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Abstract

Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical
trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage
of the vast amount of existing disease-related clinical literature and gene expression microarray data stored in large
international repositories. First, thousands of diseases were ranked according to a disease-specific pain index (DSPI), derived
from Medical Subject Heading (MESH) annotations in MEDLINE. Second, gene expression profiles of 121 of these human
diseases were obtained from public sources. Third, genes with expression variation significantly correlated with DSPI across
diseases were selected as candidate pain genes. Finally, selected candidate pain genes were genotyped in an independent
human cohort and prospectively evaluated for significant association between variants and measures of pain sensitivity. The
strongest signal was with rs4512126 (5q32, ABLIM3, P = 1.3610210) for the sensitivity to cold pressor pain in males, but not
in females. Significant associations were also observed with rs12548828, rs7826700 and rs1075791 on 8q22.2 within NCALD
(P = 1.761024, 1.861024, and 2.261024 respectively). Our results demonstrate the utility of a novel paradigm that integrates
publicly available disease-specific gene expression data with clinical data curated from MEDLINE to facilitate the discovery of
pain-relevant genes. This data-derived list of pain gene candidates enables additional focused and efficient biological
studies validating additional candidates.

Citation: Ruau D, Dudley JT, Chen R, Phillips NG, Swan GE, et al. (2012) Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases. PLoS
Comput Biol 8(6): e1002538. doi:10.1371/journal.pcbi.1002538

Editor: Andrey Rzhetsky, University of Chicago, United States of America

Received January 5, 2012; Accepted April 16, 2012; Published June 7, 2012

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This study was funded in part by the National Library of Medicine (R01 LM009719) and the National Institute on Drug Abuse (R01DA023063). We
acknowledge partial funding from the Stanford Institute for Immunity Transplantation and Infection, the Hewlett Packard Foundation, the Lucile Packard
Foundation for Children’s Health, the Department of Veterans Affairs Cooperative Studies Program Study #478, and the Department of Veterans Affairs VISN-21
Mental Illness Research, Education, and Clinical Center. Funds to support the development and maintenance of the Twin Research Registry were provided
through SRI’s Center for Health Sciences and through various grants from the NIH including: DA011170, DA023063, AI057229, and AI090019. The authors also
wish to thank the contributions and commitment to science provided by the twins through their ongoing participation in the Registry and various research
studies. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: druau@stanford.edu

¤ Current address: Personalis, Inc., Palo Alto, California, United States of America.

. These authors contributed equally to this work.

Introduction

A significant number of diseases are associated with pain,

thereby affecting the quality of life of many individuals. The

Institute of Medicine’s recent report titled, ‘‘Relieving Pain in

America’’ presented pain as a public health challenge, and

emphasized the need for an integrative approach to understand

mechanisms underlying pain [1]. Such understanding is critical for

developing more effective and individualized strategies targeting

the prevention and treatment of pain.

Studies in rodents and humans have established the importance

of genetic factors in the processing of pain [2,3,4]. However,

identifying genes important to complex phenotypes such as pain

using genome-wide association studies has been challenging [5].

Candidate gene studies have identified many gene variants

associated with susceptibility to pain [6,7]. Despite these advances,

genetic discoveries in the domain of pain have been slow in

forthcoming compared to other fields [8].

Pain is among the most difficult phenotypes to study due to its

complex and subjective nature. The perception of pain is

influenced by a multitude of variables including gender, age,

mood, ethnicity and genetic factors [9], and a recent meta-analysis

highlighted the overall small effect size attributable to any gene

variant associated with the processing of pain [10]. The

polygenetic nature of pain and the small effect size of gene

variants pose significant challenges for pain gene discovery.

Candidate gene studies have proven successful in the identifi-

cation of pain genes. A particularly promising approach used gene

expression microarray analysis to select candidate genes [11,12].

More recently a meta-analysis of publicly available microarray

data from rodents exposed to neuropathic or inflammatory pain

was able to efficiently prioritize pain-related genes [13]. A similar
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approach using human gene expression data could be highly

beneficial in generating data-driven hypotheses for pain genetics.

However, there is currently a paucity of public gene expression

data related to specific human pain conditions.

In this study, we describe an integrative approach exploiting

publically available gene expression data for a large set of disease

conditions to develop a disease-specific pain index (DSPI). This

approach is based on the hypothesis that differences at the gene

expression level correlating with pain indices would allow

identifying novel pain gene candidates [14]. We validated this

approach through a targeted genetic association study in an

independent human cohort, where variants of selected pain gene

candidates were evaluated for associations with experimental pain

sensitivity measures in humans.

Results

Disease-specific pain index
We built the disease-specific pain index (DSPI) using our

literature-based approach, in which 2962 diseases were ranked

according to their disease-pain ratio. Table 1 displays the 20

diseases with the highest pain indices. Diseases included

Prinzmetal’s angina, neuralgia, causalgia, chronic plantar fasciitis

and polyarthralgia; all conditions associated with severe pain.

