
An Integrated Computational/Experimental Model of
Lymphoma Growth
Hermann B. Frieboes1,2,3*, Bryan R. Smith4, Yao-Li Chuang3, Ken Ito4, Allison M. Roettgers1,

Sanjiv S. Gambhir4,5, Vittorio Cristini3,6

1 Department of Bioengineering, University of Louisville, Louisville, Kentucky, United States of America, 2 James Graham Brown Cancer Center, University of Louisville,

Louisville, Kentucky, United States of America, 3 Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America, 4 Molecular

Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, California, United States of America, 5 Bioengineering, Materials Science &

Engineering, Bio-X, Stanford University, Stanford, California, United States of America, 6 Department of Chemical Engineering, University of New Mexico, Albuquerque,

New Mexico, United States of America

Abstract

Non-Hodgkin’s lymphoma is a disseminated, highly malignant cancer, with resistance to drug treatment based on
molecular- and tissue-scale characteristics that are intricately linked. A critical element of molecular resistance has been
traced to the loss of functionality in proteins such as the tumor suppressor p53. We investigate the tissue-scale physiologic
effects of this loss by integrating in vivo and immunohistological data with computational modeling to study the
spatiotemporal physical dynamics of lymphoma growth. We compare between drug-sensitive Em-myc Arf-/- and drug-
resistant Em-myc p53-/- lymphoma cell tumors grown in live mice. Initial values for the model parameters are obtained in
part by extracting values from the cellular-scale from whole-tumor histological staining of the tumor-infiltrated inguinal
lymph node in vivo. We compare model-predicted tumor growth with that observed from intravital microscopy and
macroscopic imaging in vivo, finding that the model is able to accurately predict lymphoma growth. A critical physical
mechanism underlying drug-resistant phenotypes may be that the Em-myc p53-/- cells seem to pack more closely within the
tumor than the Em-myc Arf-/- cells, thus possibly exacerbating diffusion gradients of oxygen, leading to cell quiescence and
hence resistance to cell-cycle specific drugs. Tighter cell packing could also maintain steeper gradients of drug and lead to
insufficient toxicity. The transport phenomena within the lymphoma may thus contribute in nontrivial, complex ways to the
difference in drug sensitivity between Em-myc Arf-/- and Em-myc p53-/- tumors, beyond what might be solely expected from
loss of functionality at the molecular scale. We conclude that computational modeling tightly integrated with experimental
data gives insight into the dynamics of Non-Hodgkin’s lymphoma and provides a platform to generate confirmable
predictions of tumor growth.
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Introduction

Monoclonal antibodies and small molecule inhibitors of

intracellular targets are being developed alongside a host of anti-

non-Hodgkin’s lymphoma therapeutic options [1]. Yet the tumor

tissue-scale effects from these molecular-scale manipulations are

not well-understood. With the ultimate goal to more rationally

optimize lymphoma treatment, we integrate pre-clinical in vivo

observations of lymphoma growth with computational modeling to

create a platform that could lead to optimized therapy. As a first

step towards this goal, we develop the capability for simulation in

order to gain insight into the tissue-scale effect of molecular-scale

mechanisms that drive lymphoma growth. We use the modeling to

study these mechanisms and their association to cell proliferation,

death, and physical transport barriers within the tumor tissue.

Tumor growth and treatment response have been modeled

using mathematics and numerical simulation for the past several

decades (see recent reviews [2–9]). Models are usually either

discrete or continuum depending on how the tumor tissue is

represented. Discrete models represent individual cells according to a

specific set of bio-physical and -chemical rules, which is particularly

useful for studying carcinogenesis, natural selection, genetic

instability, and cell-cell and cell-microenvironment interaction (see

reviews by [10–20]). Continuum models treat tumors as a collection of

tissue, applying principles from continuum mechanics to describe

cancer-related variables (e.g., cell volume fractions and concentra-

tions of oxygen and nutrients) as continuous fields by means of

partial differential and integro-differential equations [2]. A third

modeling approach employs a hybrid combination of both contin-

uum and discrete representations of tumor cells and microenviron-

ment components, aiming to develop multiscale models where the

discrete scale can be directly fitted to molecular and cell-scale data

and then upscaled to inform the phenomenological parameters at

the continuum scale (see recent work by [21–23]).

There is a paucity of mathematical oncology work applied to

the study of non-Hodgkin’s lymphoma, with some notable
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exceptions providing insight into the role of the tumor microen-

vironment heterogeneity in the treatment response [24,25] and the

disease origin [26]. Like many other cancers (solid tumors), two

critical tissue-scale effects in lymphoma are hypoxia and angio-

genesis, as observed in our studies and other work [27].

Supporting previous qualitative observations of physiological

resistance, mathematical modeling and computational simulation

have shown that the diffusion barrier alone can result in poor

tumor response to chemotherapy due to diminished delivery of

drug, oxygen, and cell nutrients [28,29]. Local depletion of oxygen

and cell nutrients may further promote survival to cell cycle-

specific drugs through cell quiescence.

In order to study these effects in lymphoma, we implement an

integrated computational/experimental approach to quantitatively

link the processes from the cell scale to the tumor tissue-scale

behavior in order to gain insight into their cause and progression

in time. We extend a version of our 3D continuum model [30–32],

building upon extensive mathematical oncology work [2,3,33–35],

and calibrate both parameters and equations, i.e., functional

relationships that are not conservation laws, from detailed

experimental data to produce a virtual lymphoma. We obtain

the experimental data by very fine sectioning of both drug-

sensitive and -resistant lymphomas, thus visualizing molecular,

cellular, and tissue-scale parameter information across the whole

tumor geometry. We further develop the protocols for calibration

of parameters by building on recent work based on patient

histopathology [36,37]. We also use the data to derive the

relationships between model parameters for apoptosis, prolifera-

tion, and vasculature. We verify the model results at the tumor-

scale through tissue-scale observations in vivo of tumor size,

morphology, and vasculature using intravital microscopy and

macroscopic imaging of the inguinal lymph node. We note that

comparison of model results to experimental data has been done to

various extents for different cancers (see reviews above); here, we

perform a tissue-scale comparison after extensive calibration of

cell-scale parameters in order to validate the model results. We

undertake simulations to study how the growth of drug-resistant

Non-Hodgkin’s lymphoma may be governed by the cellular

phenotype, and use this information to better elucidate the links

between physical drug resistance and molecular-scale phenotype

by experimental and computational comparison to drug-sensitive

tumors.

