabolome Technology Inc., Tsuruoka, Japan. Briefly,

the samples were prepared following an experimental protocol

supplied by Human Metabolome Technology Inc., and the ionic

metabolites were separated through electric fields. Having

separated the ionic metabolites by capillary electrophoresis the

samples were subjected to spectrometric analysis, and their

identities were selectively detected by monitoring ions over a

large range of m/z values. Thus, spectrum profiles were compared

in consultation with the Human Metabolome Technology

database and normalized with respect to internal controls for

uncovering and estimating their identities and metabolic abun-

dances in both physiological conditions. The relative peak area

observed by spectrometry and the average, standard deviation,

and log-ratio obtained for each metabolite are reported in Dataset

S1 in the supporting information and visually depicted in Figure 1.

Overall, high-throughput analysis led us to identify and charac-

terize the abundances of 220 ionic metabolites (93 cations and 127

anions) under both physiological conditions. A biological analysis

of these results led us to arrive at the following conclusions:

1) A previous analysis based on transcriptome and proteome

data led us to identify certain proteins required for the

synthesis of different amino acids in R. etli during nitrogen

fixation (arginine, tyrosine, tryptophan, phenylalanine, and

lysine) [11]. In parallel with these findings, our current

metabolome analysis led us to detect all the common amino

acids, with the exception of cysteine; in this case we only

Author Summary

Biological networks are an inherent concept in systems
biology that is useful in elucidating how biological
entities—as metabolites or proteins—work together in
supporting specific phenotypes in microorganisms. Nota-
bly, topological analyses carried out over these networks
have shown that modular organization is a ubiquitous
property at different levels of biological organization, in
such a way that modular organization may serve as an
organizing principle governing the metabolic activity in
microorganisms. With the aim of elucidating the relation-
ship among functional modules, network topology, and
optimal metabolic activity, here we present an integrative
study that combines computational modeling and meta-
bolome data for evaluation of the metabolic activity of the
soil bacterium Rhizobium etli during symbiotic nitrogen
fixation with Phaseolus vulgaris. As a result, we supply
experimental and computational evidence supporting the
concept that the optimal metabolic activity during this
biological process is guided by modular structures in the
metabolic network of R. etli. Even more fundamentally, we
suggest that these biochemical modules interact among
each other to ensure an optimal phenotype during
nitrogen fixation. Finally, through the in silico analysis on
the genome scale metabolic reconstruction for R.etli, we
give some examples that suggest that these modular
structures supporting nitrogen fixation are robust to
external physiological conditions.

Modules and Optimized Metabolic Networks

PLOS Computational Biology | www.ploscompbiol.org 2 October 2012 | Volume 8 | Issue 10 | e1002720



identified its homologue, homocysteine. In light of these

results, the participation of a variety of amino acids in R. etli

during symbiotic nitrogen fixation with P. vulgaris is clear.

The role of each amino acid and which of them are essential

to carry out the biological processes are some avenues to be

explored in the future.

Figure 1. Experimental metabolome profile. Log-ratios of 220 metabolites detected under two physiological conditions for R. etli: bacteroids
during nitrogen fixation (Bac) and free-living conditions (VL). Meanwhile, metabolites (shown in marine blue at the left side of the illustration)
detected exclusively under free-living conditions are listed, and the metabolites denoted in red were exclusively detected during bacterial nitrogen
fixation (listed on the right side). The rest of the metabolites were detected under both physiological conditions at different ratios (see the middle
part of the figure).
doi:10.1371/journal.pcbi.1002720.g001
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2) With dicarboxylic acids as the carbon source, the TCA cycle

would be expected to be active. As we reported previously,

an integrative analysis using high-throughput technology (on

the transcriptome and proteome levels) and constraint-based

modeling suggested that the TCA cycle is active during

nitrogen fixation [11]. Consistent with this finding, five

metabolites that participate in the TCA cycle were detected

from R. etli (citric acid, 2-oxoglutaric acid, succinic acid,

fumaric and malic acid). In our opinion, our new high-

throughput data supply additional evidence that an

operational TCA cycle supports bacterial nitrogen fixation.

3) Purine and pyrimidine pathways are important during

nodulation processes, given that most purine or pyrimidine

auxotrophs in Rhizobiaceas are ineffective in symbiotic

nitrogen fixation because they elicit pseudo-nodules that

are devoid of an infection thread [14].In parallel, our earlier

results indicated that an intense synthesis of macromole-

cules, such as purines and pyrimidines, is carried out in

bacteria [11]. In support of these physiological descriptions

and with an emphasis on the importance of these molecules

during the nitrogen fixation process, we identified the

purines—GTP, guanine, adenosine, guanosine, ADP, GDP,

allantoic acid, XMP, AMP, GMP, ATP, dAMP, dADP,

dAMP,and dADP—and the pyrimidines—CDP,uridine,

CMP, cytosine, UDP, UMP,dTMP,UTP,dTDP, CTP,

and cytidine—through our metabolome study.

4) In a previous report, we suggested that besides gluconeo-

genesis, a fueling pathway based on pentoses may exist in

bacteria during nitrogen fixation [11].In agreement with this

hypothesis, ribose-5-phosphate, fructose-1,6-diphosphate,

ribulose-1,5-diphosphate, ribulose-5-phosphate, ribose-1-

phosphate, sedoheptulose-7-phosphate, and fructose-6-phos-

phate metabolites were detected in the bacteroids. In fast-

growing rhizobia, the pentose phosphate pathway in

combination with the Entner-Doudoroff pathway are

probably the major routes used for the metabolism of sugars

[15]. Thus, based on this observation, we hypothesize that

other carbon sources, in addition to dicarboxylic acids,

participate in bacterial nitrogen fixation. This hypothesis

constitutes a perspective that should be experimentally

verified in future works.