Among the diseases ranked at the bottom of the pain index list

were fetal alcohol syndrome, cretinism, hermaphroditism and fetal

erythroblastosis; all conditions not primarily associated with pain

(Table S1). Inspection of the DSPI indicates that diseases with a

high pain index are typically associated with significant clinical

pain, while pain is not a hallmark of diseases with a low pain index.

As such, the pain index captures relevant aspects of disease-related

pain. However, the DSPI relies on the fraction of disease-related

publications in PubMed that are associated with the Medical

Subject Heading (MESH) term ‘‘pain’’ and therefore, is subject to

some bias. For example, a disease associated with significant pain

but hardly studied in the context of pain would rank inappropri-

ately low on the DSPI list. A practical example is the pain index of

cholera with a rank of 2936, which is at the bottom of the list.

Cholera is clearly associated with painful symptoms. Inspection of

the DSPI generally revealed relatively low ranks for infectious

diseases, likely indicating that the research community predom-

inantly focuses on the most relevant aspects of the condition under

study. This suggests that the DSPI also captures to some extend

the relevance of pain across multiple diseases.

Identification of candidate pain genes
As previously described, the raw microarray data for 311

diseases were extracted from public gene expression databases

[15,16,17]. A list of 3812 differentially expressed (DE) genes was

then compiled (see Materials and Methods). Pain indices were

available for 121 of the 311 diseases with suitable microarray data.

The 121 disease-related gene expression changes were ordered

according to the DSPI. For each of the 3812 differentially

expressed genes, the gene expression fold change across every

disease was correlated with the DSPI. This allowed identifying

genes whose expression changes were significantly correlated with

pain.

The sensitivity and accuracy of this strategy for capturing genes

implicated in the processing of pain was first evaluated with the aid

of the Pain Gene Database (PGD) [18]. The PGD catalogs genes

whose transgenic or knockout mouse counterparts have exhibited

changes in pain-related phenotypes. The PGD is actively

maintained and, to our knowledge, is the only pain-related gene

database. Figure 1 shows the receiver operating characteristic

(ROC) curve with confidence intervals. The area under the curve

(AUC) was 60.5% indicating a prioritization of known pain genes

from the PGD by our method.

We evaluated the significance of the association of the 3812

genes with the DSPI using a threshold-based estimated false

discovery rate. Forty-seven genes were significantly associated with

the DSPI (pFDR,0.01; Table 2). Among the 47 genes, two genes,

DLG4 (PSD-95) and CHRNA4, were referenced in the PGD

[19,20]. DLG4 and CHRNA4 were both found to have expression

changes in 13 of 121 diseases that were positively correlated with

pain indices (Figure 2A–B).

Table 1. The 20 diseases with the highest disease-pain ratio
from the DSPI are listed out of a total of 2962 diseases.

Diseases Ratio

Prinzmetal’s Angina 1

Unstable Angina 1

Vertebrogenic Pain Syndrome 1

Pain, Menstrual 1

Neuralgia, Atypical 1

Mechanical Low Back Pain 1

Polyarthralgia 1

Somatic Sensation Disorders 1

Postherpetic Neuralgia 1

Failed Back Surgery Syndrome 1

Piriformis syndrome 1

Slit Ventricule Syndrome 1

Causalgia Syndrome 0.62

Vulvar Vestibulitis 0.52

Pseudomelia 0.48

Myofascial Pain Syndromes 0.47

Chronic Plantar Fasciitis 0.45

Perineural Cysts 0.43

Craniomandibular Diseases 0.43

Vulvodynia 0.42

The ratio indicates the number of disease citations in PubMed associated with
the MeSH term ‘‘pain’’ in relation to the total number of diseases citations.
doi:10.1371/journal.pcbi.1002538.t001

Author Summary

The mechanisms underlying pain are incompletely under-
stood, and are hard to study due to the subjective and
complex nature of pain. From a genetics perspective, the
discovery of genes relevant for the processing of pain in
humans has been slow and genome-wide association
studies have not been successful in yielding significantly
associated variants. Targeted approaches examining spe-
cific candidate genes may be more promising. We present
a novel integrative approach that combines publicly
available molecular data and automatically extracted
knowledge regarding pain contained in the literature to
assist the discovery of novel pain genes. We prospectively
validated this approach by demonstrating a significant
association between several newly identified pain gene
candidates and sensitivity to cold pressor pain.

Integrative Approach to Pain Genetics
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In light of this significant but modest prioritization of pain

related genes, we applied our pipeline to another medically

relevant concept: ‘‘Inflammation’’. As described above for pain we

extracted from MEDLINE a Disease-Specific Inflammation Index

(DSII) and retrieved gene significantly associated with this index.

Using genes belonging to the Gene Ontology category ‘‘Inflam-

matory Response’’ (GO:0006954) as gold standard we computed

the area under the ROC curve. Figure S1 shows a clear

prioritization of known ‘‘Inflammatory response’’ genes through

our pipeline with an AUC of 73.2%.

