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Abstract

Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the
archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate
model organism, since both its protein-protein interaction network (interactome) and stress response at the gene
expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during
stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from
the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a
significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the
weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock
response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of
modules after heat shock. The observed changes resemble to a ‘stratus-cumulus’ type transition of the interactome
structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds,
whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed
that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be
rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social
networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a
partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general,
system-level adaptation mechanism to environmental changes.
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Introduction

In the last decade due to the advance of high-throughput

technologies system level inquiries became widespread. The

network approach emerged as a versatile tool to assess the

background of the regulation and changes of cellular functions.

Analysis of protein-protein interaction (PPI) networks gives

particularly rich system level information to understand the

functional organization of living cells [1–6]. Determination of

network modules (i.e. network groups, or communities) became a

focal point of the analysis of network topology leading to more

than a hundred independent methods to solve this challenging

problem. In protein-protein interaction networks tight modules

are corresponding to large protein complexes. However, more

extensive, pervasively overlapping modules detected by recent

methods, including ours, revealed a deeper insight to the multi-

functionality of cellular proteins [7–9]. Despite of the widespread

studies on network modules, the overlaps of interactome modules

have not been studied yet in detail.

Network dynamics received an increasing attention in recent

years. The stress response, inducing a genome-wide up- and down-

regulation of gene expression after an abrupt environmental

stimulus, is a particularly good model of the reorganization of

cellular networks, where the observed changes have a paramount

importance in survival, adaptation and evolution [10–13]. Yeast

is an appropriate model organism for studying the system-level

changes after stress, since we have an extensive knowledge on the

organization of the yeast PPI network (interactome) [14–17], and

stress-induced changes in the yeast gene expression pattern have

also been studied in detail [18,19]. Despite of major interest in

key biological examples of network dynamics, changes of

protein-protein interaction networks in stress have not been

analyzed yet.

There are two main ways to integrate gene expression data with

interactome, identifying active subnetworks [20–22] or analysing

the whole interactome under genomic responses [15,16,23]. In the

current study we used the latter approach and assessed the changes

of the yeast interactome after the archetype of stress, heat shock.

Upon heat shock the yeast PPI network became a much ‘larger

world’: heat shock induced a close to 5-fold increase in the

weighted diameter and a significant, but partial disintegration of

the modular structure of the yeast interactome. The decrease of

inter-modular protein-protein contacts may enable a ‘post heat

shock’ re-integration of the yeast protein-protein interaction
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network communities, where the slightly different inter-modular

contacts may provide a cost-efficient adaptation response to the

changed environment.

Results

Global changes of the yeast interactome topology in
heat shock

To investigate the changes of the yeast interactome topology in

heat shock, a well-characterized form of stress, we calculated the

weight of each protein-protein interaction both in resting state and

after heat shock. We used the physical protein-protein interaction

subset of the BioGRID database [24], combining the benefits of

this comprehensive, literature curated database with the more

reliable, direct relationship of physical interactions. (We also

extended our studies to a high-confidence PPI dataset, and found

similar results as described in Materials and Methods.) Link

weights of both basal state and heat shocked yeast cells were

approximated using mRNA levels, since large-scale, complete

datasets for protein abundances are currently missing (see

Materials and Methods). We chose heat shock, as the form of

stress we studied in detail, since it is considered to be a ‘severe

stress’, where a good correlation between the transcriptome and

the translatome has been demonstrated [25]. Interaction weights

of the yeast PPI network were generated by averaging of the

mRNA abundances of the two interacting proteins. Baseline and

15 min, 37uC heat shocked mRNA levels were obtained from the

Holstege- [26] and Gasch-datasets [19], respectively, as described

in the Materials and Methods section in detail.

The distribution of interaction weights showed a significant

decrease upon heat shock (Figure S1 of Text S1; Wilcoxon paired

test, p,2.2*10216). To interpret this change we note, that the PPI

networks of ‘resting’ and heat shocked yeast cells had the same links.

