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Abstract

Recent analyses of human-associated bacterial diversity have categorized individuals into ‘enterotypes’ or clusters based on
the abundances of key bacterial genera in the gut microbiota. There is a lack of consensus, however, on the analytical basis
for enterotypes and on the interpretation of these results. We tested how the following factors influenced the detection of
enterotypes: clustering methodology, distance metrics, OTU-picking approaches, sequencing depth, data type (whole
genome shotgun (WGS) vs.16S rRNA gene sequence data), and 16S rRNA region. We included 16S rRNA gene sequences
from the Human Microbiome Project (HMP) and from 16 additional studies and WGS sequences from the HMP and MetaHIT.
In most body sites, we observed smooth abundance gradients of key genera without discrete clustering of samples. Some
body habitats displayed bimodal (e.g., gut) or multimodal (e.g., vagina) distributions of sample abundances, but not all
clustering methods and workflows accurately highlight such clusters. Because identifying enterotypes in datasets depends
not only on the structure of the data but is also sensitive to the methods applied to identifying clustering strength, we
recommend that multiple approaches be used and compared when testing for enterotypes.
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Introduction

Together with the MetaHIT consortium [1], the Human

Microbiome Project (HMP) represents one of the first major

attempts to define the microbial diversity comprising the ‘‘normal

healthy’’ human microbiome [2]. The HMP dataset includes 16S

rRNA gene sequence data of roughly twice the size of all similarly

derived data in previously published studies, effectively tripling the

size of combined data available for comparative studies (Table S1).

In addition, the HMP generated whole-genome shotgun (WGS)

metagenomic data for a subset of individuals. These data allowed

for the characterization of patterns of microbial diversity across

body sites and between individuals [2].

The HMP data also provides an opportunity to test the

generality of the concept of enterotypes in the human microbiome.

Arumugam et al. first articulated the concept of enterotypes as

robust clustering of human gut samples based on microbial

community composition, and largely driven by the abundances of

key bacterial genera [3]. Although the term ‘enterotype’ refers to

microbiota types within the gut, the concept can be applied

generally, and here, for convenience, we use the term ‘enterotype’

to refer to microbiota types across different body sites. The HMP

data are ideally suited to test the robustness of the enterotype

concept in multiple body sites, and together with recently

published community-generated datasets, across multiple popula-

tions.

In this report, we combined 16S rRNA gene sequence data

generated using next-generation sequencing by the scientific

community (hereafter, ‘community data’) together with the

MetaHIT WGS data [3] and the recently released HMP 16S

rRNA gene sequence data and WGS data [2]. Because there is

currently no community standard for testing for enterotypes, we

explore how the detection of enterotypes is affected by the

following: clustering methodology, distance metrics, OTU-picking

approaches, sequencing depth (i.e., rarefaction), data type (16S

rRNA vs. WGS), and the specific region of the 16S rRNA gene

sequenced. We find that the emergence of enterotypes is sensitive

to the community structure of communities within each body site,
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and importantly also to the analysis methods employed. Our

comparative analysis of various approaches across datasets informs

the discussion on the technical basis for enterotyping and on how

to interpret enterotype results.

Materials and Methods

16S rRNA Gene Sequence Processing
We constructed a database containing the recently released HMP

16S rRNA gene sequence data [4] and publically available (published)

human microbiome datasets (community data). For inclusion,

community datasets were required to contain a minimum of 25

samples per study and sequences generated using the Roche 454

platform (Table S1). The majority of samples were from healthy

controls; however, a small subset of samples was derived from subjects

that differed from adult healthy subjects due to age (i.e., infants and the

elderly), use of antibiotics, or possible presence of disease (Fig. S1). We

acquired raw SFF files and metadata files containing the unique

identifiers for each sample within a study (barcodes) from the authors

and re-processed the data using the default settings in the Quantitative

Insights Into Microbial Ecology (QIIME) analysis pipeline [5]. For the

majority of samples, quality filtering consisted of rejecting reads

,200 nt and .1000 nt, excluding homopolymer runs .6 nt,

accepting 0 barcode corrections and 0 primer mismatches; two

datasets were processed with slightly different screening parameters, as

described in their respective publications [6,7]. When picking

operational taxonomic units (OTUs) we used the OTU tables

generated by the HMP, which were created de novo. Because the

regions of the 16S rRNA gene differed between studies (and within: the

HMP sequenced both V1–V3 and V3–V5 regions), we used a

reference-based approach (hence, we did not denoise the data) to pick

OTUs at 97% pairwise identity using as a reference the latest release of

the GreenGenes (GG) taxonomy [8]. We also used the phylogenetic

tree from GG to calculate weighted (abundance based) and unweighted

(presence/absence based) UniFrac distances between communities [9],

after applying two rarefactions (1,000 and 2,000 sequences/sample) to

standardize sequence counts. Principal coordinates analysis (PCoA)

was applied to the distance matrices for visualization.

Metagenomic Data Processing
The HMP and MetaHIT shotgun metagenomic datasets were

taxonomically profiled using MetaPhlAn [10] (version 1.1, default

parameter settings), which infers relative abundances for all

taxonomic levels (from phyla to species) for Bacteria and Archaea.