Polymorphisms in ABLIM3 and NCALD are associated with
cold pain threshold

Selected genes from the candidate list were prospectively tested

for variants that may be associated with differential pain sensitivity

in an independent human cohort. These genes were chosen based

on their high correlation with the DSPI and plausible biology as

assessed by the available literature and human expression profile

across tissue using The Scripps Research Institute BioGPS

database [21]. The selected genes were: (i) ABLIM3 (actin binding

LIM protein family, member 3), PDE2A (phosphodiesterase 2A,

cGMP-stimulated), CREB1 (cAMP responsive element binding

protein 1), NAALAD2 (N-acetylated alpha-linked acidic dipeptidase

2), and NCALD (neurocalcin delta) (Figure 2C–G).

ABLIM3 was selected as our top candidate as it showed the

highest correlation with the DSPI. The cGMP-sensitive phospho-

diesterase PDE2A localizes at the neuronal membrane in synapses

and has been described as being regulated by TNFa, a known

proinflammatory cytokine shown to sensitize primary nociceptors

[22]. Additionally, a recent study on Grueneberg ganglion

neurons, that are proposed thermosensors, revealed a key role of

cGMP enzyme in cold temperature sensing [23]. Interestingly,

PDE2A provides a mechanism for nitric oxide-mediated cGMP

synthesis to control intracellular concentrations of cAMP [24].

cAMP is a key second messenger that activate numerous

downstream protein, notably cyclic-AMP-response element

(CRE)-binding protein (CREB) that activate classical immediate-

early genes such as c-Fos, which are associated with nociceptive

afferent activation [25,26]. NAALAD2 is highly similar in sequence

to NAALAD1 and both hydrolyze N-acetyl-L-aspartate-L-gluta-

mate (NAAG) to N-acetyl-aspartate and glutamate, a neuropep-

tide that activates and antagonizes neuronal N-methyl-D-aspartate

(NMDA) receptors [27]. Based on nociceptive tests in rats,

NAALAD1 was found to plays a role in maintaining mechanical

allodynia after carrageenan injection [28]. Of note, NAALAD1 was

also positively correlated with the DSPI but not to the same level

of significance as NAALAD2. Finally, NCALD (neurocalcin delta) is

a calcium-binding protein abundantly and almost exclusively

expressed in the central nervous system that has not previously

been associated with pain [29].

The genotyping study was conducted in samples obtained from

twins enrolled in an ongoing independent IRB-approved pharma-

cogenomic study testing subjects’ sensitivity to experimental heat

and cold pressor pain among other outcomes (see Materials and

Methods for details). The association study was performed using a

generalized least square (GLS) test. GLS allowed us to model

different variances between monozygotic twin pairs (MZ),

dizygotic twin pairs (DZ), and the sexes, as each of these factors

has previously been shown to influence pain measures

[4,30,31,32,33].

Figure 1. Receiver Operating Characteristic (ROC) curve. The ROC curve depicts the performance of our algorithm to identify known pain
genes listed in the Pain Genes Database [18]. The area under the ROC curve is 60.5%, which is significantly different from random chance. Maximum
sensitivity and specificity are 56.9% and 62.7% respectively.
doi:10.1371/journal.pcbi.1002538.g001

Integrative Approach to Pain Genetics
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Within the five selected genes, 251 tag SNPs were tested.

Polymorphisms in ABLIM3 (rs4512126) and NCALD (rs12548828,

rs7826700, and rs1075791) showed significant association with the

cold pressor pain threshold after Bonferroni correction (Figure 3A–

B). Linkage disequilibrium (LD) analysis of the genotyped SNPs

revealed a relatively weak LD structure around these polymor-

phisms. The LD structure in both genes was similar between the

study cohort and the HapMap CEU population for the same

region (Figure S2 and S3). Interestingly, the influence of the

rs4512126 loci on the cold pressor pain threshold was tested,

which revealed a male specific effect for individuals with the T/T

allele (Figure 4A). Males with homozygous T/T alleles exhibited a

significantly higher mean pain cold threshold than all other groups

(p = 0.005, 461024, 0.02, 0.005, 0.01, for A/A Males, A/A

Females, A/T Male, A/T Females and T/T Females, respective-

ly). The largest effect sizes (Cohen’s d) were observed between T/T

Males and A/A Males and Females (0.38 and 0.39, respectively).

Effect sizes between T/T Males and the other groups were below

the small effect size threshold (, = 0.2) with 0.16, 0.11 and 0.17

for A/T Males, A/T Females and TT Females respectively.

Discussion

The primary objective of this study was to demonstrate the

utility and validity of a novel, data-driven approach for generating

a list of pain gene candidates. Such a list could facilitate the

discovery of pain genes. We first validated our approach by

demonstrating a statistically significant sensitivity and specificity

prioritization of known pain-related genes contained in the Pain

Gene Database (PGD). In addition, further genotyping of a human

cohort revealed a significant association between variants of the

newly discovered pain gene candidates ABLIM3 and NCALD with

measures of pain sensitivity in an independent human cohort.