Undoubtedly, the above descriptions are valuable for elucida-

tion of the metabolic landscape during bacterial nitrogen fixation

in R.etli; however, in order to explore the relationships among

network topology, functionality, and optimal metabolic pheno-

type, it is necessary to move toward an integrative, quantitative,

and predictive description. To this end, metabolome data were

used for improving and assessing the flux metabolic activity

inferred from constraint-based modeling when applied on the

genome-scale metabolic reconstruction of R. etli. Thus, from the

set of 220 metabolites experimentally detected, we identified 119

of the 377 metabolites that participate in the metabolic

reconstruction reported for R. etli OR450 [11]. This metabolic

set covered 32.75% of the total number of metabolites participat-

ing in the metabolic reconstruction and constituted our experi-

mental dataset for improving, supporting, and assessing the results

that emerged from the constraint-based modeling.

Bridging metabolome data and constraint-based
modeling results

Constraint-based modeling is a paradigm in systems biology for

exploring the metabolic phenotype in cells under specific

environmental conditions and/or subject to genetic perturbations

[16,17,18]. In particular, Flux Balance Analysis (FBA) has proven

to be a useful computational tool for surveying the metabolic

phenotype capacity in a microorganism and to simultaneously

evaluate its coherent description with high-throughput technology

[9,11]. Briefly, once the genome-scale metabolic reconstruction for

an organism has been completed, FBA can be divided into two

main steps: 1) the reconstruction of an OF that simulates a

particular phenotypic state for the microorganism (for instance,

the growth rate or maximal nitrogen fixation, to name two), and 2)

the search for a flux distribution along the entire network that

maximizes the selected OF when the system is at steady-state [7].

Among the variety of applications that can be tackled with this

systems-level framework, bacterial nitrogen fixation carried out by

R.etli is an example of how an integrative study using computa-

tional modeling and high-throughput technology can contribute to

understanding, predicting, and elucidating the metabolic activity

during this biological process [11]. Based on these previous

achievements, we selected this organism as our model system for

surveying the relationships among structural organization, func-

tionality, and the maximal phenotype during bacterial nitrogen

fixation.

Before proceeding with our in silico analysis, we took advantage

of the metabolome data to refine and improve a previous FBA

carried out for this organism [11]. Thus, given the metabolic

reconstruction iOR450, we improved the FBA by suggesting a

more proper OF, one capable of modeling bacterial nitrogen

fixation in a more accurate and realistic fashion. Reconstruction of

an OF is a crucial issue in constraint-based modeling for

computationally mimicking the metabolic activity of a microor-

ganism, in this case, bacterial nitrogen fixation. For this reason, an

OF is mainly defined in terms of those metabolites whose

permanent production is essential for sustaining bacterial nitrogen

fixation [11,19]. Currently, the OF for modeling bacterial nitrogen

fixation has been entirely constructed in terms of a query in the

scientific literature [11,19]; however, the metabolome data

depicted in Figure 1 open the possibility for identifying new

potential metabolites that were not included in previous analyses

due to a lack of physiological evidence.

The issue described above is extremely important because it

directly influences the quality of the in silico interpretations and the

coherent description based on the combination with high-

throughput data. In order to proceed with this improvement,

our strategy was based on the argument that metabolites detected

at higher concentrations at the symbiotic nitrogen fixation stage,

compared with those observed under free-living conditions, may

mirror their fundamental participation in sustaining a functional

phenotype during the biological process. Hence, under this

assumption, we identified those metabolites whose concentrations

increased during nitrogen-fixing activity by applying a statistical

test on the log-ratio data, as shown in Figure 1 and Dataset S1 in

the supporting information. To reduce the probability of including

false-positive results, we limited the selection of metabolites to only

those that obeyed the following conditions: 1)the log-ratio

increased by at least by 2-fold during nitrogen fixation, with a p-

value,0.01 (see the Materials and Methods section); and 2)once

the candidate metabolite was included in the OF, there existed at

least a solution for the metabolic flux distribution that maximized

the OF at steady state.

A graphical representation of those metabolites obeying the first

criterion is shown in Figure 2 (A) (blue points). Consequently, by

applying the second criterion over this metabolite subset, we

identified nine metabolites that potentially have an important role

in driving and supporting bacterial nitrogen fixation. Having

identified candidate metabolites, we integrated them into the OF

Modules and Optimized Metabolic Networks
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and applied linear optimization to identify the metabolic flux