We performed standard quality control on the HMP and

MetaHIT samples as reported in the original studies [2,3] - other

metagenomic pre-processing steps (e.g., error detection, assembly,

or gene annotation) are not required by MetaPhlAn. The

taxonomic profiles of HMP metagenomes are available at

http://www.hmpdacc.org/HMSMCP/, and the MetaHIT pro-

files can be downloaded from http://huttenhower.sph.harvard.

edu/metaphlan/. The 690 HMP metagenomic samples from 7

different body sites can be accessed at http://hmpdacc.org/

HMASM/, from which we used the ‘WGS’ reads (i.e., we did not

use the ‘PGA’ assemblies), collapsing multiple visits from the same

individual into one sample. The 124 fecal samples from MetaHIT

were downloaded from the European Nucleotide Archive (http://

www.ebi.ac.uk/ena/, study accession number ERP000108).

Enterotyping
To evaluate the clustering results in the context of previously

published results reporting enterotypes, we merged publicly

available data (genus relative abundance tables) from MetaHIT

[3] with data for the 16S rRNA-based HMP and non-HMP

samples, based on genus-level taxonomy assignments. We

performed enterotype testing using the relative abundances of

OTUs (rarified at 1,000 sequences/sample for the majority of

analyses, except where effect of rarefaction was tested specifically),

to which we applied five distance metrics: Jensen-Shannon

divergence (JSD), Root Jensen-Shannon divergence (rJSD), Bray-

Curtis (BC), and weighted/unweighted UniFrac distances. For the

calculation of JSD and BC distances, we first binned the counts of

OTUs at the desired level (95% and 97% ID for genus and species

level OTUs, respectively). We used the R ‘‘vegan’’ package [11]

for calculating the Bray-Curtis distance according to this formula

for the distance between samples j and k, with taxa/OTUs indexed

by i:

djk~

P
i

Dxji{xkiD

P
i

xjizxki

Clustering was performed via partitioning around medoids in

the R package ‘‘cluster’’ [12]. We chose the number of clusters

and quality of the resulting clusters by maximizing the prediction

strength (PS) [13] and silhouette index (SI) [14]. We applied a

criterion of $0.90 for PS to signify strong clustering (this implies

that 90% of the data points fall within the cluster and 10% are

outliers). For SI, we used a score of 0.5 for moderate clustering

as described by Wu et al. [15], and $0.75 for strong clustering

(note this is close to the value of 0.71 originally reported for

strong clustering [16]). We performed kernel density estimation

of the global distribution of gut microbial communities using the

R package ‘‘ks’’ [17]. This included automatic inference of

unconstrained (non-diagonal) bandwidth parameters using the

function ‘‘Hscv’’. We also calculated the Caliński-Harabasz (CH)

statistic for comparison to PS and SI, using the R ‘fpc’ package

[18]. This package uses the following formula for the CH

statistic [19]:

CHk~
B(k)(n{k)

W(k)(k{1)
,

where

Author Summary

Recent work has suggested that individuals can be
classified into ‘enterotypes’ based on the abundance of
key bacterial taxa in gut microbial communities. However,
the generality of enterotypes across populations, and the
existence of similar cluster types for other body sites,
remains to be evaluated. We combined the Human
Microbiome Project 16S rRNA gene sequence data and
metagenomes with similar published data to assess the
existence of enterotypes across body sites. We found that
rather than forming enterotypes (note we use this term for
clusters in all body sites), most samples fell into gradients
based on taxonomic abundances of bacteria such as
Bacteroides, although in some body sites there is a bi/multi
modal distribution of samples across gradients. Further-
more, many of the methods used in the analysis (e.g.,
distance metrics and clustering approaches) affected the
likelihood of identifying enterotypes in particular body
habitats. We recommend that multiple approaches be
used and compared when testing for enterotypes.

Enterotypes across the Human Body
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In this formula, n is the number of data points w, k is the number

of clusters, and Ch represents the set of data points in cluster h.

Figure 1. Bacterial diversity clusters by body habitat. A–C: All body sites. The two principal coordinates from the PCoA analysis of the
unweighted UniFrac distances are plotted for (A) HMP data; (B) community data (see Table S1 for list of studies), (C) both datasets combined. Symbol
colors correspond to body sites as indicated on panel A. Panel D shows gut samples (majority are fecal) divided into infants (green), children (blue),
adults (black) and elderly (orange) samples. The variance explained by the PCs is indicated in parentheses on the axes.
doi:10.1371/journal.pcbi.1002863.g001

Enterotypes across the Human Body
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Figure 2. A positive control of cluster structure recovered from lognormally distributed synthetic community data containing four
clusters. Presence of enterotypes was tested using: (A) prediction strength, (B) silhouette index and (C) Caliński-Harabasz combined with BC, JSD and
rJSD distance metrics. Bars are standard errors.
doi:10.1371/journal.pcbi.1002863.g002

Enterotypes across the Human Body
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We chose to use PS and SI to assess the support for clustering

(and to choose the number of clusters if supported), as they are

both absolute measures of the clustering quality, while CH is

only a relative assessment of the quality of the clustering.

Synthetic Dataset
We generated a synthetic dataset of 100 communities each

containing 3,000 ‘‘sequences’’ belonging to 500 mock OTUs.

For each synthetic community, 90% (2,700 sequences, or OTU

observations) was drawn from the same randomly generated

lognormal abundance distribution (shared across all communi-

ties) and the remaining 10% (300 sequences) drawn from one of

four unique lognormal distributions, forcing the data into four

clusters. We then applied the enterotyping methods as described

above.