This process yields a lymphoma simulator as an initial step to

study detailed tumor progression and provide further insight into

drug resistance, and, ultimately, may provide a tool to design

better personalized treatments for Non-Hodgkin’s lymphoma.

Since the cell-scale measurements used for calibration are different

from those at the tissue-scale used for verification, this method-

ology enables the model to bridge from the cell to the tumor scale

to calculate tumor growth and hypothesize associated mechanisms

predictively, i.e., without resorting to fitting to the experimental

data. This process quantitatively links the cellular phenotype to the

tumor tissue-scale behavior, and may serve to highlight the

importance of physical heterogeneity and interactions in the tumor

microenvironment when evaluating chemotherapeutic agents in

addition to consideration of chemo-protective effects such as cell-

specific phenotypic properties and cell-cell and cell-ECM adhesion

[38].

Materials and Methods

Experimental model
We choose an Em-myc murine orthotopic lymphoma experi-

mental model because of its similarity to human Non-Hodgkin’s

Lymphoma [39], and select five parameters to measure based on

their importance to lymphoma progression: viability, hypoxia,

vascularization, proliferation, and apoptosis. In order to investi-

gate the role of physical heterogeneity in the development of drug

resistance, including the impediment of transport barriers, we

focus on two types of lymphoma cells: Em-myc Arf-/- cells

(Doxorubicin (DOX) and Cyclophosphamide (CTX) sensitive,

with IC50 = 3.5 nM and 16.0 mM, respectively; the IC50 is the

amount of drug needed to kill 50% of a cell population), and Em-

myc p53-/- cells (DOX and CTX resistant: IC50 = 46.2 nM and

75.8 mM, respectively). The Em-myc transgenic mouse model

expresses the Myc oncogene in the B cell compartment, resulting

in mice with transplantable B cell lymphomas. We chose this in vivo

model because it captures genetic and pathological features of the

human disease and, given the appropriate genetic mutation, drug-

resistant and drug-sensitive tumors can be directly compared

[39,40].

Cell culture
Em-myc/Arf-/- and Em-myc/p53-/- lymphoma cells, which

harbor loss-of-function regions in the Arf and p53 genes

respectively, were previously derived by intercrossing Em-myc

transgenic mice with Arf-null and p53-null mice, all in the C57BL/

6 background as described previously [39]. Em-myc/Arf-/-

lymphoma cells and Em-myc/p53-/- lymphoma cells were cultured

in 45% Dulbecco’s modified Eagle medium (DMEM) and 45%

Iscove’s Modified Dulbecco’s Medium (IMDM) with 10% fetal

bovine serum (FBS) and 1% penicillin G-streptomycin onto the

feeder cells – Mouse Embryonic Fibroblasts (MEFs).

Murine lymphoma model
C57BL/6 mice were obtained from Charles River Laboratories

(Wilmington, Massachusetts). All animal studies were approved by

The Stanford University Institutional Animal Care and Use

Committee. Lymphoma cells (16106) Em-myc/Arf-/- and Em-myc/

p53-/- were diluted with 200 ml of PBS and injected intravenously

via the tail vein as described previously [39]. The intravital

microscopy and macroscopic tumor observations were obtained

for at least n = 4 mice per tumor group.

Author Summary

Non-Hodgkin’s lymphoma is a cancer that develops from
white blood cells called lymphocytes in the immune
system, whose role is to fight disease throughout the
body. This cancer can spread throughout the whole body
and be very lethal – in the US, one third of patients will die
from this disease within five years of diagnosis. Chemo-
therapy is a usual treatment for lymphoma, but the cancer
can become highly resistant to it. One reason is that a
critical gene called p53 can become mutated and help the
cancer to survive. In this work we investigate how cells
with this mutation affect the cancer growth by performing
experiments in mice and using a computer model. By
inputting the model parameters based on data from the
experiments, we are able to accurately predict the growth
of the tumor as compared to tumor measurements in
living mice. We conclude that computational modeling
integrated with experimental data gives insight into the
dynamics of Non-Hodgkin’s lymphoma, and provides a
platform to generate confirmable predictions of tumor
growth.

Computational/Experimental Lymphoma Growth Model
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Immunohistochemistry
We isolated both Em-myc/Arf-/- and Em-myc/p53-/- driven

tumors at day 21 after tail-vein injection of lymphoma cells.

Typical murine lymphomas were observed to range from about 4

to 6 mm in diameter prior to fixation. Lymph node tissues were

fixed and paraffin-embedded. The tissues were used for immuno-

histochemical (IHC) identification of cell viability (H&E staining),

hypoxia (HIF-1a), vascularization (CD31), proliferation (Ki-67),

and apoptosis (Caspase-3). Five 2-mm thick sections were cut 5 mm

apart from each other in order to stain for these markers

(Figure 1). A total of five sets (S1 through S5) of five stained

sections each was collected every 100 mm along the lymphoma, in

order to section and stain the entire tumor for sequential

microscopic scanning of the stained sections. Sections S1 and S5

were at the tumor top and bottom, respectively, while the other

sections were towards the center with S3 being in the middle. Note

that due to tissue processing and dehydration, the tumors as cut

were smaller than measured when removed from the animal. All

the sections were de-paraffinized and rehydrated in PBS. Then the

sections in each set were incubated at 4uC with the primary

antibody overnight: rabbit anti-mouse HIF-1 antibody (Abcam,

Santa Cruz, CA), rabbit anti-mouse Ki-67 antibody (Labvision,

Fremont, CA), rabbit anti-mouse Caspase-3 antibody (Cell

Signaling Technology, Beverly, CA), and rat anti-mouse CD31

antibody (BD Pharmingen, San Diego, CA), and incubated for

1 hour at room temperature with a peroxidase-conjugated

secondary antibody. The samples were fully scanned and stitched

together using a digital pathology BioImagene instrument

(Ventana Medical Systems, Tucson AZ) at 620 magnification.