distribution that maximized the metabolism of nitrogen-fixing

bacteria (see the Materials and Methods section). The time line for

the metabolic components, integrating the previous OF in

bacterial nitrogen fixation for R. etli (ZFix),including the one

obtained with the criteria described above, is summarized in

Figure 2 (B) and the Materials and Methods section. As a result,

the OF reported in this study shows a significant number of

Figure 2. Integrative description among in silico analysis and high-throughput data. (A) Log-ratio and p-values plot. In blue we show those
metabolites that obeyed two of three criteria: a log-ratio higher than 2, a p-value lower than 0.01,and its requirement for consideration as a
metabolite with an important role in supporting bacterial nitrogen fixation. (B) Historical improvements in OFs. Since the first publication dealing
with the systems biology description of the bacterial nitrogen fixation for R. etli [19], some improvements have been carried out for determining the
OF, by identifying proper metabolites required for supporting this biological process (see Figure 2). At present, the suggested objective function is
the result of a careful search of the published literature and an integrative description in the metabolome data. Under these experimental and
physiological bases, our modeling located an OF slightly closer to the complex metabolism supporting bacterial nitrogen fixation, and consequently
constraint-based modeling raised its accuracy and predictive scope. D) Comparative analysis between FBA and transcriptome and proteome data. A
detailed comparison between computational predictions and high-throughput data was carried out for all 22 metabolic pathways defined in panel C.
One can distinguish three possible situations: 1) genes (enzymes) that were predicted in silico but not monitored experimentally (CBM not HT; blue);
2) genes (enzymes) that were consistently observed in both schemes (CBM and HT; green); and 3) genes (enzymes) that were experimentally
monitored but not predicted in silico (HT not CBM; red). As explained in the Materials and Methods section, g is related to the fraction of genes
(enzymes) that were consistently observed in both schemes and constitutes the backbone for our modeling assessment. Upper and lower bars at the
right side of panel D indicate the fraction of proteins and genes that were predicted in silico and detected in proteome or transcriptome data.
doi:10.1371/journal.pcbi.1002720.g002
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components that were not included in previous versions, and

among them are the following: 3-phospho-D-glycerate (3pg),2-

oxoglutarate (akg), L-arginine (arg-L), L-aspartate (asp-L), citrate

(cit), CMP (cmp), fumarate (fum), malate (mal-L), and L-

tryptophan (trp-L)[see Figure 2(B)].

To assess the consequences of this improvement and compare

the results reported here with those obtained in our previous study,

we performed FBA on the metabolic reconstruction for R. etli

(iOR450), taking into account the new OF depicted in Figure 2(B).

To proceed with this comparative analysis, our simulation was

carried out under equivalent conditions as those described in

reference [11], which can be summarized as follows:

1) The experimental data underlying this analysis were

integrated on those genes up-regulated and the proteins

detected during bacterial nitrogen fixation after 18 days of

inoculation of R. etli with root plant of P. vulgaris (see the

Materials and Methods section). Overall, this set of high-

throughput data was integrated based on 415 proteins and

689 up-regulated genes (see the details in reference [11]).

2) In analogy with a previous analysis, we selected 22 KEGG

metabolic pathways to evaluate the concordance between the

metabolic activity predicted in silico and that interpreted with

the high-throughput technology. Figure 2 (C) enlists that set

of metabolic pathways. Even though the KEGG database

reports around 300 different metabolic pathways for R. etli,

we selected only 22 as the core of our analysis because

transcriptome and proteome data available for this organism

have made evident the participation of the 22 pathways

during bacterial nitrogen fixation [11]. According to the

KEGG database, these 22 metabolic pathways contain 652

genes for R. etli, of which around 54% were included in the

metabolic reconstruction for iOR450. This set of genes and

their corresponding enzymes constituted the central core for

evaluating the coherence between in silico predictions and

high-throughput data interpretations. Even though the in

silico assessment relied on the activity of these 22 metabolic

pathways, the FBA took into account all the reactions

included in the entire metabolic reconstruction. We expect

that this latter consideration is valuable for exploring and

predicting the metabolic role that additional pathways may

have on bacterial nitrogen fixation.

3) To quantify the concordance between the metabolic activity

predicted in silico and that interpreted from high-throughput

technology, we calculated the fraction of genes (gGenes) and

enzymes (gEnzymes)over the 22 pathways that were predicted to

be active by constraint-based modeling and simultaneously

detected in the high-throughput data (see the Materials and

Methods section). The numerical values of these parameters,

were defined in such a way that 1 represented the highest and

0 the lowest consistency score between the genes (or enzymes)

predicted by both procedures.

In this context, FBA carried out for iOR450 with the new OF

led us to conclude that the consistency coefficients for genes

(gGenes)and proteins (gEnzymes) were 0.61 and 0.71, respectively [see

Figure 2 (D)]. Given that the new OF was based on the

experimental metabolome profile, we argue that our in silico

analysis moves towards a more accurate and improved description

of metabolic activity during bacterial nitrogen fixation.

In order to evaluate the metabolic implications of these results

and compare our results with previous reports carried out for

bacterial nitrogen fixation by R. etli, we report in Table 1 the

consistency coefficients and the degrees of coverage obtained in

each case. Here, the degree of coverage is defined as the fraction of

genes (proteins), from the total number of genes (proteins) obtained

from constraint-based modeling, that were detected by transcrip-

tome or proteome technology (see the data reported in reference

[11]). As Table 1 shows, the values of the consistency coefficients

for genes and proteins had slight variations in each case. However,

as Table 1 chronologically shows, the OF has systematically

improved two variables: the total number of genes (proteins)

obtained from constraint-based modeling, and the subset of genes

(proteins) belonging to this group detected by transcriptome or

proteome technologies. Thus, the OF reconstructed in this work

led us to increase the degree of coverage compared with previous

cases: 72 of 101 enzymes predicted in silico were experimentally

identified with high-throughput technologies. In agreement with

this finding, 187 genes were experimentally identified by high-

throughput technologies from the 306 genes predicted in the in

silico analysis. In general terms, we conclude that while the

consistency coefficients slightly varied among them, the OF

constructed here induced the activity of additional reactions for

the biosynthesis of new metabolites in bacterial nitrogen fixation.

We consider that the latter issue is a crucial step in moving toward

a more accurate description for characterizing and understanding

the metabolic activity supporting bacterial nitrogen fixation and

eventually uncovering their fundamental organizational principles

at this biological level.

Structural modules and their functional compositions
The predominance of a hierarchical organization in a metabolic

network seems to have advantages that can be observed on short-

term and longer-term time scales, because structural modularity

has been suggested as a fundamental network property by which

cells evolve and orchestrate their physiological responses [3,4,20].