Results and Discussion

Mapping HMP Diversity onto Community-Generated
Diversity

Beta-diversity measures provide a view of how diversity differs

between sets of samples and quantifies those differences. We used

the unweighted UniFrac measure of b-diversity to contrast the

range of bacterial phylogenetic diversity captured by the HMP

data to existing community data (Fig. 1). This analysis showed that

the overall pattern of diversity is similar for HMP and community

data, with clear separation between body sites (Figs. 1A, B, S1) as

has been described previously [2,20]. Similarly, Fig. S2 shows the

locations of the MetaHIT samples relative to the HMP and other

community fecal samples. The HMP and MetaHIT data map

onto the community data well (Fig. 1C; Fig. S2), lending support

Figure 3. Clustering scores for enterotypes in fecal samples using 16S rRNA data. (A) Prediction strength scores, (B) Caliński-Harabasz and
(C) average silhouette scores calculated using 5 distances metrics for HMP data only, adult community data, and combined HMP and adult
community data. The thresholds for significance of clustering scores are indicated as dashed lines on the plots. Bars are standard errors.
doi:10.1371/journal.pcbi.1002863.g003

Enterotypes across the Human Body
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for the approach of combining these sets in a meta-analysis of body

habitats.

The gut microbiota are the most extensively studied of the

human-associated microbiota. Combining community and HMP

fecal microbial 16S rRNA gene sequence data effectively extended

the subject age range from early infancy to old age (3 days to 85

years old), with the HMP supplying the majority of the middle

years of the human life span. Interestingly, infant samples (younger

than 2.5 years) were outliers in the range of diversity represented

by the healthy adult and elder (older than 70 years) gut (Fig. 1D)

and were more similar to vaginal and skin communities. Adult

HMP samples cluster together with those from the community

studies, excluding samples from infants (,2.5 yrs) and elders

(Table S1). This combined analysis corroborates the previously

described vast difference between bacterial diversity of infants and

adults [21,22].

Effect of Clustering Methodology
We first tested the effects of different cluster scoring methods

using a lognormally distributed synthetic community data

containing 4 clusters that served as a positive control for

enterotypes. We applied the JSD, rJSD and BC distance measures

Figure 4. Enterotypes in mid vaginal samples in both the HMP and the Ravel et al. [26] datasets. Prediction strength scores calculated
using 5 distances metrics for HMP mid vaginal samples at the genus level (A), Ravel et al. mid vaginal samples at the genus level (B). HMP mid vaginal
samples at the species level (C) and Ravel et al. mid vaginal samples at the species level (D). The thresholds for significance of clustering scores are
indicated as dashed lines on the plots. Bars are standard errors.
doi:10.1371/journal.pcbi.1002863.g004

Enterotypes across the Human Body
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to the synthetic dataset and compared cluster scores using

prediction strength (PS, Fig. 2A), silhouette index (SI, Fig. 2B)

and Calińksi-Harabasz (CH, Fig. 2C) scores. This analysis

revealed strong support for 4 clusters using PS for the BC, JSD

and rJSD distance metrics, but SI provided no support for

clustering using BC and rJSD, and only weak support for 3–5

clusters using the JSD distance metric. The CH index supported 4

clusters using only the JSD distance metric. Wu et al. also reported

a discrepancy in cluster scoring strengths between clustering

methods [15]: CH indicated that 3 enterotypes were present, but

SI provided weak support using rJSD. Wu et al. also compared

clustering with CH and SI together with weighted/normalized

unweighted UniFrac, BC and Euclidean distances, and reported

concordant numbers of clusters with weighted UniFrac only.

Together these results indicate that these different clustering

methodologies can yield inconsistent results, although SI and CH

have been reported to be stable and comparable [23,24].

Arumugan et al. used CH as the basis for choosing the number

of enterotypes, even when SI values were very low (all published

values were less than or equal to 0.25), indicating weak or no

support for clustering [3]. It is important to note that the CH score

is a relative measure that alone cannot be used to determine

statistical significance of clustering in the data, and that

furthermore, CH is intended to indicate the optimal number of

clusters based on the assumption that clusters exist. PS and SI, on

the other hand, are absolute measures of how likely cluster

structure is to emerge from a dataset. Based on our results, we

recommend using at least one absolute measure (specifically, we

recommend PS), and if possible confirming those results with an

additional absolute measure (such as SI), when searching for

enterotypes. Depending on the signal-to-noise distribution within

individual datasets and data types, PS may have difficulty

identifying clusters represented by few samples, as we discuss

below (e.g., posterior fornix WGS data). In such cases SI may be

relied on, but we recommend using a high threshold (e.g., $0.75)

in identifying potentially reproducible clusters. We prefer PS over

SI for large sample sizes because (1) it has a clear quantitative and

intuitive interpretation, (2) it allows estimation of the clustering

stability of individual samples, and (3) it performs better than SI in

recovering known enterotypes in synthetic datasets. Note however

Figure 5. A comparison of prediction scores using different OTU picking methods. Prediction strength scores were calculated with JSD at
2 clusters using either OTUs generated using a reference-based approach or de novo.
doi:10.1371/journal.pcbi.1002863.g005

Enterotypes across the Human Body
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that there is currently no consensus in the field on the specific

thresholds that should be used with these methods for assessing

clustering strength, making it all the more important for

researchers to clearly state the criteria they apply when reporting

enterotypes.