Mathematical model
The model treats tissue as a mixture of various cell species,

water, and ECM; each component is subject to physical

conservation laws described by diffusion-taxis-reaction equations

(see below). Briefly, the tissue microstructure is modeled through

the proper choice of parameter values and through biologically-

justified functional relationships between these parameters, e.g.,

cellular transitions from quiescence to proliferation depend upon

oxygen concentration [41]. The model simulates non-symmetric

tumor evolution in 2D and 3D, and dynamically couples

heterogeneous growth, vascularization, and tissue biomechanics

(Figure 2). In [36] we calibrated models using cell-scale data to

predict tissue scale parameters such as size and growth rate. These

models are predictive because they are not calibrated with the

same data used for model validation, which avoids data fitting.

While in [36] we focused on the final predicted tumor sizes, here

we focus on the growth rate as an essential first step; in follow-up

work, we will evaluate the complex problem of drug response. Our

approach to constrain the computational model involves both cell-

and tumor-scale approaches as described in Figure 3.

We approximate the healthy lymph node as a sphere to

represent the experiments in the mouse model (Figure 4). To

simulate node expansion and deformation of surrounding tissue to

accommodate the growing tumor, as a first step we delineate the

tumor boundary by decreasing the value of the cell mobility

parameter beyond the sphere diameter (see below). For the

multigrid algorithm, we pick a computational domain that is a

6.4 mm66.4 mm66.4 mm box, with finest mesh grid size = 100

microns; this grid size provides adequate resolution to resolve the

tumor boundaries without incurring excessive computational cost.

Distribution of cell species
We assume that the tumor is a mixture of cells, interstitial fluid,

and extracellular matrix (ECM). The temporal rate of change in

viable and dead tumor tissue at any location within the tumor

equals the amount of mass that is pushed, transported, and pulled

due to cell motion, adhesion, and tissue pressure, plus the net

Figure 1. Scheme to obtain the cellular-scale experimental data. Lymphomas (shown as large orange sphere) were grown in vivo by tail vein
injection of either drug-sensitive Em-myc/Arf-/- or drug-resistant Em-myc/p53-/- lymphoma cells. The inguinal lymph node tumor was excised, fixed,
and sliced for histology sections (5 mm apart) every 100 mm along the tumor. A total of five sets (S1 through S5) of histology sections were obtained
(for simplicity, the figure only shows three sets). The sections in each set were stained for cell viability (H&E), hypoxia (HIF-1a), proliferation (Ki-67),
apoptosis (Caspase-3), and vascularization (CD-31).
doi:10.1371/journal.pcbi.1003008.g001

Computational/Experimental Lymphoma Growth Model
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result of production and destruction of mass due to cell

proliferation and death:

Lri

Lt
z+: uirizJið Þ~Si, i[ V , D, Hf g ð1Þ

The rate of change in the volume fraction ri of cell species i (V:

viable tumor; D: dead tumor; H: host) is specified throughout the

computational domain by balancing net creation (Si: proliferation

minus apoptosis and necrosis; see below) with cell advection

(=?(uiri), where ui is the velocity of the cell species) and cell-cell

and cell-ECM interactions (adhesion, cell incompressibility,

chemotaxis, and haptotaxis, incorporated in a flux Ji) [31,32].

The reticular network within the lymph node contains a variety

of extracellular matrix proteins, many of which are known ligands

for integrin cell surface adhesion receptors [42,43]. Cell-cell and

cell-ECM mechanical interactions are modeled through J using a

generalized Fick’s Law [31].

Angiogenesis
Tumor angiogenesis is driven by excessive accumulation of

cancerous cells, leading to a chronic under-supply of oxygen and

cell nutrients (generically here labeled ‘‘nutrients’’) in tumor

regions farther removed from pre-existing vessels [44]. Hypoxic

cells in lymphoma release a net balance of pro-angiogenic factors

such as VEGF-A, bFGF, PDGF and VEGF-C, which promote

neo-vascularization mainly through sprouting angiogenesis of

mature resident endothelial cells and, to a lesser extent, through

Figure 2. Algorithm flowchart. Refer to Materials and Methods and Text S1 for equations. Using the cellular-scale data, we measured values
for proliferation and apoptosis for both drug-sensitive and drug-resistant tumors and calculated corresponding values for the model mitosis and
apoptosis parameters lM and lA. We solved Eq. (2) for the local levels of cell substrates n at each time step of simulation of tumor growth. The
parameters were input into Eq. (3) to numerically calculate the source mass terms Si, which were then used in Eq. (1) to compute the volume fractions
of viable rV and rD dead tissue. These fractions were used in Eq. (4) to obtain the tumor tissue growth velocity.
doi:10.1371/journal.pcbi.1003008.g002

Computational/Experimental Lymphoma Growth Model
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vasculogenesis from recruitment of bone marrow-derived progen-

itor cells [45]. Accordingly, the model incorporates angiogenesis

into the lymphoma by coupling with a multiscale representation of

tumor vessel growth, branching, and anastomosis based on earlier

work [46–48] (further details in Text S1).

Transport
The vasculature releases oxygen and nutrients n that diffuse

through the tissue and are uptaken by cells during metabolism,

while tumor cells secrete VEGF (nV) in response to hypoxia [32].

The oxygen and nutrients are non-dimensionalized by the

maximum inside vessels, hence their levels are #1 and are

assumed to be stationary. The transport can be described as:

Ln

Lt
~Dn+2nzdvesseln a,ubð Þ 1{nð Þ{ ln,U,VrVzln,U,HrHð Þn{ln,Dn,

LnV

Lt
~DnV

+2nVzlnV,SrV{lnV,DnV{dvessellnV,UnV

ð2Þ

where Dn and DnV
are diffusion constants (161025 cm2/sec for

oxygen [49] and 161027 cm2/sec for VEGF [50]), dvessel (Dirac

delta function) is the indicator function of vasculature (1 where it

exists and 0 otherwise), n is the delivery rate (depends upon a,

capillary vessel cross-sectional area, and ub, blood velocity), ln,U,V,

ln,U,H, and lnV,U are the uptake rates, lnV,D and ln,D are the

decay rates (for simplicity, assumed to be zero), and lnV,S is the

secretion rate.