In order to elucidate the relation between structural modules and

biological functionalities in the metabolic activity of R. etli, we

focused first on identification of the structural modules in the

genome-scale metabolic reconstruction for iOR450 and, consecu-

tively, analyzed the biological roles of their metabolic components.

In terms of the first issue, modular structures were identified by

considering a pure topological criterion, which has been suggested

as a useful method for surveying the organization in a biological

network [4,5]. Hence, as we explained in the Materials and

Methods section, we defined a metric of closeness for each pair of

metabolites in the network by calculating the inverse square of the

minimal path length between them. Consequently, by taking into

account that the metabolites integrating a module are those whose

numerical values of the metric tend to be similar, we classified

those metabolites with a similar pattern of closeness through a

hierarchical clustering analysis (see the Materials and Methods

section). As a result of this analysis, nine topological modules were

identified over the entire metabolic reconstruction [see Figure 3

(A) and (B)].

Even though the previous finding supplied information about

the metabolic organization underlying the reconstruction, it was

necessary to carry out a functional analysis to determine how these

modules can be linked and support a specific metabolic phenotype.

To this end, we proceeded to characterize the biological role of the

set of metabolites that comprised each topological module defined

in Figure 3(B). The functional composition of each module was

determined by identifying the biological roles of their components,

which in turn were defined according to the classification reported

in the KEGG database [6]. By considering only those metabolites

appearing in the KEGG database classification, we noted that the

identified metabolites fell into three main biological groups:

nucleic acids, peptides, and lipids [see Figure 3(C)]. This functional

Modules and Optimized Metabolic Networks
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analysis suggested that most of the modules were formed by a

heterogeneous composition among the three biological function-

alities described above; however, we noted that two modules were

characterized by a well-defined functional activity, i.e., production

of nucleic acids and peptide groups [see modules one and seven in

Figure 3 (C)].

Intuitively, one can expect that the metabolites integrating a

functional module can be characterized by their coordinate

response to physiological changes in such a way that the relative

concentrations of the metabolites comprising the modules be up or

down-regulated in a coherent fashion under both physiological

conditions. To qualitatively assess this assumption, we first

identified those metabolites that were experimentally detected by

high-throughput technology in each modular structure defined in

Figure 3(B). Consequently, in order to estimate the coordinate

behavior of metabolites inside modules, we evaluated their relative

changes under the two physiological conditions: nitrogen fixation

versus free-living conditions. Notably, most of the metabolites

experimentally detected suggested that components inside modules

up-regulate their concentrations during bacterial nitrogen fixation

compared to free-living conditions [see Figure 3(D)]. This finding

supports the intuitive idea that coherent activity occurs inside the

metabolic modules reported in Figure 3 (B). However, converse to

this global trend, we observed a few metabolites with an opposite

behavior [see the black lines in Figure 3 (D)]. These components

are potentially central metabolites with a specific regulatory

control that is perhaps required for transforming the functional

background during bacterial nitrogen fixation, a hypothesis to be

evaluated in future studies. A list of metabolites integrating each of

the structural modules, those metabolites that were experimentally

Table 1. Comparative analysis between in silico results and high-throughput data for the three OFs representing bacterial
nitrogen fixation in R. etli.

Year
Data for evaluating or
constructing the OF Consistency coefficient Degree of coverage* Reference

Genes Enzymes Gene Enzymes

Objective Function 2007 Literature review 0.6 0.67 165/272 50/74 [16]

2011 Transcriptome/Proteome 0.69 0.76 173/249 63/82 [5]

2012 Metabolome 0.61 0.71 187/306 72/101 This study

*This parameter represents the fraction of genes (proteins) identified by constraint-based modeling that were experimentally detected by high-throughput technology.
doi:10.1371/journal.pcbi.1002720.t001

Figure 3. Modularity in the metabolic reconstruction for R. etli. The structural modules identified in the entire metabolic reconstruction are
shown in panels (A) and (B).The color bar on the right indicates the different modules identified by their topological closeness in their components.
The functional compositions of each structural module are shown in (C). In panel (D) we present the relative increment (white) or decrement (black)
on concentration for those metabolites experimentally detected along the nine functional modules.
doi:10.1371/journal.pcbi.1002720.g003
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detected by high-throughput technology, the ratio obtained under

the two physiological conditions, and their functional classifica-

tions according to the KEGG database are depicted in Dataset S2

in the supporting information.

Metabolic flux activity and functional modules during
bacterial nitrogen fixation

The metabolic profile in Figure 1 represents valuable data for

surveying how metabolites are organized during bacterial nitrogen

fixation on a network scale. In particular, modular organization in

biological systems has been suggested as a common property in

biological networks at different biological levels [4,5]. Here, as

discussed above, we have supplied evidence that structural modules

for the metabolic reconstruction of R. etli can be considered a

potential organizing principle by which the bacterium orchestrates

its physiological response during nitrogen fixation (see Figure 3).

However, these modules were identified through a static descrip-

tion, in which physiological information associated with a specific

environment was completely absent. In order to study how the

topological modules described in Figure 3 can work together to

support an optimal phenotype for R.etli, we applied FBA to simulate

the metabolic flux activity during bacterial nitrogen fixation. The

aims in this section are 2-fold: 1) identification of the metabolic flux

profile that acts during bacterial nitrogen fixation and to evaluate to

what degree the components of the structural modules participate in

supporting maximal nitrogen fixation, and 2) evaluation of the

extent to which the metabolic array required for reaching a

maximal phenotype for bacterial nitrogen fixation is robust under

perturbations of the physiological conditions.