Effect of Distance Metric
We searched for fecal enterotypes in the HMP and community

16S rRNA gene sequence data using the relative abundances of

OTUs across samples, and applying five different distance metrics:

JSD, rJSD, BC, and weighted/unweighted UniFrac distances, and

three cluster evaluation methods (PS, CH and SI; Fig. 3). Using

PS, we observed at best moderate support for 2 fecal enterotypes

in the HMP data using weighted UniFrac, but little or no support

using other distance metrics (Fig. 3A). We obtained similar results

using community data alone and when combined together

(Fig. 3A). Weighted UniFrac scoring for enterotypes was weak

with SI (Fig. 3). Figs. S3, S4, S5, S6, S7 show similar analyses for 3

Figure 6. Prediction scores for enterotypes in fecal samples using WGS data. Prediction strength scores calculated using 3 distances
metrics for (A) HMP, (B) MetaHIT and (C) HMP + MetaHIT data. The thresholds for significance of clustering scores are indicated as dashed lines on the
plots. Bars are standard errors.
doi:10.1371/journal.pcbi.1002863.g006

Figure 7. Gradients of OTU abundances are evident in the combined dataset of fecal samples. HMP and community fecal samples are
shown in a PCoA of weighted UniFrac distances. Samples are colored according to (A) putative cluster membership and by their abundances (0–1, see
legend inserts) of (B) Bacteroides, (C) Faecalibacterium and (D) Prevotella.
doi:10.1371/journal.pcbi.1002863.g007

Enterotypes across the Human Body
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different vaginal sites, and 9 oral and 3 skin sites. Moderate to

strong clustering is evident in only 3 out of these 15 body sites. In

the mid vagina there is strong support for 2 clusters (discussed

below) using BC, JSD and rJSD (Fig. S3; weighted UniFrac

provided moderate support; unweighted UniFrac provided no

support). In the posterior fornix (Fig. S3) and the attached

keratinized gingiva (Fig. S4), we observed moderate support for 2

clusters using 5 and 4 distance metrics, respectively (unweighted

UniFrac resulted in little or no support in the gingiva).

These results indicate that the detection of enterotypes is

sensitive to the distance metric used, a result also recently

reported by Claesson et al. [25]. Note that this sensitivity is not

dependent on body site. However, because enterotyping is driven

by the relative abundances of specific genera within samples,

unweighted UniFrac, which takes into account presence/absence

of tree branches but not abundances of sequences mapping to

those branches, may not be an ideal distance measure to use for

enterotyping. We include it here because it is widely used in

microbiome studies. In contrast, the weighted UniFrac, BC, JSD

and rJSD distance metrics are based on OTU abundances and

should in principle be more appropriate. The lack of concor-

dance between results based on different abundance-based

distance metrics raises the following questions: if enterotypes

are to be considered robust, must they be observed using more

than one distance metric? Or does the lack of concordance

between results using different distance metrics indicate that

(here at least) weighted UniFrac is the best choice for

enterotyping? Because the interpretation of the findings is

currently subjective, and in the absence of any community-wide

best practices, we recommend using at least 2 or 3 distance

metrics and clearly stating the criteria used for calling

enterotypes within the context of any particular study. Partic-

ularly, if different metrics yield different results, authors should

attempt to understand the discrepancies and justify their choice

of distance metric.

Effect of OTU Taxonomic Level
The effects of OTU taxonomic levels (for instance, clustering

sequences at genus or species level) on the recovery of enterotypes

are best illustrated with 16S rRNA gene sequence data from

vaginal sites (Figs. 4 and S3). Ravel et al. [26] reported enterotypes

in the vagina based on the abundances of bacterial species (as

opposed to genera used in gut studies). We used the abundances of

both species and genus-level OTUs from the Ravel et al. dataset to

test for enterotypes. Our analysis shows strong support for two

genus-level enterotypes using 4 of 5 distance metrics (i.e.,

unweighted UniFrac had moderate support) for the Ravel et al.

dataset when using the PS to test the strength of the clustering

(Fig. 4). We also observed strong support for genus-level mid-

vaginal enterotypes using 3 of 5 distance metrics (BC, JSD and

rJSD) for the HMP dataset (Fig. 4). Additionally, using a species-

level analysis, we obtained moderate support for five enterotypes

using BC and JSD in the Ravel et al. data (we also scored strong

support for 2 enterotypes with weighted UniFrac), and moderate

to strong support for 2 clusters (i.e., little or no support for five

clusters) in the HMP data (Fig. 4).

We also tested for clustering of vaginal samples using SI and

CH. When using SI (Fig. S8) at the genus level we found strong

support for 2 clusters in the HMP and Ravel et al. datasets using 3

and 1 distance metrics respectively. But when using CH (Fig. S9)

on the HMP data at the genus level, the highest scores were

obtained for 2–3 and 9–10 clusters, and in the Ravel data the

strongest support was for 2 clusters. At species level, we observed

strong support with SI for 2 enterotypes in the HMP data using

weighted UniFrac, and for 5 enterotypes using JSD (Fig. S8). No

strong support was observed for the Ravel data for any number of

clusters at the species level using SI. With CH, at the species level,

the highest score was for 10 clusters in the HMP data, while for the

Ravel data the highest score was for 2 clusters. The differences in

number of enterotypes found at the genus and species levels

underscore the sensitivity of enterotyping to the taxonomic depths

used in constructing OTUs.

Effect of 16S rRNA Variable Region
To test for the influence of the specific variable region of the

16S rRNA gene on the detection of fecal enterotypes, we

compared fecal samples from the HMP for which sequence data

for both the V1–V3 and V3–V5 regions were available. Data from

the V3–V5 region yielded moderate support for two fecal

enterotypes, but no enterotypes were detected using data from

the V1–V3 region. When using SI, we observed moderate support

for 2 clusters when using JSD on the V1–V3 data and weak

support for the V3–V5 data. The highest scores using CH were

three clusters using BC for V1–V3 data and two clusters using

weighted UniFrac for V3–V5 data (Fig. S10). Different primers

amplifying different regions of the 16S rRNA gene sequence are

known to impact the diversity described for a microbial

community. For example, primers for the V1–V3 region (e.g.,

27F-338R) are not efficient for amplifying 16S rRNA gene

sequences from members of the Bifidobacteria genus, which can

dominate the infant microbiota [22,27]. Our analysis demon-

strates that the specific region of the 16S rRNA gene that is

amplified during PCR is another factor that can affect the

outcome when searching for enterotypes.