Proliferation, apoptosis, and necrosis
The tumor species viable (V) volume fraction rV is assumed to

increase through proliferation and decrease through apoptosis and

necrosis. We assume that normal host cells (H) do not proliferate,

but may also undergo apoptosis (A) and necrosis (N); the total

volume fraction of dead cells (D) is rD. For simplicity, we assume

these primarily affect tumor mass through the transport of water

within the tissue and hence neglect their solid fraction. Under the

assumption that a dense viable cell population prevents nutrient

saturation, we model the proliferation as directly proportional to

(non-dimensionalized) nutrient substrate n above a threshold level

nN, resulting in the net creation of one cell by removing the

equivalent water volume from the interstitium. Cells experiencing

a substrate level below nN are considered quiescent (e.g., due to

hypoxia). Apoptosis transfers cells from the viable tumor and host

cell species to the dead cell species, where cells degrade and release

their water content; this models phagocytosis of apoptotic bodies

by neighboring viable cells and the subsequent release of the water

of lysed cells. Necrosis occurs when the nutrient substrate

concentration falls below the threshold nN and ultimately releases

the cellular water content (i.e., we assume that the main mode of

cell death due to lack of nutrients is mainly represented by

Figure 3. Schematic showing integrated computational/experimental modeling strategy involving both cell- and tumor-scale
measurements. (A) Functional relationships involving cell-scale parameters such as proliferation (Ki-67), apoptosis (Caspase-3), and hypoxia (HIF-1a)
are defined based on experimental observations, e.g., from immunohistochemistry the density of viable tissue as a function of vascularization is
shown in the third panel (red: highest density; yellow: lowest; blue: vessels). These functional relationships as well as parameter values measured
experimentally are then used as input to the model to create simulations of lymphoma growth. A sample simulated tumor cross-section showing
vascularized viable tissue (highest density in red, lowest in yellow, with vessel cross-sections as small blue dots) is shown at the far right. (B)
Lymphoma observations regarding size, morphology, and vasculature from macroscopic imaging of an inguinal lymph node in live mice provide part
of the tumor-scale information to validate the model simulations. Note the pre-existing vasculature in the lymph node (in the center of each frame)
from which oxygen and nutrients are supplied to the tissue. For comparison, a control group of lymph nodes in animals without tumors is also
shown.
doi:10.1371/journal.pcbi.1003008.g003

Computational/Experimental Lymphoma Growth Model
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Figure 4. Representation of the lymph node by the computational model. (A) Diagram highlighting a typical lymph node structure. (B)
Simulation output from the model showing an incipient tumor (dark red) forming in the center of the node. Afferent lymphatic vessels are collectively
represented as one incoming tube on the top, and the efferent vessel is at the bottom. (C) The simulated distribution of oxygen (brown color)
released by the blood vasculature within the node remains uniform at this initial stage.
doi:10.1371/journal.pcbi.1003008.g004

Computational/Experimental Lymphoma Growth Model
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necrosis). The resulting model is:

SV ~ lM,V n{nNð Þ{lA,Vð ÞH n{nN½ �rV {lN,V H nN{n½ �rV

SD~H n{nN½ � lA,V rV zlA,H rHð ÞzH nN{n½ � lN,V rVzð

lN,HrHÞ{lDrD,

ð3Þ

where lM,i, lA,i, and lN,i are mitosis, apoptosis, and necrosis rates,

lD is the cell degradation rate (varies due to the differences

between apoptosis and necrosis), and H(x) is the Heaviside

‘‘switch’’ function.

Velocity of cell species
The movement of a cell species is determined by the balance of

proliferation-generated oncotic pressure, cell-cell and cell-ECM

adhesion, as well as chemotaxis (due to substrate gradients), and

haptotaxis (due to gradients in the ECM density). We model the

motion of cells and interstitial fluid through the ECM as a viscous,

inertialess flow through a porous medium. Therefore, no

distinction between interstitial fluid hydrostatic pressure and

mechanical pressure due to cell-cell interactions is made. Cell

velocity is a function of cell mobility and tissue oncotic (solid)

pressure (Darcy’s law); cell-cell adhesion is modeled using an

energy approach from continuum thermodynamics (see Text S1).

For simplicity, the interstitial fluid is modeled as moving freely

through the ECM (i.e., at a faster time scale than the cells).

riuizJi~{ki ri,fð Þ +p{
X

j
cj

dE

drj

+rj

 !
zxn ri,f ,nð Þ+nz

xh ri,fð Þ+f , i[ V , D, Hf g

ð4Þ

The variational derivative dE/dri of the cell-cell interaction

potential, combined with the remaining contributions to the flux J
(due to pressure, haptotaxis, and chemotaxis; see Text S1), yields

a generalized Darcy-type constitutive law for the cell velocity ui of

a cell species i, determined by the balance of proliferation-

generated oncotic pressure p, cell-cell and cell-ECM adhesion, as

well as chemotaxis (due to gradients in the cell substrates n), and

haptotaxis (due to gradients in the ECM density f) [32]. ki is

cellular mobility, reflecting the response to pressure gradients and

cell-cell interactions, cj is the adhesion force, and xn and xh are the

chemotaxis and haptotaxis coefficients, respectively (see Table
S1). For the host cells, xn = xh = 0. The Supplemental Text S1
further describes the ECM density f as well as the effect of the cell

velocity on the lymph node geometry.

Results

Comparison between Em-myc p53-/- and Em-myc Arf-/-
tumors

We used the IHC staining to estimate the number and spatial

localization of cells that were viable (from H&E), proliferating

(from Ki-67), apoptotic (from Caspase-3), hypoxic (from HIF-1a),

and with vascular endothelial characteristics (from CD31). These

estimates were calculated for both Em-myc Arf-/- and Em-myc

p53-/- cells for each set of five sections obtained every 100 mm

across the lymphoma (Figures 5 and 6).