However, the two interactomes had a largely different weight

structure due to the differences in mRNA expression pattern upon

heat shock. Table 1 shows a few main attributes of the interactome

topology of unstressed and heat shocked yeast cells. In agreement

with the significant change in weight distribution, the median

weight of interactions had a 14% decrease in heat shock yeast cells.

Interestingly, in unstressed yeast cells larger mRNA levels were

predominantly associated with larger unweighted degrees, while in

heat shocked yeast cells larger mRNA levels were predominantly

associated with lower unweighted degrees. Thus, heat shock induces

a shift of connection weights from hub-like proteins to non-hubs (see

Figure S2 of Text S1), which may indicate a partial uncoupling of

the local segments of yeast interactome upon heat shock.

The most remarkable change was the close to 5-fold (491%)

increase of weighted diameter (Table 1). This was a rather

suprising finding, which reflected that the interactome became a

much ‘larger world’ after heat shock. The increase of weighted

diameter was accompanied by shift in the distribution of weighted

shortest path lengths (based on Dijkstra’s algorithm [27]) towards

longer paths, causing a significant difference (Wilcoxon paired test,

p,2.2*10216). Similarly to these findings, the average weighted

shortest path length also showed a large increase (47.1 in

unstressed versus 263.8 in heat shocked yeast cells). The

distribution of ‘effective weighted degrees’ showed a scale-free

like pattern, and a significant shift towards lower degrees after heat

shock (Figure S3 of Text S1; Wilcoxon paired test, p,2.2*10216).

We note, that the ‘effective weighted degree’ captures the total

number of fractional weighted connections of a node to another

(see Materials and Methods and [8] for details). The shift towards

lower weighted degrees was reflected by the decrease in both the

median weighted degree and the number of hubs (14% and 22%

decrease, respectively; Table 1).

The decrease of median interaction weights, median weighted

degree and number of hubs indicated that heat shocked yeast cells

developed a generally less intensive, ‘resource-sparing’ interac-

tome. The ‘resource-sparing’ character is in agreement with the

close to 5-fold increase of weighted diameter showing that the

Author Summary

In the last two decades our knowledge on stress-induced
changes has been expanded rapidly. As a part of this work
a large number of key proteins and biological processes of
cellular adaptation to stress have been uncovered.
However, we know relatively little on the systems level
changes of the cell in stress. In our study we used the
network approach to study the changes of the yeast
protein-protein interaction network (interactome) in the
archetype of stress, heat shock. The major finding of our
study is that heat shock induced a marked decrease in the
inter-community connections of the yeast interactome.
The observed changes resembled to a ‘stratus-cumulus’
type transition of the interactome structure, since the
unstressed yeast interactome had a globally connected
organization, similar to that of stratus clouds, whereas the
heat shocked interactome had a multifocal organization,
similar to that of cumulus clouds. Our results indicated that
heat shock induces a partial disintegration of the global
protein-protein network structure of yeast cells. This
change may be rather general occurring at the initial
phase of crises in many complex systems, such as proteins
in physical stretch, ecosystems in abrupt environmental
changes or social networks in economic crisis.

Table 1. Comparison of the main attributes of protein-protein interaction networks (interactomes) of unstressed and heat
shocked yeast cells.

Median weighta Weighted diameterb Median degreea,c Number of hubsd

Interactome of unstressed yeast cells 1.70 89.2 5.78 54

Interactome of heat shocked yeast cells 1.47 437.6 4.99 42

aWe used median values, since distributions were not considered normal distributions. The average values of distributions showed similar results (data not shown).
bWeighted diameters were calculated by the igraph library as a Python extension module (version 0.5.4, http://igraph.sourceforge.net/) using Dijkstra’s algoritm [27].
cDegree denotes the effective degree of a yeast interactome node, which was calculated as the effective number of weighted interactions of the respective node (see
Materials and Methods for more details).

dA hub was defined as a node having more than 92 effective weighted degree (this was the effective weighted degree threshold of the top 1% of nodes having a
maximal effective weighted degree in the interactome of non-stressed yeast cells).

doi:10.1371/journal.pcbi.1002187.t001

Stress-Induced Disintegration of Yeast Interactome
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yeast interactome preferably ‘spares’ the shortcuts, and becomes

much less integrated upon stress.