As we described above, data-driven reconstruction of the OF

represents a significant contribution to simultaneously improving

the predictive scope of constraint-based modeling and unveiling

the structural organization for cell metabolism. Hence, we

proceeded to apply FBA to the metabolic reconstruction for R.etli

to obtain the flux metabolic distribution that maximizes the

metabolome-driven OF described above. The solution was found

by solving the linear optimization problem, which was subject to

thermodynamic and enzymatic constraints, over the entire set of

biochemical reactions in the metabolic reconstruction (see the

Materials and Methods section and Dataset S3 in the supporting

information). Having applied FBA, we identified those reactions

required for optimizing nitrogen fixation and, with them,

Figure 4. Robust modular composition at different uptake rates of carbon sources. Figure (A) represents the fraction of metabolites
required to optimize bacterial nitrogen fixation induced from FBA. Region (B) denotes the phenotype phase plane when inositol and succinate
uptake rates were varied from 0 to 20 nM/gDW/hr. The black and white regions indicate low and high nitrogen fixation activities, respectively. Figures
(C–F) denote the topological structures for metabolism that ensure optimal nitrogen fixation in the bacteria under different conditions of succinate
and inositol uptake rates. Overall, we selected 20 different physiological conditions, corresponding to the diagonal line in the phenotype phase plane
that is shown in (B).
doi:10.1371/journal.pcbi.1002720.g004
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reconstructed a subnetwork involving only their corresponding

substrates and products (see Materials and Methods).

To dissect the functional participation of the metabolites

integrating this subnetwork, we took into account the modular

classification previously defined in Figure 3(B) and Dataset S2 in

the supporting information. As expected, we identified the

metabolites that potentially participate in support of bacterial

nitrogen fixation, their biological roles, and their distributions

along the modules (see Figure 4 (A) and the Materials and

Methods section).The metabolic properties inferred from this

subnetwork were such that 47.96% (47 of 98) of the metabolites

predicted by constraint-based modeling were experimentally

detected inside the bacteroids for R.etli. Even though this

percentage of alignment with computational modeling is relatively

low, this finding represents a significant advance towards a more

realistic method for the study of the metabolic activity of bacterial

nitrogen fixation. As far as our knowledge extends, this

metabolome study is the first performed for Rhizobiaceas in such

a way that it defines a benchmark point for future improvements.

According to the functional classification described in Figure 3(A)

and in Dataset S2 at supporting information, our in silico analysis

suggested that nitrogen fixation requires a variety of metabolites,

mostly peptides and lipids, belonging to diverse structural modules.

Converse to the idea that all the metabolites in a specific module

participate during this biological process, we found that a

metabolic heterogeneity—in terms of both the number of

components and module classification—is required for optimizing

bacterial nitrogen fixation in R.etli.

Notably, the subnetwork depicted in Figure 4(A) shows a few

metabolites that participate in the synthesis of nucleic acids (dark

green dots). These findings are in qualitative agreement with the fact

that R. etli bacteroids do not grow during symbiotic nitrogen fixation

with P. vulgaris (bean plant). In order to distinguish the modules

obtained from pure topological criteria from modules specific for a

physiological condition, here after we denote these latter as

functional modules. At this stage, a question that immediately

emerges is to what extent the functional modules depicted in

Figure 4 (A) are robust under external environmental perturbations,

and also whether this network array can be used as a fingerprint to

characterize a functional phenotype in bacterial nitrogen fixation.

Robustness of the metabolic profile underlying
functional states

For the purpose of evaluating whether the metabolic organiza-

tion shown in Figure 4(A) can be used as a fingerprint to define the

optimal phenotype for bacterial nitrogen fixation in R. etli, we

explored to what extent this topological structure is robust during

changes under external environmental conditions. To this end, we

evaluated the robustness of this metabolic array through the

systematic reduction of uptake rates of two carbon sources:

succinate and inositol. While the plant supplies succinate to the

bacteroid as the main carbon source, inositol is an internal

metabolite that has been detected at high concentrations inside

bacteroids in nodules. As has been experimentally verified, both

metabolites are important components in the support of nitrogen

fixation in Rhizobiaceas [11]. To explore how the availability of

inositol and succinate alter the metabolic phenotype shown in

Figure 3(A), we constructed a phenotype phase plane over these

carbon sources [see Figure 4 (B)]. In agreement with the

physiological knowledge for Rhizobiaceas, we observed that

according to the uptake rate, carbon sources in bacterial

metabolism were reduced, and a reduction effect on nitrogen

fixation was obtained [see the black region of low nitrogen fixation

in Figure 4(B)]. To evaluate the topological changes at different

points in the phenotype phase plane, i.e., with different succinate

and inositol uptake rates, we selected a subset of 20 points along

the metabolic phase plane. As depicted by the diagonal line in

Figure 4(B), uptake rates for both carbon sources were selected

such that their fluxes simultaneously decreased from 20 to 0 nmol

of gDW/hr. Then, for each one of the selected uptake rate

conditions, we graphically represented the metabolic subnetwork

that resulted from FBA. As described in the Materials and

Methods section, these subnetworks were constructed by consid-

ering only those metabolites participating in the biochemical

reactions required for optimization of the phenotype under

defined conditions of succinate and inositol uptake rates [see

Figure 4 (C–F)]. To quantify the topological variations that

resulted under different external conditions, we defined an

overlapping coefficient as the fraction of metabolites that overlap

these networks (see the Materials and Methods section). With the

purpose of quantifying the differences among all pairs of

subnetworks, we constructed an overlapping matrix whose

calculated numerical entries indicated the overlapping coefficient

for each pair of subnetworks obtained at different succinate and

inositol uptake rates. The comparative analysis over the 20 points

depicted in Figure 4(B) is shown in Figure 5.This study led us to

conclude that the metabolic profile required for optimizing

bacterial nitrogen fixation does not change in a significant way

for a wide range of uptake rates for either carbon source [see

Figure 5 (A–B)]. Hence, our study supplies evidence that, while

limited carbon sources reduce the bacterial phenotype, the

metabolic organization supporting bacterial nitrogen fixation

tends to be robust at different succinate and inositol uptake rates.