A comparison of viable Em-myc p53-/- to Em-myc Arf-/- cells

along the lymphoma (Figure 5) indicates that the viability is

higher for the drug-resistant tumors in the middle of the tumor

(Section S3) compared to the drug-sensitive tumors, with a

corresponding statistically significant increase in cell density

(p = 0.024; Student’s t-test with a= 0.05). In contrast to the Em-

myc p53-/- tumors, the Em-myc Arf-/- seemed to be more dense in

the peripheral regions (p = 0.002 on one end (Section S1) and

p = 0.009 on the other end (Section S5)), whereas they were about

the same for both tumor types in the intermediate sections S2 and

S4. Tumors with drug-resistant cells have a 4-fold increase in

endothelial cells in the core of the tumor (Section S3) compared to

drug-sensitive tumors (Figure 6A). Hypoxia is higher in the

peripheral regions for the Em-myc p53-/- (Figure 6B) even though

for both tumor types the peripheral regions seem to be equally

vascularized (based on the endothelial cell density). This could be

due to the vasculature on the periphery not being fully functional,

with a potential difference in vascular function between the two

tumor types leading to a more hypoxic phenotype for the Em-myc

p53-/-. Although the core proportionally holds almost twice the

number of proliferating cells for the drug-resistant tumors as

compared to the drug-sensitive case (Figure 6C), a correlation

between proliferation and vascularization/hypoxia is precluded.

Interestingly, the number of apoptotic cells is consistently higher

for Em-myc p53-/- (Figure 6D), suggesting non-hypoxia driven

apoptosis for these tumors.

Model calibration with cellular-scale data
By analyzing each IHC section longitudinally along the tumor,

a range of baseline values can be calculated from the experimental

data for key model parameters (Table S1), inspired by recent

methods in mathematical pathology [36]: cell viability, necrosis,

and spatial distribution pattern (from H&E), cell proliferation

(from Ki-67), cell apoptosis (from Caspase-3), oxygen diffusion

distance (from HIF-1a), and blood vessel density (from CD31).

These values are obtained for both Em-myc Arf-/- and Em-myc

p53-/- tumors for each of the five sections obtained longitudinally

along the tumor, with values sampled from the middle (core) and

the edge (periphery) of each section. The measured values are not

resolved in space but averaged over each section, thus yielding

information averaged over space. The periphery was defined as

the region approximately within 200 mm of the tumor boundary.

Figure S1 shows an example of this calibration process for

proliferation at the periphery and middle from two histology

sections in the center of the tumor (Section S3). Taking an average

Figure 5. Lymphoma tumor cell viability. Viability per area was
measured along the five sets (S1 through S5) of histology sections for Em-
myc Arf-/- (black) and Em-myc p53-/- (gray) tumors. All error bars represent
standard deviation from at least n = 3 measurements in each section.
Asterisks show level of statistical significance determined by Student’s t-
test with a= 0.05 (one asterisk, p,0.05; two asterisks, p,0.01).
doi:10.1371/journal.pcbi.1003008.g005

Computational/Experimental Lymphoma Growth Model
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proliferation cycle of 20 hours that we observed for the lymphoma

cells in culture, the proliferation calculation in units of day21 is

lM*,n. = [(stained/(stained+unstained))/20 hours/prolif.] * 24

hours/day. The average nutrient ,n. indicates that this

proliferation rate depends on the model diffusion of cell substrates

such as glucose and oxygen in the 3D space (Eq. 2). Similarly,

since the apoptosis cycle was detectable up to 5 hours, the

apoptosis calculation in units of day21 is lA = [(stained/(staine-

d+unstained))/5 hours/apoptosis] * 24 hours/day.

We calculate the average nutrient from the blood vessel density

by assuming a uniform nutrient delivery rate from the blood to the

tissue adjacent to the vessels (Eq. 2). Estimating blood vessel area

versus surrounding tissue provides a measure of the magnitude of

cell substrates transferred into the tumor. Thus, we calculate the

fraction of cells supported per endothelial cell in a unit volume to

be (number unstained/(number stained+unstained))3/2. When the

viable cell fraction in the simulations matches what is directly

observed from microscopy, this implies that the vascular and

nutrient distributions have been correctly represented in the model

(Figure 3A, middle). Similarly, we calculate the hypoxic cell

fraction per unit volume as (number stained/(number stained+un-

stained))3/2.

Modeling of the lymph node
The node is represented by the computational model initially as

a spherical capsule in 3D with a membrane boundary separating it

from the surrounding tissue (Figure 4) (see Text S1). Lymphoma

cells are assumed to enter the lymph node through the afferent

lymph vessels. As they accumulate in the node during tumor

progression in time, they compete for cell substrates such as

oxygen and nutrients with the normal lymphocytes. These

substrates are assumed to diffuse radially outward toward the

node periphery from the pre-existing vasculature, situated mainly

in the core of the node (see Figure 4A and Figure 3B, left, at

the intersection of three large blood vessels). Once a tumor has

begun to form in the core of the node, this diffusion process

presents a transport barrier for oxygen and nutrients to the

lymphoma cells incoming through the afferent vessels into the

node.

Assessment of the model
We investigate the effect of initially available oxygen and cell

substrates needed for cell proliferation, since lymphoma growth is

hypothesized to depend on access to these through the vasculature.

Preliminary calculations suggested that the initially available

Figure 6. Lymphoma tumor characteristics. Histological measurements are shown Em-myc Arf-/- (black) and Em-myc p53-/- (gray) tumors along the
five sets of sections (S1 through S5) of the lymphoma: (A) Endothelial cells per area; (B) hypoxic cells per area; (C) proliferating cells per area; (D) apoptotic
cells per area. Sections S1 and S5 are at the tumor top and bottom, respectively, while the other sections are in the interior with S3 being in the middle.
Dashes in panels (A) and (C) indicate that no data was obtained; in panel (C), no proliferation was detected for Em-myc p53-/- cells in sets S4 and S5, and
none for Em-myc Arf-/- in set S5, probably due to sample defects. All error bars represent standard deviation from at least n = 3 measurements in each
section; asterisk indicates statistical significance (p,0.05) determined by Student’s t-test with a= 0.05. The data shows that for Em-myc p53-/- there is
higher vascularization in the center, higher hypoxic density on the periphery, and higher overall apoptotic density compared to Em-myc Arf-/-.
doi:10.1371/journal.pcbi.1003008.g006
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nutrient level has a significant effect on the growth phase of the

tumor but not on its terminal size, which according to a theoretical

analysis of the model (Text S1) depends mainly on the ratio of

apoptosis to proliferation [51]. A further investigation revealed

that the initial guess of parameter values results in a mismatch

between the ratio of hypoxic cells and the average apoptosis rate:

where the range of hypoxic ratio matches the experiments, the

apoptosis rate range in the model is too low.