Visual inspection of stress-induced changes of the entire yeast

interactome is of limited value, since the multitude of interactions

makes the comparison difficult. However, there are comprehen-

sible subnetworks allowing an easy, pair-wise assessment. We show

the subnetworks of the strongest and weakest links on Figure 1.

The subnetwork of strongest links (cf. Figure 1A and Figure 1B) of

unstressed yeast cells contained a highly connected ribosomal

protein complex (see Figure 1A, inset) and an additional center of

carbohydrate metabolism (see Figure 1A, right bottom). Both

centers are crucial for the fast cell divisions characteristic to

unstressed yeast cells. Please note that the number of links is the

same in both panels. Therefore, the link-density of the two major

centers is much larger than the apparent density shown on

Figure 1A. Upon heat shock several locally dense regions

appeared, which were centered on heat-shock proteins (see circles

on Figure 1B). This structure showed a re-organization of the

interactome around proteins crucial in cell survival and recovery

including dehydrogenases, proteins of glucose metabolism, a key

player of protein degradation (polyubiquitin), as well as the

molecular chaperones, Hsp70 and Hsp104 as detailed in the

legend of Figure 1. The subnetwork of network-integrating

weakest links [1–3,6,28] had a uniform link-density in basal state

(Figure 1C). After heat shock a very densely connected twin-centre

of nucleolar proteins emerged (see the right side of Figure 1D)

responsible for rRNA processing and ribosome biogenesis (,80

and ,90% of genes by GO term, respectively; p,10230 in both

cases by hypergeometric test). This is in agreement with the key

role of nucleolar protein complexes in cell survival [29]. In these

representations the unstressed yeast interactome was closer to an

organization resembling to the flat, dense, dark and low-lying

stratus clouds, whereas the interactome after heat shock was

closer to a multifocal structure, resembling to puffy and white

cumulonimbus clouds. In former studies ‘stratus’ and ‘cumulus’

forms were described as alternative structures of the general form

of yeast interactome [30]. Stratus- and cumulus-type organiza-

tions may be differing topology classes in many types of networks,

such as in protein structure networks as we proposed recently

[31].

In summary, the general network parameters suggested a partial

disintegration of the interactome of heat shocked yeast cells

represented by the large increase in weighted diameter (Table 1),

and by the emergence of a cumulus-like global organization of the

subnetworks of strongest and weakest links (Figure 1). Interestingly,

metabolic networks of the symbiont, Buchnera aphidicola [32] and

the free-living bacterium, Escherichia coli (Figure S4 of Text S1)

displayed similar patterns like the interactomes of unstressed and

heat shocked yeast cells. Metabolic pathways of B. aphidicola

(Figure S4A of Text S1) showed a rather compact organization

similar to a ‘stratus-type’ structure, whereas E. coli (Figure S4B of

Text S1) had a more multifocal structure similar to a ‘cumulus-

type’ network. The latter, cumulus-like structure may show that

adaptation to a variable environment resulted in a multifocal

pathway structure of E. coli, while the stratus-like structure of the

B. aphidicola metabolism may be a consequence of a more stable

environment. These assumptions are supported by the larger

modularity of metabolic networks in organisms living in variable

environment than that evolved under more constant conditions

[33].