A major emphasis of this study was to document the utility of

the principal approach and highlight its future potential. The ever

growing amount of publically available molecular and clinical data

Figure 2. Genes with significant correlation between expression rank fold-change and disease-specific pain index (DSPI). (A, B) DLG4
and CHRNA4 are known pain genes listed in the Pain Gene Database. (C–G) ABLIM3, PDE2A, NAALAD2, CREB1 and NCALD were selected for further
investigation through genotyping in an independent human cohort. X-axis represents disease ordered according to the DSPI. Y-axis displays the rank
fold change. Solid line indicates linear regression fit. Rho Spearman correlation coefficient and uncorrected correlation p-values are shown. The
curved dashed line represents the 95% confidence interval of the linear regression performed against the DSPI.
doi:10.1371/journal.pcbi.1002538.g002

Integrative Approach to Pain Genetics
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should allow for expanding and refining this approach to generate

more comprehensive and specific lists. For example, as more data

becomes available, it may be possible to link gene expression of

diseases to specific types of pain, such as neuropathic pain.

Similarly, the outlined approach can be expanded to include

proteomic data sets, which should provide additional insight into

signaling pathways relevant to the processing of pain. Finally, the

pain associated with a specific disease can be construed differently.

For example, disease-specific pain ratings could be retrieved from

databases of large health care organizations [34].

There are a few limitations in our approach and study. First,

among the 47 candidate pain genes significantly correlating with

the DSPI, only two are referenced in the PGD. While the PGD is a

valuable resource of curated information and likely represents the

best available reference, it is not yet a globally accepted master

repository containing all pain genes, especially those resulting from

human studies. The database is constrained by the fact that it only

catalogs genes revealed by studies examining nociception in

mechanistic – but not disease-related – models in knock-out mice.

It should also be noted that gene expression data for diseases and

matched controls were only available for 121 diseases. As a result

only 130 of the 300 genes listed in the PGD could be explored in

the current study.

The presented paradigm did not capture genes such as KCNS1,

GCH1, COMT or OPRM1, each of which has been implicated in

the processing of pain [9]. This may partially be due to the fact

that the current algorithm favored the discovery of genes

exhibiting gradual gene expression change across different

diseases. Additionally, our approach relied on gene expression

changes in diseased tissue, which may not always capture

important changes in secondary tissues relevant for the processing

of pain, such as neuronal tissues or blood vessels. Additionally,

some of these genes, such as KCNS1, are thought to be important

in specific types of pain like neuropathic pain, but might not

participate genetically in determining pain of other etiologies

represented in the 121 diseases. There is considerable potential for

more refined approaches in the near future to resolve some of

these limitations, as there are a constantly growing number of

publicly available repositories containing molecular and pheno-

typic data sets.

ABLIM3 is a newly characterized protein-coding gene belonging

to the actin binding LIM protein family, which is composed of 3

Table 2. Forty-seven genes showed expression changes that were significantly correlated with the DSPI.

A. Gene positively correlated with painful diseases B. Genes negatively correlated with painful diseases

Gene Symbol correlation pFDR Gene Symbol correlation pFDR

ABLIM3 0.83 2.28E-04 ZNF131 20.63 9.68E-03

EIF1 0.78 6.66E-04 KRR1 20.63 9.68E-03

CHST15 0.78 7.67E-04 TTN 20.63 9.61E-03

PDE2A 0.75 1.45E-03 MYLIP 20.64 9.45E-03

MED6 0.74 1.76E-03 ACTR2 20.64 9.18E-03

NAALAD2 0.73 2.00E-03 NUMA1 20.64 8.10E-03

SEZ6L 0.73 2.18E-03 STAT2 20.65 7.91E-03

AOX1 0.72 2.54E-03 APOA1 20.65 7.32E-03

CRY2 0.71 2.85E-03 ADD1 20.65 7.03E-03

TRIM29 0.71 3.16E-03 ITPKB 20.66 6.34E-03

NCALD 0.70 3.27E-03 TNFSF11 20.68 4.82E-03

CHRNA4 0.70 3.38E-03 SRP72 20.69 4.43E-03

KCTD13 0.70 3.68E-03 TRAF4 20.69 4.28E-03

CCNO 0.69 3.84E-03 AKIRIN1 20.69 4.06E-03

RPS11 0.69 4.06E-03 CREB1 20.70 3.46E-03

DHRS2 0.69 4.06E-03 HSP90B1 20.73 2.11E-03

DLG4 0.68 4.82E-03 MARCKSL1 20.74 1.89E-03

REG1A 0.68 4.82E-03 MTDH 20.76 1.22E-03

ZFPM2 0.68 5.02E-03 LUC7L3 20.77 8.96E-04

RFTN1 0.67 5.75E-03

PTPRK 0.67 5.75E-03

GAP43 0.66 6.45E-03

MAPK8IP3 0.65 7.03E-03

GP5 0.65 7.91E-03

CNTN3 0.64 8.16E-03

ANKRD7 0.64 8.29E-03

C2orf40 0.64 8.71E-03

TAL1 0.64 9.15E-03

doi:10.1371/journal.pcbi.1002538.t002
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members (ABLIM1-3) and shows a high degree of conservation