Effect of OTU-Picking Method
We compared enterotype clustering using two methods for

OTU picking: (1) de novo sequence clustering into OTUs, in which

sequences are clustered based on similarity to one another, and (2)

a reference based approach, in which sequences are clustered

based on similarity to sequences in a reference database [27]. We

found that for the HMP dataset, the two OTU picking approaches

yielded consistent results for the majority of body sites (Fig. 5).

However, for the attached keratinized gingiva, posterior fornix

and tongue dorsum, the reference-based approach provided

moderate support for enterotypes, whereas the de novo approach

did not support clustering. One important difference between the

two OTU-picking approaches is that the reference-based method

can yield fewer OTUs, particularly at fine taxonomic resolution,

because any sequence that fails to find a match in the database is

discarded. In contrast, the de novo approach retains all sequences

and has the potential to yield higher OTU counts. Fewer OTUs

Figure 8. The fecal microbiota exhibit a smooth gradient of Bacteroides abundances across samples from the HMP and community
studies. Bacteroides abundances are mapped onto the first two principal coordinates of the weighted UniFrac PCoA analysis for HMP data (A),
community data (B), and combined HMP and community data (C). Left panels: 3D plots showing kernel density estimates mapped onto PC1 and PC2;
Right panels: contours indicate sample densities, sample colors indicate Bacteroides relative abundances ranging from 0–1, where 1 = 100%
Bacteroides; color levels are determined by quantiles to allow visual comparison of any distribution of relative abundances (e.g., 0% of samples fall
below the first threshold, 20% below the second threshold, 40% below the third, etc.)
doi:10.1371/journal.pcbi.1002863.g008

Enterotypes across the Human Body
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would have the effect of increasing the relative abundances of the

dominant genera, and may therefore strengthen the gradient effect

frequently observed (see below). Thus, the reference-based OTU

picking approach may result in over-confidence in enterotype

discovery.

Effect of Sequence Rarefaction Depth
Rarefaction is the commonly used normalization practice of

randomly subsampling the data so that an equal number of

sequences are drawn for each sample. We rarefied the sequences

from the HMP fecal samples at 2,000 sequences per sample and

compared the results to those obtained after rarefying at 1,000

sequences per sample (Fig. S11). Rarefaction depth did not seem

to strongly affect the results of the clustering.

Effect of Data Type: WGS versus 16S rRNA Gene
Sequences

We also implemented our methodology in the smaller set of

HMP samples for which WGS data were available, in addition to

the MetaHIT WGS data [3]. While the HMP WGS data included

fewer samples and body sites than the 16S rRNA gene sequence

data (approximately 700 spanning the gut, nares, three oral

habitats, and posterior fornix), they provided consistent species-

level resolution. We found a strong gradient effect in the fecal

samples (see discussion on gradients below) for almost all genera

and species, and between species within the genus Bacteroides and

members of the Firmicutes. We also found that the presence of

Prevotella (specifically, P. copri) was clearly associated with the first

principal coordinate in the PCoA using three distance measures.

This feature in turn drove moderate support for two clusters in the

HMP data (using JSD and rJSD) and strong support for 2 clusters

in the MetaHIT data (Figs. 6 and S12), that appeared to separate

roughly according to presence/absence of Prevotella.

Prevotella is similarly influential in driving variation along the first

principal coordinate axis when using Jensen-Shannon divergence

for the 16S-based samples, albeit not with weighted UniFrac (Figs.

S13-S14). Although the importance of Prevotella in clustering

analysis clearly depends on the choice of distance metric, the genus

does exhibit enterotype-like behavior in that it follows a bimodal

distribution: high relative abundance in a small fraction of

samples, but low or zero relative abundance in many other

samples. Note that the HMP 16S rRNA gene sequence surveys

include a smaller fraction of samples containing high relative

abundance of Prevotella compared to WGS data (12.3% and 10.9%

of samples contained .10% Prevotella in the HMP V1–V3 and

HMP V3–V5 data sets, respectively, compared to 13.9% and

24.2% in the HMP and MetaHIT shotgun metagenomics).

Although a bias of certain primers against Prevotella in 16S surveys

has been reported previously [28], this is not likely to have affected

the HMP data. The difference in Prevotella abundance between

MetaHIT and HMP samples remains to be explained.

In all other body sites, we again found general agreement

between metagenomics clustering results and the 16S rRNA gene

sequence-based clustering results regarding cluster quality (Figs.

S15-S16), with the exception of the moderate support for two

enterotypes in the buccal mucosa WGS data (Fig. S15), and lack of

consistent support for enterotypes in the posterior fornix (Fig. S16).

As we described above, we found moderate support for

enterotypes in the posterior fornix in 16S data (Fig. S3). The

discrepancy might be due to the fact that the WGS data included

Figure 9. HMP fecal samples are slightly enriched in Bacteroides
abundances compared to community samples. The projection
from Fig. 8C, right panel, is colored to show if samples originate from

the HMP (blue) or community (yellow), and all PC combinations are
shown. See Fig. 8 for description of the axes.
doi:10.1371/journal.pcbi.1002863.g009
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too few samples from the smaller ‘‘clusters’’ to permit detection by

the prediction strength approach; SI was highest for two

enterotypes at the genus level corresponding to Lactobacillus (either

dominant or absent; JSD jackknifed SI: 0.8960.012), and

statistically tied as highest for five (four Lactobacillus species or

Lactobacillus absent, JSD jackknifed SI: 0.7960.005) and eight (JSD

jackknifed SI: 0.7960.008) enterotypes at the species level (Fig.