In other words, even though there was a significant reduction for a

phenotype, the topology of the metabolic network did not change

in a significant fashion. In light of these results, we concluded that

functional nitrogen fixation, at low or high rates, seems to be

achieved through a conservative metabolic profile involving those

metabolites required for support of optimal nitrogen fixation

under specific environmental conditions (see Figure 5). Notably,

this property opens the possibility for the use of network topology

for characterizing cellular phenotypes through a specific pattern of

metabolites and potentially distinguishing functional from dys-

functional states associated with a specific biological system. This

latter approach is an avenue to be addressed in the future.

Converse to the naive idea that a reduced phenotype in

bacterial nitrogen fixation is the consequence of a broken

modularity in metabolism, our study supplies evidence that a

reduced efficiency of a phenotype can be mainly a consequence of

a decrement in flux activity along the network, but without a

significant rupture of the functional modules defined in Figure 4(A).

In this contextual scheme, modular organization in metabolism

seems to be a necessary condition for supporting not only the

maximal but a suboptimal functional phenotype in bacterial

nitrogen fixation (see Figure 4).

Discussion

A description of the integration between high-throughput data

and computational modeling is a central issue in systems biology

that is required for moving toward a quantitative and predictive

analysis of the metabolic activity in microorganisms. This

enterprise has relevant implications, not only in solving practical

issues in biotechnology but also in supplying schemes that

contribute to unraveling the principles and mechanisms that

regulate and organize living systems.

In this work, we have explored the relationships between three

biological concepts in metabolic networks: structural modularity,
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biological functionality, and optimal (maximal) phenotype. Here,

the relationships among these concepts were studied at a systems

level for metabolism in bacterial nitrogen fixation, an important

biological process participating in the balance of nitrogen in the

biosphere [19]. Hence, by using constraint-based modeling and

measuring metabolome data under two physiological conditions,

we explored the metabolic organization in R.etli bacteroids while

they fix nitrogen in symbiotic association with P. vulgaris (bean

plants).

Unlike our previous study [11], here we present a refined

version of the OF used for simulating bacterial nitrogen fixation

based on our taking into account metabolome data. When

constraint-based modeling was applied in this new context, we

concluded that 71% of the metabolic reactions predicted in silico

were justified by the proteome and microarray data previously

stored in the GEO database [see Figure 2(D) and the Materials

and Methods section].

On the other hand, based on the metabolic reconstruction for

R.etli, we identified nine structural modules in which some of the

metabolites components fell in one of the following biological

roles: nucleic acids, peptides or lipids (see Dataset S2 in supporting

information). Furthermore, by considering the metabolome profile

of 220 metabolites under two physiological conditions, we supplied

evidence that most of the metabolites integrating each one of these

modules works in a coordinated fashion by increasing their

metabolite concentrations at nitrogen fixation stages [see Figure 3

(D)]. This latter finding supports the idea that metabolites inside a

module tend to respond in a coordinated fashion. This systems-

level description supplies evidence that the diverse metabolites

forming the modules participate to support an optimal phenotype

in bacterial nitrogen fixation. Even more fundamentally, we note

that the network representation for those arrays of metabolites

associated with an optimal metabolic performance is robust under

different external conditions [see Figures 4 and 5].

In light of this study’s findings, the main contributions can be

summed up as follows:1) we have supplied evidence that a robust

modular organization at the metabolic level underlies optimal

bacterial nitrogen fixation for R. etli; 2) we have proposed how

these functional modules interact together for supporting bacterial

nitrogen fixation; and 3) given the robustness observed for these

functional modules when there are physiological changes, we

suggest that these can be used as fingerprints to associate the active

topological structure in a network with optimal phenotypic

behavior. Why the metabolic activity is so robust under

environmental changes?, maybe a common explanation can be

found in other complex systems, for instance the social organiza-

tion in factories, where even though the production of cars can

change as a consequence of external factors—as low or high

demand—the hierarchical and modular organization among

employees is still maintained for covering a specific demand in

an efficient way.

Finally, even though a variety of avenues should be addressed in

future research to enrich this study, we envision that this unified

description will contribute to the design of experiments for

Figure 5. Matrix of overlapping networks. Figure (A) graphically depicts the degree of similitude between the two subnetworks represented in
Figure 4 (C–G). In this matrix, an entry located at row i and column j indicate the comparative analysis between any pair of metabolic subnetworks,
i = 1.20 and j = 1.20. For each entry, white and black indicate the highest and smallest degree of similitude (overlapping) between two subnetworks,
respectively. Intermediary values are represented in gray. The degree of overlapping obtained between the three subnetworks (indicated in red) with
the rest of the subgraphs depicted in Figure 4 are shown in (B). As panel (B) shows, most of the subgraphs are similar around its vicinity in the phase
plane, and an overlap of 0.83 was obtained for subnetworks obtained with extreme points in fluxes in the phase plane.
doi:10.1371/journal.pcbi.1002720.g005
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evaluating the interrelation and the role that these modules have in

supporting functional states in bacterial nitrogen fixation. This

latter issue is fundamental for uncovering the principles by which

the cell organizes its metabolism to support functional states in

bacterial nitrogen fixation.

Materials and Methods

Bacterial strains, growth conditions, and plant
experiments

The bacterial strain used was R. etli CFN42 wild type. Culture

media and growth conditions for R. etli and plant experiments

were performed as previously described by our group in reference

[11].