throughout evolution in vertebrates. ABLIM3 is expressed in

various tissues, most prominently in muscle and neuronal tissue

[35,36]. While relatively little is known about the biological

function of the ABLIM protein family, conservation of key

structural features suggests comparable biological function as

linkers between the actin cytoskeleton, cell signaling pathways and

transcription events [36]. For example, the ortholog of ABLIM1 in

C. elegans (UNC-115) has been implicated in axonal guidance

during outgrowth through interaction with Receptor for Activated

C Kinase (RACK-1) [37].

Presently, a potential functional role for ABLIM3 in the

perception or processing of pain is not apparent. ABLIM3 could

potentially affect nociceptive signaling by regulating synaptic

strength through actin rearrangement and modulation of synaptic

spine density [38]. Neuroplasticity has been shown to play a role in

pathological pain and to happen both at the molecular and cellular

levels [39]. However, the association of ABLIM3 with pain is a

novel finding that is based on a data-driven approach but is not

anchored in our current understanding of pain biology. While this

approach may offer the advantage of making unexpected and

important discoveries, it requires establishing the biological

relevance of such discoveries in subsequent experimental steps.

The SNP rs4512126 (5q32) is located in the second and largest

intron of ABLIM3. This variant was found in weak linkage

disequilibrium (.0.6) with five other SNPs and in perfect linkage

disequilibrium with rs4546368 located in the same intronic region

of ABLIM3. All were non-coding SNPs. Similar to ABLIM3,

NCALD has never been reported to be associated with pain.

However, several polymorphisms in the 39 UTR have been

associated with mRNA instability and diabetic nephropathy [40].

Individuals carrying the A/A allele possessed a higher cold pain

threshold. Nevertheless, we acknowledge that our discovered

association between NCALD and pain cold was modest, demon-

strated in only a single cohort, and barely above the Bonferroni

corrected threshold. The parallel approach using quantile

normalized phenotypical pain measures did not sustain the

association for NCALD (Figure S4). Further genotyping in

alternative cohorts and deep sequencing of these regions would

be needed to reveal a potentially causal SNP.

Interestingly, only males with homozygous ABLIM3 T/T

showed a significant association with cold pressor pain sensitivity

in our study. The sex-specific association of a gene variant with the

cold pressor pain threshold is not surprising. Genetic polymor-

phisms associated with pain in humans and animals have identified

a striking number of sexual dimorphisms with either male- or

female-specific genetic effects, or a significant difference between

the sexes [7,9,30,34,41].

Figure 3. Manhattan plots and linkage disequilibrium heatmaps for ABLIM3 and NCALD. Log10 transformed correlation association p-
values with pain cold threshold for 43 and 132 SNPs located in the ABLIM3 (A) and NCALD (B) genes regions, respectively. The x-axis represents the
SNPs chromosomal physical location scale. The bottom heatmap represents linkage disequilibrium (LD) pairwise r2 based on the genotyped twin
cohort. Blue star indicates polymorphisms found to be significantly associated with pain cold threshold.
doi:10.1371/journal.pcbi.1002538.g003
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We present a novel paradigm linking publically available

molecular data to clinically relevant phenotypic data for gener-

ating a list of candidate genes relevant to the processing of pain.

Algorithms for accessing and integrating such data to examine

disease-relevant mechanisms are of growing interest as publically

available data sets grow at an ever-increasing rate. The outlined

approach can complement existing research efforts by assisting the

formulation of data-driven hypotheses, and may serve as a

template to discover genetic components of other clinically

important phenotypes.

Materials and Methods

Ethics statement
The twin study was approved by the Institutional Review

Boards of Stanford University and SRI International. All subjects

gave written informed consent prior to participation.

Linking disease to pain
MeSH is a comprehensive vocabulary thesaurus organized in a

hierarchical structure allowing the indexing of publications with

Figure 4. Boxplots of pain cold threshold by genotype and sex for polymorphisms found to be significantly associated with cold
pressor pain. Dark lines within boxplots indicate the median. Box limits display first and third inter quartile. Horizontal lines at the limit of the
boxplots represent the upper and lower end of the nominal data range defined as the upper quartile plus 1.5 times the inter quartile difference (IQD)
and, the lower quartile minus 1.5 times the IQD, respectively. Open circles represent outliers falling outside the nominal data range. Numbers
displayed above the boxplots indicate the number of individuals in the respective group.
doi:10.1371/journal.pcbi.1002538.g004

Integrative Approach to Pain Genetics
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various levels of specificity. MeSH terms are used by trained

human curators to annotate publications referenced in MED-

LINE. We first built a thesaurus of 3743 disease-related MeSH

terms using the Unified Medical Language System (UMLS);

restricting ourselves to terms belonging to the following semantic

type: Pathologic Function (T046), Disease and Syndrome (T047) and

Neoplastic Process (T191) [42].