S17).

Gradients of OTU Abundances
Bacteroidetes/Firmicutes in gut samples. Gut entero-

types would be apparent if the underlying data contained sharp

divisions in the distribution of samples based on genus-level

abundances (i.e., clear regions with no samples between the

modes in PCoA plots). We observed a smooth gradient

distribution of HMP + community samples based on their

Bacteroides abundances (Fig. 7), which in turn was the major

determinant of inter-individual b-diversity patterns (Fig. 8).

Samples at the extremes of this gradient were highly enriched

in or depleted of Bacteroides, but such extremes can be

interpretable as outliers on a continuum, rather than statistically

significant groups. To further assess the possibility that this

gradient was bi- or multi-modal, we mapped the density of

samples along the first two dimensions of weighted UniFrac

PCoA (Fig. 8). The kernel density estimates for samples mapped

on principal coordinates 1 and 2 show two peaks emerging from

the community data (but not from HMP data), which contributed

to a second, low peak in the combined data (Fig. 8). The HMP

samples tended to have higher Bacteroides-abundance when

compared to the community samples (Fig. 9).

The vast majority of samples occupies the intermediate

region between low- and high-Bacteroides individuals and forms

a smooth distribution of gut community configurations (Fig. 8).

Similar gradients of Bacteroides abundance across samples have

been observed in other studies [3,15]. The factors that drive the

bimodal distribution of samples at ends of the gradient remain

to be determined. Distinctive boundaries of gut enterotypes in

small populations are likely to be blurred with the addition of

samples containing intermediate levels of Bacteroides, although

in some cases they may reflect host and environmental

influences.

The extent to which a subject’s microbiota varies along the

gradient with time is not yet understood. Although many studies

to date suggest relative stability of microbial communities over

time within adult subjects [20,29,30,31], the relative abundance

of Bacteroides has been shown to vary over time within individuals,

for instance, changes in Bacteroides abundances were reported over

the course of a year-long weight loss study in obese individuals

[30].

Recent work has also revealed an important role for nutrient

status in determining the abundance of Bacteroides. Fasting (in

mice), and feeding (in pythons) can alter the relative abundance of

Bacteroides quite rapidly [32,33]. In humans, excess energy intake

above that needed for weight maintenance has been shown to

reduce Bacteroides levels [34]. Furthermore, long-term dietary

habits have been linked to enterotypes [15].

The low Bacteroides-abundance samples within the HMP +
community dataset included a rare subset (total of 6 adult

samples and 7 infant/child samples) with a high abundance

($0.6) of Prevotella (Fig. S18), which was notable due to generally

low abundance of this genus in most other samples (90.1% of

adults had ,10% Prevotella, 64.8% had none in V3–V5 region

data rarefied at 1,000 sequences/sample). Samples with high

Prevotella abundances have previously been observed in non-

Western human populations [6]. This community pattern has

also been suggested to associate with high-carbohydrate diets

[15]. It is likely that the size of this Prevotella peak will increase

with the addition of more data from diverse populations,

especially given the fact that 7 of the 13 Prevotella-rich samples

noted above came from non-western subjects. This Prevotella-

dominant community, belonging to a distinct group of samples,

was the most enterotype-like cluster we observed in the fecal

samples.

Other body sites. We next looked for enterotypes within the

oral samples, which had the greatest degree of beta-diversity and

were also the richest (highest a-diversity) within the HMP

population [2]. The 9 oral sites also contained gradients of

OTU relative abundances (Figs. S19-S27). These tremendous

ranges of phylogenetic diversity occurred in continua among

individuals and did not provide strong support for discrete

enterotypes (Fig. S4-S6), although in the attached keratinized

gingiva we saw moderate support for two enterotypes using

weighted UniFrac, JSD, rJSD and BC (Fig. S4).

We observed the same pattern was observed for the skin sites.

Each of the three skin types contained typically one or two

dominant OTUs that accounted for the majority of the genus-level

abundances [2]. Our analysis did not detect any enterotypes in the

skin sites (retroauricular creases, antecubital fossae and anterior

nares; Fig. S7), as these communities contained gradients of genus

abundances across samples (Figs. S28-S30).

Table 1. Summary of the factors that may affect enterotyping.

Strength Effect No effect

Known effects Strong Distance metric Rarefaction

Strong Cluster scoring method

Strong Taxonomical level

Moderate Variable region of the 16S rRNA

Weak 16S rRNA vs. WGS data

Weak OTU picking method

Potential effects to be tested Sample processing method

Batch effects

PCR conditions

Study size

doi:10.1371/journal.pcbi.1002863.t001
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Prospectus
Our results underscore the importance of methodology in

assessing whether populations can be categorized by enterotypes.

Table 1 summarizes the factors that might have an effect on

enterotyping: the two with the largest effect are the distance

metric and the clustering score method. We recommend using at

least one absolute scoring method (i.e., PS or SI) combined with at

least 2–3 distance metrics to verify the presence of enterotypes.

When using the different scoring methods, authors should

indicate and justify the choice of thresholds for indicating levels

of support for enterotypes. Other factors that should be kept in

mind are the data type (and if using 16S rRNA gene sequence

data, the variable region sequenced) and the OTU picking

method. At the present time, there is no community consensus on

how to define an enterotype, and two researchers with the same

data can easily come to opposite conclusions regarding the

presence of enterotypes if they apply different criteria. Microbial

ecologists and clinicians interested in the enterotype concept need

to standardize enterotyping methods for the concept to gain

utility.