Constraint-based modeling
Metabolic flux distribution supporting nitrogen fixation in R.etli

was predicted in silico by using constraint-based modeling [19].

Briefly, simulations were carried out by defining a mathematical

function, called the OF, for computationally mimicking the

metabolism of bacterial nitrogen fixation and identifying the flux

distribution that maximizes it at a steady-state behavior. The OF,

ZFix, is composed of some key compounds, which are classified in

two groups: 1) metabolites essential for sustaining nitrogen

fixation, and 2) metabolites that are imported or exported to the

bacteroid and establish the symbiotic relationship between R. etli

and the plant (these are denoted by the index [e]). Thus, we write

the OF as follows:

ZFix~glycogenzhist c½ �zlys c½ �zphb c½ �zval c½ �zala e½ �zasp e½ �znh4 e½ �z

zmal L c½ �ztrp c½ �zarg c½ �zcit c½ �zcmp c½ �zfum c½ �z3pg c½ �zakg c½ �

where glycogen, histidine, lysine, polyhydroxybutyrate, valine,

alanine, aspartate, and ammonium are denoted as glycogen, hist[c],

lys, phb[c], val[c], ala[e], asp[e], and nh4[e], respectively. Similarly,

mal, trp, arg, cit, cmp, fum, 3pg, and akg denote malate, tryptophan,

arginine, citrate, CMP, fumarate, 3-phospho-D-glycerate, and 2-

oxoglutarate, respectively. All these metabolites are required to

support an effective symbiotic nitrogen fixation, and their spatial

location in the cytoplasm is indicated by the index [c]. For the

purpose of obtaining a computational profile of metabolic fluxes,

we assumed that the metabolic state of the bacteroid during

nitrogen fixation is one that optimizes the OF, ZFix. This problem

was mathematically solved as a linear optimization algorithm

subject to enzymatic and thermodynamic constraints, i.e.,

max ZFix~
X
i~1

ci
:Xi

" #

such thatP
Si,j
:nj~0 i~1,2:::m

{ajƒnjƒbj j~1,2:::n

where Si,j represents the stoichiometric coefficient of metabolite i

participating in the jth reaction. Thermodynamic and enzymatic

constraints in each metabolic reaction were characterized through

the parameters aj and bj (for a detailed numerical description of

these parameters, see the lower and upper bounds in Dataset S3 in

supporting information). For the sake of simplicity, all the

coefficients (ci) were chosen as a unit along all the analyses. Linear

optimization programming was carried out using the Tomlab

optimization package from Matlab.

Metabolome data and inference of the OF for bacterial
nitrogen fixation: statistical test of metabolite relative
expression levels

Metabolome data supply valuable information to survey the

metabolic phenotype associated with a biological process, and in

turn, elucidate the components integrating the OF used in the

constraint-based modeling. With the purpose of carrying out FBA

in the metabolic reconstruction for R.etli, a more realistic OF for

simulating bacterial nitrogen fixation was obtained by identifying

those metabolites with a statistically significant change during

bacteroid activity compared to levels under free-living conditions.

To this end, we calculated the corresponding intensity log-ratio for

each metabolite between nitrogen fixation and free-living condi-

tions. Taking into account the three experimental replicates

obtained for each physiological condition, a one-side statistical t-

test was applied to determine those metabolites that significantly

increased their relative quantity between the two physiological

conditions (see Figure 1). Those metabolites with a p-value lower

than 0.01 and with a ratio higher than 2 during nitrogen fixation

were selected as potential candidates to be included in the OF, see

region I in Figure 2(A). Finally, these sets of metabolites were

separately included in the OF and were accepted if their effect on

nitrogen fixation activity was not reduced to one-third of the

corresponding previous OF.

Transcriptome and proteome data
To assess the predictive scope of the computational model, we

downloaded transcriptome and proteome data so that we could

integrate a set of genes whose presence and upregulation suggested

an important role for sustaining nitrogen fixation in R.etli. Earlier

characterizations of nodules formed after 18 days of nodulation

with root plants under both experimental conditions were carried

out by our group and previously stored in public databases. The

complete dataset of the transcriptome analysis is freely available at

GEO (http://www.ncbi.nlm.nih.gov/geo), with accession num-

bers GPL10081 for the R.etli platform and GSE21638 for data on

free-living and symbiotic forms. In addition, to enrich the set of

genes required for model assessment, proteome data obtained for

R.etli bacteroids were downloaded from the ProteomeCommon-

s.org Tranche by using the following hash:BY/eCcVjwTWN1+-
m+2ArvJ0QVnesGx5Ekgd4wUOASACfm/ueNl7YI3iLf4xz0lnG-

sepV5LkpMWOQOrZtjYExlNpQkIBcAAAAAAAABjA = = .

Measurement of ionic metabolites by using the CE-MS
system

Bacteria were grown in minimal medium and were harvested at

the exponential phase. Free-living cells were collected by

centrifugation and washed once with double-distilled water, and

immediately 2 ml of methanol and the internal standards were

added and the mixture was treated in an ultrasonic bath for 30 s.