Searching MEDLINE for each of these MeSH terms gave us

the number of publications published on each disease. For each

disease returning a result, we conducted a second search in

MEDLINE to count the number of papers published that were

also annotated with the MeSH heading term ‘‘pain’’[mh].

Searching MEDLINE for ‘‘pain’’[mh] includes publications

annotated with any terms hierarchically below ‘‘pain’’ in MeSH,

such as Aches, Burning pain, and others. MEDLINE searches were

automated using the EUtils programming tools available from the

NCBI (http://eutils.ncbi.nlm.nih.gov). The ratio of these two

counts formed the disease-pain ratio, as shown in equation (1).

Disease{pain ratio~

#MEDLINE records for disease A and pain MeSH annotation

#MEDLINE records for disease A
ð1Þ

The comprehensive disease-specific pain index (DSPI) was

established by ranking all 2962 diseases by their respective

disease-pain ratio (Table S1). Implicit to our algorithm is the

assumption that each disease provides unique qualitative informa-

tion that may be diluted if weighting results by publication

frequency. Thus, the only criteria for inclusion of the disease in

the DSPI was to have at least one co-citation with a ‘‘pain’’ related

MeSH term (Figure 5A–B).

A similar approach was followed to establish the Disease-

Specific Inflammation Index (DSII) by searching for publication

annotated with the MeSH term ‘‘Inflammation’’[mh].

Extracting disease associated gene expression profiles
from public genomic repositories

We annotated all datasets from the National Center for

Biotechnology Information (NCBI) Gene Expression Omnibus

(GEO) and the European Bioinformatics Institute (EBI) ArrayEx-

press (AE) public databases with UMLS identifiers for diseases as

previously published [43,44,45,46,47]. We further evaluated these

data sets to determine whether or not the submitted biological

experiments measured a normal control state (disease free tissues)

complimentary to the annotated disease state. This was done to

ensure that differentially expressed (DE) genes could be extracted

for each disease. Drug treated samples were excluded from the

study. Disease, tissue and substance annotations were manually

reviewed in a post-processing step to ensure accuracy. Extraction

of data from GEO and AE according to outlined steps revealed

311 diseases explored across 456 publicly available data sets and

comprising 14,457 individual microarrays from 169 different

tissues. In this study, microarrays were pre-processed and DE

genes lists were generated using Rank Product (Figure 5C) [48].

We kept only genes with a q-value (gene-specific false-discovery

rate) level #0.05 [49].

Association of the DSPI with gene expression
One-hundred twenty-one of the 311 diseases retrieved from

GEO and AE were also present in the DSPI list, and thus could be

associated with disease-specific pain indices (see Table S1 for the

DSPI and Table S2 for the overlapping list of 121 diseases). A

small number of animal diseases were present in our DSPI since

MEDLINE also covers veterinary and animal diseases. These were

automatically excluded from the rest of the analysis, as retrieved

gene expression data were limited to humans. Fold change values

of the DE genes for each of 121 diseases were organized into a

matrix with diseases as columns and genes as rows (Figure 5D).

Because the lists of DE genes varied from one disease to another,

we defined an arbitrary threshold of minimum gene representa-

tion. Information on a gene had to be present in at least 10% of

the listed diseases. The final matrix contained 3812 genes as rows

and 121 diseases arranged in columns. Finally, disease-columns in

the matrix were ordered according to their DSPI rank, i.e., from

the lowest to the highest pain index.

The Spearman rank correlation was then computed for each

gene using the fold-change values against the DSPI ranking. We

computed the positive false discovery rate (pFDR) values for each

gene by permuting the diseases rank and re-computing the

Spearman correlation for each gene. The operation was repeated

1000 times to obtain a null distribution of the correlation

coefficients. The pFDR values were calculated as the ratio of the

expected proportion of false positive V over the total number of

hypothesis rejected R (2) [50].

pFDR~E
V

R

����Rw0

� �
ð2Þ

Sensitivity and accuracy
We evaluated the sensitivity and accuracy of our method in

prioritizing pain genes using Receiver Operating Characteristic

(ROC) curves. We compared the DSPI-based pain-gene list

against a list of known pain genes from the PGD (www.jbldesign.

com/jmogil/; accessed October 2010) [18]. We acknowledge that

the PGD only contains data from studies in knockout mice.