The large size of the HMP dataset, augmented with the

community and MetaHIT data, brought to light the extent of

bacterial abundance gradients within body habitats. The presence

of these gradients underscores that discrete enterotypes (i.e.,

enterotypes with distinct boundaries) are lacking. Instead, for

continuous OTU and genus gradients are the norm for most body

sites, although a few body sites had multimodal distributions of

samples with modes near the extremes of the gradients, and very

few cases (e.g., the vagina) had consistent discrete community types.

The biological drivers of these patterns, and their robustness over

time, may be manifestations of host-microbial interactions,

especially if they correlate with host factors such as diet, lifestyle,

or genetics.

Supporting Information

Figure S1 Health state for the subjects whose samples are shown

in Fig. 1. (A) All samples from healthy subjects, for all body sites.

(B) Samples from individuals with health problems, or other

factors that may influence the diversity of the microbiota (i.e.,

smoking, use of antibiotics). (C) Combined data from panels A and

B. For body site legend, see Fig. 1.

(TIFF)

Figure S2 The relative locations of the different studies

containing gut samples in PCoA plots of weighted UniFrac and

Jensen-Shannon distances (For study names see Table S1).

(TIFF)

Figure S3 Prediction strength scores for enterotypes in HMP (A)

mid vagina, (B) posterior fornix, and (C) vaginal introitus samples.

Prediction strength scores calculated using 5 distances metrics.

The thresholds for significance of clustering scores are indicated as

dashed lines on the plots. Bars are standard errors.

(ZIP)

Figure S4 Prediction strength scores for enterotypes in HMP (A)

subgingival plaque, (B) supragingival plaque, and (C) attached

keratinized gingiva samples. Prediction strength scores calculated

using 5 distances metrics. The thresholds for significance of

clustering scores are indicated as dashed lines on the plots.

(TIFF)

Figure S5 Prediction strength scores for enterotypes in HMP (A)

buccal mucosa, (B) hard palate, and (C) tongue dorsum samples.

Prediction strength scores calculated using 5 distances metrics.

The thresholds for significance of clustering scores are indicated as

dashed lines on the plots. Bars are standard errors.

(TIFF)

Figure S6 Prediction strength scores for enterotypes in HMP (A)

saliva, (B) palatine tonsils, and (C) throat samples. Prediction

strength scores calculated using 5 distances metrics. The thresholds

for significance of clustering scores are indicated as dashed lines on

the plots. Bars are standard errors.

(TIFF)

Figure S7 Prediction strength scores for enterotypes in HMP (A)

retroauricular crease, (B) antecubital fossa, and (C) anterior nares

samples. Prediction strength scores calculated using 5 distances

metrics. The thresholds for significance of clustering scores are

indicated as dashed lines on the plots. Bars are standard errors.

(TIFF)

Figure S8 Enterotypes in mid vaginal sites samples in both the

HMP and the Ravel et al. [26] datasets. Average silhouette width

scores calculated using 5 distances metrics for HMP mid vaginal

samples at the genus level, Ravel et al. mid vaginal samples at the

genus level, HMP mid vaginal samples at the species level, Ravel et

al. mid vaginal samples at the species level. The thresholds for

significance of clustering scores are indicated as dashed lines on

the plots. Bars are standard errors.

(TIFF)

Figure S9 Enterotypes in mid vaginal sites samples in both the

HMP and the Ravel et al. [26] datasets. Caliński-Harabasz scores

calculated using 5 distances metrics for HMP mid vaginal samples

at the genus level, Ravel et al. mid vaginal samples at the genus

level, HMP mid vaginal samples at the species level, Ravel et al.

mid vaginal samples at the species level. Bars are standard errors.

(TIFF)

Figure S10 Clustering scores for fecal enterotypes in data from

(A) V1–V3 and (B) V3–V5 variable regions of the16S rRNA gene

using PS, SI and CH. Clustering scores calculated using 5

distances metrics. The thresholds for significance of clustering

scores are indicated as dashed lines on the plots. Bars are standard

errors.

(TIFF)

Figure S11 Prediction scores for enterotypes in HMP fecal

samples using 16S rRNA data and rarefying at (A) 1,000 and (B)

2,000 sequences per sample. Prediction strength scores calculated

using 5 distances metrics. The thresholds for significance of

clustering scores are indicated as dashed lines on the plots. Bars

are standard errors.

(TIFF)

Figure S12 Clustering scores for enterotypes in MetaHIT fecal

samples using WGS data. (A) Prediction strength scores, (B)

average silhouette scores and (C) Caliński-Harabasz calculated

using 3 distances metrics. The thresholds for significance of

clustering scores are indicated as dashed lines on the plots. Bars

are standard errors.

(TIFF)

Figure S13 Gradients of the 24 taxa most highly correlated with

the first 2 PCs in HMP fecal samples using Jensen-Shannon

divergence for the V3–V5 16S-based data.

(TIFF)

Figure S14 Gradients of the 24 taxa most highly correlated with

the first 2 PCs in HMP fecal samples using weighted UniFrac for

the V3–V5 16S-based data.

(TIFF)
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Figure S15 Prediction scores for enterotypes in HMP samples

using WGS data. Prediction strength scores calculated using 3

distances metrics for buccal mucosa (A), supragingival (B), and

tongue dorsum (C) samples. The thresholds for significance of

clustering scores are indicated as dashed lines on the plots. Bars

are standard errors.