Accordingly, we calibrated the cell necrosis rate so that the key

parameter values remain invariant when the initial nutrient is set

to a threshold of 0.5. With this set of parameters, a necrosis rate

from 5 to 7 (non-dimensional units) would satisfy the experimen-

tally observed ranges of both the hypoxic fractions and the average

apoptosis rate (Figure S2A–B). We then varied the initial nutrient

threshold while maintaining the necrosis rate invariant to confirm

that the fraction of hypoxic cells and average apoptosis rate would

remain within the experimentally observed range of values

(Figure S2C–D). This calibration suggests that the initially

available nutrient still affects the growth phase of lymphoma. In

this model, the lymphoma tumor and the lymph node greatly

outgrow the original lymph node size, which we consistently

observed in vivo in addition to the distortion of the lymph node

geometry (we are currently implementing the Diffuse Domain

Method [52] to better represent this geometry).

Prediction of lymphoma growth
After using the IHC data to perform a cell-scale calibration of

the lymphoma model, we verify the simulated tissue-scale

lymphoma size from in vivo macroscopic observations and

intravital imaging at the tissue scale. Recently, it has been

discovered with bioluminescence imaging by Gambhir and co-

workers that lymphoma cells coming from the spleen and bone

marrow seed the inguinal lymph node around Day 9 in vivo [53].

Using this seeding as the initial condition for the simulations, the

model predicts the tumor diameter to be ,5.260.5 mm by Day

21 (Figure 7). This figure also shows the gross tumor size from

our caliper measurements in time, indicating that the model-

predicted tumor diameter for the maximum possible value of

initial nutrient falls within the range of the measurements in vivo

(the experiments show that there is no statistical difference in the

tumor growth between the two cell types, Figure 3B, right). The

model simulations are based on an oxygen diffusion distance from

the vessels estimated to be directly proportional to the distance at

which hypoxia is detected away from blood vessels, measured

experimentally from the HIF-1a staining to be 80620 mm. The

variation in this measurement leads to the variation in the

simulated diameter. If the lymphoma is begun at sites within the

lymph node other than the center (Figure 4), similar growth

curves are computationally obtained as the whole node volume is

eventually taken over by the proliferating tumor cells (results not

shown). We note that since there is a distributed source of vessels

in the tumor, the proliferation is relatively weakly sensitive to

additional outside sources.

The tumor growth from the model calibrated from the cell-scale

can be validated through theoretical analysis of the model based

on previous mathematical and computational work [51,54–56]

(see Text S1). Assuming that the lymph node geometry is

approximated by a 3D sphere, the model can be used to predict

Figure 7. Prediction of lymphoma growth based on the calibrated model parameters. Simulated mean tumor diameter (solid red line)
bounded by variation in the measured oxygen diffusion distance (dashed red lines) falls within the range of values measured for the tumor growth
observed in vivo (denoted by the triangles and squares with vertical error bars). Note that the simulated growth is the same for both Em-myc Arf-/- and
Em-myc p53-/- tumors.
doi:10.1371/journal.pcbi.1003008.g007
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the tumor radius in time based on the ratio A of the rates of

apoptosis to proliferation calculated from the experimental IHC

data. The average ratio A =lA/lM ,0.4 for both drug-sensitive

and drug-resistant cells. In comparison with the simulations based

on the cell-scale calibration, this analysis predicts that the tumor

would reach a diameter of ,6 mm. Both the theoretical analysis

and the tumor growth obtained through the simulations agree with

the similar diameters observed experimentally in vivo (,5 to 6 mm)

(Figure 7).

Simulation of diffusion barriers within the lymph node
tumor

In the model, simulations of the vasculature were qualitatively

compared to independent intravital microscopy observations in vivo

of a Em-myc p53-/- tumor in the same animal over time (Figure 8).

The density of simulated viable tumor tissue (Figure 3A, right) as

a function of the vascularization at day 21 qualitatively matches

the density of the tissue observed experimentally (fraction of

simulated viable cells in the 2D plane, .90% per mm2 in inset in

Figure 8, vs. the average fraction of viable cells measured from

H&E staining, 87%66% per mm2), indicating that the overall

vasculature function was modeled properly. The density of

simulated endothelial tissue is also highest in the tumor core, as

observed from histology. The increase in the lymphoma cell

population disturbs the homogeneous distribution of cell substrates

(such as oxygen and cell nutrients), leading to diffusion gradients of

these substances that in turn affect the lymphoma cell viability. If

the cell viability is established heterogeneously within the tumor,

e.g., as observed experimentally in IHC with the Em-myc Arf-/-

cells near the tumor periphery, the model predicts that the

diffusion gradients would not be as pronounced. If the cell viability

is higher near the center of the tumor, which is observed in IHC

with the Em-myc p53-/- cells (Figure 5), then the gradients are

predicted to be steeper and more uniform [28].

Discussion

We integrate in vivo lymphoma data with computational

modeling to develop a basic model of Non-Hodgkin’s lymphoma.

Through this work we seek a deeper quantitative understanding of

the dynamics of lymphoma growth in the inguinal lymph node

Figure 8. Vasculature and angiogenesis in the lymph node tumor. Observations in living mice using intravital microscopy (A, B, C: red –
functional blood vessels; shown for Em-myc p53-/- tumor) provide information to qualitatively compare the vessel formation (D, E, F: red – highest
flow; white – lowest; dots indicate vessel points of origin from pre-existing vasculature (not shown)) in the computational model (calibrated from
other data, see Text S1). The modeling of diffusion of cell substrates (e.g., oxygen and cell nutrients) within the tumor enables prediction of the
spatial distribution of lymphoma cells (inset, shown for one vessel cross-section; brown: highest concentration of cells; white: lowest concentration of
cells) as their viability is modulated by access to the oxygen and nutrients diffusing from the vasculature into the surrounding tissue (Eq. 2).
doi:10.1371/journal.pcbi.1003008.g008
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and associated physical transport barriers to effective treatment.

We obtain histology data by very fine sectioning across whole

lymph node tumors, thus providing detailed three-dimensional

lymphoma information. We develop a computational model that is

calibrated from these cell-scale data and show that the model can

independently predict the tissue-scale tumor size observed in vivo

without fitting to the data. We further show that this approach can

shed insight into the tumor progression within the node,

particularly regarding the physical reasons why some tumors

might be resistant to drug treatment – a critical consideration

when attempting to quantify and predict the treatment response.