However, the PGD is to our knowledge the only available

repository of pain genes. All 308 mouse genes in the PGD were

retrieved manually and translated to 300 human homologs using

the NCBI Homologene database (www.ncbi.nlm.nih.gov/

homologene). All 300 mouse genes were translated to unique

human genes except 8 genes lacking homologs. These eight genes

were not further considered. We established the confidence

intervals for the ROC curve using a leave-one-out resampling

method by repeatedly recalculating the pain-gene rankings with

nine-tenths of the 121 diseases. These alternative pain-gene lists

were then used to compute the confidence interval of the standard

error of our pain-gene ranking. We used the ROCR package from

R to compute the ROC curves [51]. Of note, the gene expression

measurements on the 121 diseases only included 130 of the 300

known pain genes from the PGD.

Gene extracted using the DSII were compared to a gold

standard made from the genes belonging to the ‘‘Inflammatory

response’’ Gene Ontology category (GO:0006954). The gene list

was retrieved from the Molecular Signature Database [52].

Twin cohort and experimental pain measurements
Our study used samples and data from a pre-existing large

pharmacogenomic study in twins examining the heritability of

various opioid effects [32]. More specifically, data on subjects’

sensitivity to heat and cold pressor pain before drug exposure were

retrieved. The twin study was approved by the Institutional

Review Boards of Stanford University and SRI International. All

subjects gave written informed consent prior to participation.
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In total, 228 healthy pain-free twins (114 twin pairs) of diverse

ethnicities were genotyped and phenotyped. We considered only

individuals with self-declared European ancestry, which repre-

sented 179 individuals with an age range of 18–68 years. Zygosity

status of identical (MZ) and fraternal (DZ) twins was assessed by

genotyping concordance using a panel of 47 SNPs [53]. Relevant

covariates known to potentially confound measures of pain were

also assessed and included demographic factors, age, sex,

education, depressed mood, anxiety, sleep, and blood pressure.

A detailed description of methods has been published elsewhere

Figure 5. System-based approach to pain-gene candidate prioritization. (A) Publications annotated with the MeSH term ‘‘pain’’[mh] in
conjunction with a disease MeSH term were retrieved from MEDLINE. (B) The co-citation ratio (see Materials and Methods) established a disease-
specific pain index (DSPI) representing the relative painfulness of a disease compared to others. (C) The disease-associated experiments publicly
available from GEO and AE were retrieved and significantly differentially expressed genes were extracted in a disease-specific manner. (D) Disease
gene lists were organized according to the DSPI from highest to lowest. The gene expression fold change was correlated with the disease ordering to
determine significant associations between gene expression patterns and the pain index. Genes were ranked according to their Spearman rank
correlation coefficient (rho) and p-values corrected for multiple hypothesis testing.
doi:10.1371/journal.pcbi.1002538.g005
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[32]. Overall, the cohort used for this analysis was not balanced for

sex (107 females and 72 males) and consisted of 54 dizygotic and

125 monozygotic twins.

Experimental pain measurements were performed in the

Human Pain Laboratory of the Department of Anesthesia at

Stanford University School of Medicine. Heat pain was induced

with a thermal sensory analyzer (TSA-II, Medoc Advance Medical

System, Durham, North Carolina). A 363 cm thermode was

placed in contact with skin at the volar forearm. Starting at 35uC,

the thermode temperature was increased at a rate of 1uC/s. Study

participants pushed a button of a hand-held device at the onset of

pain. This procedure was repeated 4 times with an inter-stimulus

interval of 30 seconds. The average temperature (Cu) eliciting pain

was recorded as the pain threshold.

Cold pressor pain is thought to mimic important qualities of

clinical pain, since verbal descriptors for both types of pain are

strikingly similar [54]. Cold pressor pain is more sustained than

heat pain and is associated with a much stronger affective response

[55]. The cold-pressor pain model can be viewed as a tool

examining an integrated pain response with a strong affective

component, while the heat pain model is better suited to explore

sensory-discriminative aspects of pain. Sensitivity to cold pressor

pain was tested by having subjects immerse their hand to mid-

forearm in ice-water (1–2uC) continuously recirculated within a

12-liter container. The palm of the hand was in full contact with

the bottom of the container. Subjects were asked to indicate the

onset of dull, aching pain typically perceived in the wrist and to

withdraw the hand once pain became intolerable. The time

(seconds) to the onset of pain was recorded as the cold pain

threshold and the time to withdrawing the hand was recorded as

the cold pain tolerance.

Genetic association study
The twin cohort was genotyped for 251 SNPs across 5 genes

selected from the list of candidate pain genes (Table 2). We

selected LD tag SNPs (r2 = 1) based on the HapMap CEU

population using the Tagger software from the Broad Institute

(http://www.broadinstitute.org/mpg/tagger/) [56]. Twin’s DNA

was extracted from peripheral blood lymphocytes and genotyped

using a custom-designed Oligo Pool for Methylation Assay

(Golden Gate Genotyping Assay, Illumina, Inc, San Diego, CA)

and BeadXpress (iGenix Inc., Bainbridge Island, WA). We filtered

out all SNPs with a call rate ,90%.