(TIFF)

Figure S16 Prediction scores for enterotypes in HMP samples

using WGS data. Prediction strength scores calculated using 3

distances metrics for anterior nares (A), and posterior fornix (B)

samples. The thresholds for significance of clustering scores are

indicated as dashed lines on the plots. Bars are standard errors.

(TIFF)

Figure S17 Silhouette index for enterotypes in HMP vaginal

samples using WGS data at different taxonomic levels. Silhouette

index scores calculated using 3 distances metrics for genus (A), and

species (B) levels. The thresholds for significance of clustering

scores are indicated as dashed lines on the plots. Bars are standard

errors.

(TIFF)

Figure S18 Taxon distribution for the 10 most common genera

in the small number (13) of high Prevotella samples ($0.6 relative

abundance).

(TIFF)

Figure S19 Gradients of Prevotella, Fusobacterium and Treponema

abundances in subgingival plaque samples. HMP samples are

shown in a principal coordinates analysis of unweighted UniFrac

distances. Samples are colored according to (A) putative cluster

membership and by their abundances (0–1, see legend inserts) of

(B) Prevotella, (C) Fusobacterium and (D) Treponema.

(TIFF)

Figure S20 Gradients of Selenomonas, Streptococcus and Leptotrichia

abundances in supragingival plaque samples. HMP samples are

shown in a principal coordinates analysis of unweighted UniFrac

distances. Samples are colored according to (A) putative cluster

membership and by their abundances (0–1, see legend inserts) of

(B) Selenomonas, (C) Streptococcus and (D) Leptotrichia.

(TIFF)

Figure S21 Gradients of Prevotella, Streptococcus and Porphyromonas

abundances in attached keratinized gingiva samples. HMP

samples are shown in a principal coordinates analysis of

unweighted UniFrac distances. Samples are colored according to

(A) putative cluster membership and by their abundances (0–1, see

legend inserts) of (B) Prevotella, (C) Streptococcus and (D) Porphyr-

omonas.

(TIFF)

Figure S22 Gradients of Haemophilus, Streptococcus and Veillonella

abundances in buccal mucosa samples. HMP samples are shown

in a principal coordinates analysis of unweighted UniFrac

distances. Samples are colored according to (A) putative cluster

membership and by their abundances (0–1, see legend inserts) of

(B) Haemophilus, (C) Streptococcus and (D) Veillonella.

(TIFF)

Figure S23 Gradients of Streptococcus, Prevotella and Porphyromonas

abundances in hard palate samples. HMP samples are shown in a

principal coordinates analysis of unweighted UniFrac distances.

Samples are colored according to (A) putative cluster membership

and by their abundances (0–1, see legend inserts) of (B) Streptococcus,

(C) Prevotella and (D) Porphyromonas.

(TIFF)

Figure S24 Gradients of Streptococcus, Porphyromonas and Atopobium

abundances in tongue dorsum samples. HMP samples are shown

in a principal coordinates analysis of unweighted UniFrac

distances. Samples are colored according to (A) putative cluster

membership and by their abundances (0–1, see legend inserts) of

(B) Streptococcus, (C) Porphyromonas and (D) Atopobium.

(TIFF)

Figure S25 Gradients of Prevotella, Unclassified Veillonellaceae

and Streptococcus abundances in saliva samples. HMP samples are

shown in a principal coordinates analysis of unweighted

UniFrac distances. Samples are colored according to (A)

putative cluster membership and by their abundances (0–1,

see legend inserts) of (B) Prevotella, (C) Unclassified Veillonella-

ceae and (D) Streptococcus.

(TIFF)

Figure S26 Gradients of Prevotella, Streptococcus and Porphyromonas

abundances in palatine tonsils samples. HMP samples are shown

in a principal coordinates analysis of unweighted UniFrac

distances. Samples are colored according to their (A) putative

cluster membership and by abundances (0–1, see legend inserts) of

(B) Prevotella, (C) Streptococcus and (D) Porphyromonas.

(TIFF)

Figure S27 Gradients of Prevotella, Neisseria and Unclassified

Veillonellaceae abundances in throat samples. HMP samples

are shown in a principal coordinates analysis of unweighted

UniFrac distances. Samples are colored according to (A)

putative cluster membership and by their abundances (0–1,

see legend inserts) of (B) Prevotella, (C) Neisseria and (D)

Unclassified Veillonellaceae.

(TIFF)

Figure S28 Gradients of Propionibacterium, Staphylococcus and

Corynebacterium abundances in retroauricular crease samples.

HMP samples are shown in a principal coordinates analysis of

unweighted UniFrac distances. Samples are colored according to

(A) putative cluster membership and by their abundances (0–1, see

legend inserts) of (B) Propionibacterium, (C) Staphylococcus and (D)

Corynebacterium.

(TIFF)

Figure S29 Gradients of Propionibacterium, Staphylococcus and

Parabacteroides abundances in antecubital fossa samples. HMP

samples are shown in a principal coordinates analysis of

unweighted UniFrac distances. Samples are colored according to

(A) putative cluster membership and by their abundances (0–1, see

legend inserts) of (B) Propionibacterium, (C) Staphylococcus and (D)

Parabacteroides.

(TIFF)

Figure S30 Gradients of Corynebacterium, Staphylococcus and

Propionibacterium abundances in anterior nares samples. HMP

samples are shown in a principal coordinates analysis of

unweighted UniFrac distances. Samples are colored according to

(A) putative cluster membership and by their abundances (0–1, see

legend inserts) of (B) Corynebacterium, (C) Staphylococcus and (D)

Propionibacterium.

(TIFF)

Table S1 List of studies used in the data analysis.

(DOCX)
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