We envision that the modeling and functional relationships

derived in this study could contribute with further development

to patient-specific predictors of lymphoma growth and drug

response.

Although the number of mice used for the experimental in vivo

validation is limited, the model results are consistent with previous

work. For example, a well-studied mechanism of physiological

resistance is the dependence of cancer cell sensitivity to many

chemotherapeutic agents on the proliferative state of the cell [28].

This physical mechanism is likely important in the difference in

drug-sensitivity between the tumors formed from the two cell lines

and will be explored in further studies. We found that the Em-myc

Arf-/- cells tend to congregate at the periphery of the tumor

(Figure 5), even though there are vessels in the interior of the

tumor. This suggests the hypothesis that the more drug-sensitive

Em-myc Arf-/- cells maintain better oxygenation at the expense of

higher drug sensitivity by growing less compactly in the interior of

the tumor – where there would be stronger competition for oxygen

and cell nutrients – whereas the Em-myc p53-/- lymphoma cells

may enhance their survival by closer packing in the core of the

tumor. Cell packing density may present a barrier to effective drug

penetration [57], which we have also modeled previously [28].

Closer packing could further increase the number of cells that

would be quiescent due to depletion of oxygen and nutrients, as we

specify in the model (Materials and Methods) and as we have

simulated in previous work [28]. However, the proportion of

chemoresistance inherent with Em-myc p53-/- that can be

attributed to resistance at the genetic level compared to what

can be attributed to suboptimal drug delivery and quiescence is

unclear. In follow-up work we plan to measure drug amounts near

various cells in order to begin answering this question, and to

perform sensitivity analyses of the IC50 of each cell line with the

computational model. This would provide a (model-generated)

measure of how much of an effect suboptimal delivery could be

attributed to resistance as compared to genetic effects (as measured

by IC50).

Lymphoma cells are known to retain cell-cell adhesion, with

strength associated with the lymphoma’s originating cell type (B-

or T-cell) [58]. Mechanisms of cell packing related to drug

resistance may include weaker cell adhesion in Em-myc Arf-/- than

in Em-myc p53-/- leading to higher cell density as well as a denser

extra-cellular matrix in the latter [57]. Loss of ARF has been

linked to increased cancer cell migration and invasion, and hence

weaker cell-cell adhesion [59], associated with the binding of ARF

to the transcriptional corepressor CtBP2 and promoting CtBP2

degradation [60–62].

Perhaps surprisingly, the experimental data indicate minimal

presence of hypoxia within the tumor (Figure 6B). This may be

due to the fact that lymphoma cells may associate with other cells

including stromal cells in the tumor, and the consequent cytokine

stimulation (e.g., IL-7) may also trigger proliferation [63]. We note

that the oxygen diffusion length estimate is subject to variation, as

calculated to be directly proportional to the hypoxic distances

observed from the IHC; this may be improved by directly

measuring the diffusing substances, e.g., oxygen. The simulated

elastic tumor boundary may also introduce some variation into the

size calculation. Nevertheless, even taking these variations into

account, the model-calculated average ratio of apoptosis to

proliferation, established from cell-scale measurements, implies

that the tumor sizes fall within the range of the sizes estimated

from the diameter measured with calipers in vivo. The hypothesis

we test with the model by successful comparison to the

experimental data is that the growth and eventual slowdown of

these tumors is the balance of proliferation and death, which we

have also previously observed for ductal carcinoma in situ [38].

Experimental evidence using bioluminescence imaging of living

mice [53] demonstrates that lymphoma cells seed the tumor in the

inguinal lymph node from other sites (e.g., spleen and bone

marrow) in the mouse body at earlier times during the tumor

growth. The model results are robust, however, because the tumor

size by Day 21 predicted by the theory is independent of the

earlier times; any influx of cells only provides an initial (transient)

condition.

The staining also shows that apoptosis seems highest for drug-

sensitive cells at the periphery of the tumor (Sections S1 and S5)

compared to the center (Section S3) (both p-values = 0.04 using a

Student’s t-test with a= 0.05), and for drug-resistant cells it is

highest in the more central regions (Figure 6). In accordance with

biological observations [64,65,41], the model hypothesizes that

increased hypoxia may lead to higher cell quiescence and hence

drug resistance. In the experiments, angiogenesis is higher in the

central regions, and is more pronounced for drug-resistant cells,

suggesting that these cells are in a more angiogenic environment as

a result of ongoing hypoxic stimulus. Higher tumor cell density

around blood vessels suggests a functional relationship of cell

viability as a function of nutrients, as we have implemented in the

model (see Materials and Methods). However, apoptosis may

not necessarily be driven solely by hypoxia, since lymphoma cells

are known to have a cellular turnover rate that is on the order of

days [66,67]. We further note that angiogenesis is not necessarily

triggered only by hypoxia. Lymphoma as well as stromal cells

(such as tumor associated macrophages) may produce factors

promoting angiogenesis (e.g., vascular endothelial growth factor or

VEGF) under otherwise normoxic conditions.

The present work calibrates a computational model of

lymphoma with experimental data from drug-sensitive and drug-

resistant tumors. This data was derived from detailed IHC analysis

of whole tumors, and validation of the model was performed via

intravital microscopy measurements. The results suggest that

differences in spatial localization of cells and vasculature, as well as

in the transport phenomena in the tumor microenvironment may

play a nontrivial role in the tumor behavior. This suggests that the

genetic differences (Em-myc Arf-/- and Em-myc p53-/-) may provide

a substantial compensation mechanism for these phenomena at

the tissue scale in addition to the molecular as it relates to their

drug resistance. We plan to verify this hypothesis in the future by

assessing model predictions for therapeutic response of drug-

sensitive and drug-resistant tumors in terms of cellular parameters

such as proliferation, apoptosis, and hypoxia via both IHC and

intravital microscopy.