A 1.6-ml cell suspension was transferred to centrifuge tubes,1.6 ml

of CHCl3 plus 640 ml of milliQ water was added, and the mixture

was vortexed and then centrifuged at 2,3006gat 4uC for 5 min. A

1.5-ml aliquot of the aqueous layer was filtered through a

Millipore 5-kDa cutoff filter. Then, the sample was fully dried

by using a centrifugal evaporator. The bacteroid metabolome

extraction followed the same method, except by day 18 after

inoculation with root plant, bacteroids were extracted in a self-

Percoll gradient in accordance with methods previously described

[21]. Measurements of extracted metabolites were performed by

using CE coupled with electrospray ionization–time-of-flight

analysis and MS with electrophoresis buffer (solution ID H3302-

1021; Human Metabolome Technologies Inc., Tsuruoka, Japan).
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Definition of the consistency coefficient
To assess agreement between in silico predictions and interpre-

tations of high-throughput data, we defined a consistency

coefficient that quantified the fraction of genes predicted to be

upregulated in silico and simultaneously detected or induced by

proteome or transcriptome technologies (gGene). Simultaneously, we

defined a consistency coefficient that quantified the fraction of

active enzymes that were predicted by constraint-based modeling

and identified by high-throughput technology (gEnzyme). To proceed

with this evaluation, E j
kegg(G

j
kegg) was denoted as the set of enzymes

(genes) that conformed to the j-esime metabolic pathways in the

KEGG database, with j ranging from 1 to 22. Similarly, the set of

enzymes (genes) that integrated the i-esime metabolic pathway in

the reconstruction and the set of enzymes that were detected by

high-throughput data were denoted E j
Rec(G

j
Rec)and E j

HT(G j
HT),

respectively. Finally, the set of enzymes obtained from constraint-

based modeling were denoted E j
iModel andG j

iModel. In order to

evaluate and create a proper frame of comparison between in silico

predictions and high-throughput data, we defined the consistency

coefficient as the fraction of enzymes (genes) that were actively

predicted in silico and were identified by high-throughput

technology as follows:

gGene~
G

j
iModel

T
G

j
HT

G
j
iModel

gEnzyme~
E

j
iModel

T
E

j
HT

E
j
iModel

This ratio ranged from 0 to 1 and constituted our central parameter

to assess and quantify the agreement between the constraint-based

modeling and high-throughput data. To assess the output from

FBA, we selected 22 metabolic pathways and evaluated the degree

of coherence between the flux activity predicted in silico with data for

the proteome and transcriptome previously reported for R.etli

during nitrogen fixation (see reference [11]).

Network representation of the metabolic network
Topological analysis was accomplished by representing the set

of biochemical reactions in the metabolic reconstruction as an

undirected network. In this network, nodes represent the

metabolites and edges indicate their participation in a specific

metabolic reaction [4]. Thus, we linked the metabolites in the

reactants to all the products in the biochemical reaction, and this

procedure was repeated for all the reactions included in the

metabolic reconstruction, to finally obtain the results shown in

Figure 3(B). In the case of the FBA, the subnetworks depicted in

Figure 4(A), (C–F) were obtained when we applied these rules only

to those metabolic reactions for which the flux obtained from FBA

was different from 0. In order to analyze those metabolites with

biological roles, the following metabolites were excluded from the

entire network representation: pi[e], ala-L[e], accoa[e], glu-L[e],

pi[c], fdp[c], nh4[e], nh3[c], nh3[e], h[e], ppi[c], o2[c], o2[e],

nadph[c], nadp[c], nadh[c], nad[c], n2[c], n2[e], h2o2[c], h2o[c],

h2o[e], h[c], fdred[c], fdox[c], fadh2[c], co2[c], co2[e], nh4[c],

and fad[c]. A detailed list of the metabolic reconstruction iOR450

used in this work, including the metabolic reactions and metabolite

abbreviations, is provided in Dataset S3 in supporting information.

Module identifications
Modular composition along the entire metabolic reconstruction

was obtained by a clustering analysis applied on a matrix whose

entries represented the inverse squares of minimal path lengths for

pairs. Specifically, the clustering analysis was performed by

calculating the shortest path length between every pair of genes

(i.e.,dij is the shortest path length between gene i and gene j). Next,

we calculated the association function, defined as 1/dij2, for all

pairs of metabolites along the metabolic reconstruction. This

parameter gives a measure of the closeness among genes,

amplifying the parameter for pairs of metabolites with low path

lengths and minimizing pairs of metabolites located at remote

distances. With the purpose of identifying topological modules

along the network, these sets of parameters were used as input to

perform a hierarchical clustering [3,4,5,22], see Figure 2(A). A

detailed description of the modules identified by this algorithm and

the corresponding biological roles for some of the components are

shown in Dataset S2. The clustering analysis was performed using

a hierarchical agglomerative average-linkage clustering algorithm,

considering Kendall’st value as the similarity metric.

Overlapping coefficient among modules
In order to compare the similarities and differences that

emerged from the functional modules obtained along the phase

plane region depicted in Figure 4, we define the following

coefficient:

Qi,j~1{
gizg j

gizg jzgH

where gi and gj represent the number of metabolites that appeared

in only module i or j, respectively, and gH indicates the number of

metabolites in common between modules i and j. Clearly, this

coefficient ranges from 1 to 0,depending on the complete or null

analogy between the i and j functional subnetworks.

Supporting Information

Dataset S1 Metabolome data. This file contains the

metabolome data set obtained experimentally through CE-MS.

The table shows those metabolites whose concentrations were

differentially up-regulated and down-regulated during bacterial

nitrogen fixation respect to free-living conditions. In addition, we

report those metabolites experimentally detected only in one of the

physiological states analyzed.

(XLSX)

Dataset S2 Metabolites integrating each structural
module. This table contains information of the metabolites

forming each one of the nine structural modules identified by the

topological criteria used in the main text.

(XLSX)

Dataset S3 Genome-scale metabolic reconstruction for
Rhizobium etli (iOR450). This file contains the entire set of

biochemical reactions included in the metabolic reconstruction for

R. etli. Overall, the metabolic reconstruction of R. etli is an

integrated network of 402 reactions involving the participation of

450 genes and 377 metabolites.

(XLSX)
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