Out of 251 SNPs assayed only 216 yielded successful results

following Illumina quality controls. Some successfully genotyped

loci had missing genotypes for a small number of twins and were

imputed using the homozygous wildtype allele from the popula-

tion. We filtered out all SNPs with a minor allele frequency ,5%

or those whose genotype frequency departed from Hardy-

Weinberg equilibrium at p,0.01. In summary, 207 SNPs were

tested against heat pain threshold, cold pain threshold and cold

pain tolerance.

While twin individuals were not required to test association of

our candidate genes with pain, twins allowed us to control for

environmental variability in pain measurements. Rather than

utilize methods to correct for the relatedness of observations

coming from the two members of the same twin pair, we used a

model in which each pair was treated as a single observation by

using within-pair genotype and phenotype averages. Genotypes

were transformed to numbers according to the allele frequency, 0,

1, 2 for homozygous wildtype, heterozygous and homozygous rare,

respectively. Then, the genotypes of twins were averaged within

each pair. The genotype of single twin was not altered. Categorical

covariate data such as sexes were discretized to 21 and 1 for male

and female respectively and then averaged. DZ twin pairs of

different sex were coded 0.

To test association of measures of pain sensitivity with each

SNP, we used a generalized least square (GLS) regression model

[57] examining the null hypothesis that pain and genotype are not

associated. We regressed on the pain score measured, y, against the

genotype for the SNP considered while controlling for depression

of the individual (Beck Depression Index) and sex (3).

y~b0zb1SNPzb2bdizb3sex ð3Þ

GLS allowed us to model different variances of measured traits

in MZ and DZ twins and in males and females. We related

genotype to the heat pain threshold (degree Cu) and the log of both

the cold pressor pain threshold and cold pressor pain tolerance. P-

values were corrected for multiple hypotheses testing using the

Bonferroni correction. One twin with the T/T allele for

rs4512126 reached the maximum allowed time in the cold

threshold test (3 min). This result was considered an outlier and

was removed from the analysis. In parallel, we also evaluated the

effect of the pain phenotype normally distributed through quantile

normalization. This analysis revealed similar results. The

rs4512126 (ABLIM3) polymorphism remained significant for cold

pain threshold (Figure S4A). Additionally, rs4512126 and

rs7715362 (ABLIM3) showed a significant association with cold

pain tolerance (Figure S4B) and rs7720260 (ABLIM3) showed a

significant association with heat pain threshold (Figure S4C).

However, previously found significant polymorphisms in NCALD

did not pass the Bonferroni threshold in this analysis.

We computed the Cohen’s d effect sizes for the difference

observed between men and women homozygous for the minor

allele of the rs4512126 variant as follows d = [xm2xf]/pooled standard

deviation, where xm and xf are the average cold pressor pain

threshold in males and females, respectively [58]. Positive values

indicate a higher male average pain threshold, and negative values

indicate a higher female average pain threshold. The result is unit

free and Cohen proposed that benchmark values for what should

be considered a ‘small’, ‘medium’ and ‘large’ effect (d. = 0.2, 0.5,

0.8, respectively) [59]. We analyzed differences in mean cold

threshold for rs4512126 by performing two-sample t-tests with

unequal sample size and unequal variances (Welch two sample t-

test).

Supporting Information

Figure S1 Receiver Operating Characteristic (ROC)
curve. The ROC curve depicts the performance of our algorithm

to identify known inflammatory genes belonging to the Gene

Ontology ‘‘Inflammatory response’’ category. The area under the

ROC curve is 73.2%, which is significantly different from random

chance.

(TIF)

Figure S2 Linkage Disequilibrium comparative repre-
sentation of the ABLIM3 SNPs. (A) LD structure (r2) of

genotyped SNPs within our twin cohort. (B) LD structure of the

same SNPs using HapMap II+III population with European

ancestry. Blue star indicates rs4512126 SNP location.

(TIF)

Figure S3 Linkage Disequilibrium comparative repre-
sentation of the NCALD SNPs. (A) LD structure (r2) of

genotyped SNPs within our twin cohort. (B) LD structure of the

same SNPs using HapMap II+III population with European
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ancestry. Blue star indicates rs12548828, rs7826700 and

rs1075791 SNPs location.

(TIF)

Figure S4 Manhattan plot for ABLIM3 polymorphisms
when pain phenotype are quantile normalized. (A)

Represent association p-values for SNPs in ABLIM3 with cold

pain pressor threshold. (B) Association of ABLIM3 polymorphisms

with cold pain tolerance. (C) Association analysis of ABLIM3

polymorphisms with heat pain threshold.

(TIF)

Table S1 Disease-specific pain index (DSPI) ranking all
2962 diseases by their respective disease-pain ratio.

(XLS)

Table S2 List of 121 diseases retrieved from GEO and
AE that were also present in the DSPI.

(XLS)
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