Supporting Information

Figure S1 Example of calibration process of model
parameters from the Ki-67 IHC data. The proliferation

parameter is calculated for both Em-myc Arf-/- (drug-sensitive) and

Em-myc p53-/- (drug-resistant) lymphoma cells. This sample (from
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Set S3 in the center of the tumor) shows measurements obtained at

the edge (periphery) and middle (center) of the section. Positive

staining shown in the panels A–D is converted to red and negative

staining to green in panels E–H to obtain a quantitative measure

of proliferative activity, as calculated in the text. Results are shown

in bottom right insets in panels E–H.

(TIF)

Figure S2 Determination of optimal necrotic rate
threshold for cell viability. The necrosis rate is varied while

the initial nutrient threshold is fixed at 0.5 to determine a range for

which both the hypoxic fractions (A) and average apoptosis rate (B)

match what is observed experimentally, finding that this range is

from 5 to 7 (non-dimensionalized). We then varied the initial

nutrient threshold while maintaining the necrosis rate invariant to

confirm that the fraction of hypoxic cells (C) and average apoptosis

rate (D) would remain within the experimentally observed ranges.

(TIF)

Table S1 Range of key parameter values and corre-
sponding baseline values for the computational model.

(M) values were calculated from the cell-scale immunohistochem-

istry data, (C) values were calibrated using these data, and (ND)

are non-dimensionalized values.

(TIF)

Text S1 Supplemental material.

(DOC)

Acknowledgments

We are grateful to John Lowengrub (Mathematics, UCI) for useful

discussions and advice, and to Fang Jin (Pathology, UNM) for

enhancements to the tumor angiogenesis model. We wish to thank the

reviewers for their valuable contribution.

Author Contributions

Conceived and designed the experiments: HBF BRS YLC KI SSG VC.

Performed the experiments: BRS YLC KI. Analyzed the data: HBF BRS

KI AMR. Contributed reagents/materials/analysis tools: SSG VC. Wrote

the paper: HBF BRS YLC KI SSG VC.

References

1. Mahadevan D, Fisher RI (2011) Novel therapeutics for aggressive non-

Hodgkin’s lymphoma. J Clin Oncol 29: 1876–1884.

2. Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, et al. (2010) Nonlinear

modelling of cancer: bridging the gap between cells and tumours. Nonlinearity
23: R1–R9.

3. Frieboes HB, Chaplain MA, Thompson AM, Bearer EL, Lowengrub JS, et al.

(2011) Physical oncology: a bench-to-bedside quantitative and predictive
approach. Cancer Res 71: 298–302.

4. Byrne HM (2010) Dissecting cancer through mathematics: from the cell to the
animal model. Nat Rev Cancer 10: 221–230.

5. Astanin S, Preziosi L (2007) Multiphase Models of Tumour Growth. In: Bellomo

N, Chaplain M, DeAngelis E, editors. Selected Topics on Cancer Modelling:
Genesis - Evolution - Immune Competition – Therapy. Boston: Birkhäuser. pp.
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16. Drasdo D, Höhme S (2007) On the role of physics in the growth and pattern of

multicellular systems: What we learn from individual-cell based models? J Stat
Phys 128: 287–345.

17. Thorne BC, Bailey AM, Peirce SM (2007) Combining experiments with multi-

cell agent-based modeling to study biological tissue patterning. Briefings

Bioinformatics 8: 245–257.

18. AndersonARA, Chaplain M, Rejniak K, Fozard J (2008) Single-cell based
models in biology and medicine. Math Med Biol 25: 185–186.

19. Quaranta V, Rejniak K, Gerlee P, Anderson ARA (2008) Invasion emerges from

cancer cell adaptation to competitive microenvironments: quantitative predic-

tions from multiscale mathematical models. Sem Cancer Biol 18: 338–348.

20. Zhang L, Wang Z, Sagotsky JA, Deisboeck TS (2009) Multiscale agent-based
cancer modeling. J Math Biol 58:545–559.

21. Kim Y, Stolarska MA, Othmer HG (2007) A hybrid model for tumor spheroid

growth in vitro: I. Theoretical development and early results. Math Methods

Appl Sci 17: 1773–1798.

22. Stolarska MA, Kim Y, Othmer HG (2009) Multiscale models of cell and tissue
dynamics. Phil Trans R Soc A 367: 3525–3553.

23. Bearer EL, Lowengrub JS, Frieboes HB, Chuang YL, Jin F, et al. (2009)

Multiparameter computational modeling of tumor invasion. Cancer Res 69:
4493–4501.

24. Ribba B, Marron K, Agur Z, Alarcón T, Maini PK (2005) A mathematical

model of Doxorubicin treatment efficacy for non-Hodgkin’s lymphoma:
investigation of the current protocol through theoretical modelling results. Bull

Math Biol 67: 79–99.

25. Alarcón T, Marches R, Page KM (2006) Mathematical models of the fate of

lymphoma B cells after antigen receptor ligation with specific antibodies. J Theor

Biol 240: 54–71.

26. Meyer-Hermann ME. (2007) Are T cells at the origin of B cell lymphomas?

J Theor Biol 244: 656–669.

27. Evens AM, Schumacker PT, Helenowski IB, Singh AT, Dokic D, et al. (2008)
Hypoxia inducible factor-alpha activation in lymphoma and relationship to the

thioredoxin family. Br J Haematol 141: 676–680.

28. Frieboes HB, Edgerton ME, Fruehauf JP, Rose FR, Worrall LK, et al. (2009)
Prediction of drug response in breast cancer using integrative experimental/

computational modeling. Cancer Res 69: 4484–4492.

29. Sinek JP, Sanga S, Zheng X, Frieboes HB, Ferrari M, et al. (2009) Predicting
drug pharmacokinetics and effect in vascularized tumors using computer

simulation. J Math Biol 58: 485–510.

30. Frieboes HB, Lowengrub JS, Wise S, Zheng X, Macklin P, et al. (2007) Computer
simulation of glioma growth and morphology. NeuroImage 37 Suppl 1: S59–70.

31. Wise SM, Lowengrub J, Frieboes HB, Cristini V (2008) Three-dimensional

multispecies nonlinear tumor growth–I Model and numerical method. J Theor
Biol 253: 524–543.

32. Frieboes HB, Jin F, Chuang YL, Wise SM, Lowengrub JS, et al. (2010) Three-

dimensional multispecies tumor growth-II: Tumor invasion and angiogenesis.
J Theor Biol 264: 1254–1278.
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