Figure 1. Changes of yeast interactome subnetworks after heat shock. Unstressed (panels A and C; blue) and stressed (15 min heat shock at
37uC, panels B and D; red) BioGRID yeast protein-protein interaction networks were created as described in Materials and Methods. Their subnetworks
were derived from links having their interaction weights in the top (strongest links), or bottom (weakest links) 4% of all interactions. Interaction
weights of the top or bottom 1% of all interaction weights and nodes having at least one of these ‘top 1%’ interactions were labeled with darker
colors. The giant components of these subnetworks were visualized using the spring-embedded layout of Cytoscape [70]. Panels A and B. Strongest
interactions of unstressed (A) and heat shocked (B) yeast interactome. The inset of Panel A shows the structure of the highly-connected ribosomal
protein complex in more detail. Circles of Panel B highlight the following heat shock proteins in clockwise order starting from middle left: Hxt7, Ubi4,
Tsl1, Ssa2, Hsp104, Adh1, Tdh3 and Hxk1. Panels C and D. Weakest interactions of unstressed (C) and heat shocked (D) yeast interactome.
doi:10.1371/journal.pcbi.1002187.g001

Stress-Induced Disintegration of Yeast Interactome
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Changes of the modular organization of the yeast
interactome in heat shock

After our first results suggesting a partial disintegration of the

yeast interactome in heat shock exemplified by the increased

network weighted diameter and the emergence of a multifocal-like

structure of the subnetworks of strongest and weakest links, we

examined the heat shock-induced changes of yeast PPI network

modules. For the determination of yeast interactome modules we

used our recently developed ModuLand framework [8], since it

detects pervasive overlaps like other recent methods [34], and

therefore gives a more detailed description of PPI network

modules than other modularization techniques [8,34]. Moreover,

the ModuLand method introduces community centrality, which is

a measure of the overall influence of the whole network to one of

its nodes or links. Community centrality enables an easy

discrimination of module cores, containing the most central

proteins of interactome modules, and makes the functional

annotation of PPI network modules rather easy [8]. These

modular cores are the hill-tops of the 3D representation of the

interactome on Figure 2. On Figure 2 the horizontal plane

corresponds to a conventional 2D network layout of the yeast

interactome, while the vertical scale shows the community

centrality value of yeast proteins. Functional annotations of the

most central interactome modules are listed in Table S1 of Text S1

and Table S2 of Text S1. In the unstressed condition (Figure 2A)

the central position was occupied by two ribosomal modules

showing the overwhelming influence of protein synthesis on yeast

cellular functions in exponentially growing yeast cells. Though

this module pair was overlapping, their cores were different.

Moreover, upon heat shock the two ribosomal modules showed

different alterations. The third central module contained proteins

of carbohydrate metabolism reflecting the importance of energy

supply in yeast growth and proliferation. The additional modules

recovered several modules identified before (e.g. the proteasome,

ribosome biogenesis and the nuclear pore complex, see [8]). The

larger functional diversity of the modules here than that obtained

in our preliminary investigations using a much smaller, un-

weighted dataset [8] showed the advantages of using a large

dataset and interaction weights.

In contrast with the unstressed situation, the ribosomal modules

had a much smaller community centrality upon heat shock

(Figure 2B), which is in agreement with the inhibition of

translation after heat shock. The carbohydrate metabolism module

kept its central position (Table S1 of Text S1 and Table S2 of Text

S1). A novel central module emerged containing proteins involved

in the regulation of autophagy, a key process in cellular survival.

Several other interactome communities also increased their

community centrality, such as modules of heat shock proteins

containing several major molecular chaperones and their co-

chaperones (e.g.: Sti1, Hsp70, Hsp82 and Hsp104), which all play

a key role in sequestering and refolding misfolded proteins after

heat shock. Another module of growing centrality was the

trehalose synthase module providing an important chemical

chaperone for yeast survival (Table S2 of Text S1). Finally, a

module of negative regulators of cellular processes (such as that of

Bhm1 and Bhm2) also gained centrality (Table S2 of Text S1),

exemplifying the energy-saving efforts of the yeast cell in heat

shock. The more multifocal modular structure of the yeast cell

after heat shock (Figure 2B) compared to the more centralized,

compact modular structure of resting cells (Figure 2A) is in

agreement with the partial disintegration of the yeast interactome

suggested by the increasing weighted diameter (Table 1) and

changes of subnetworks containing the strongest and weakest links

(Figure 1).

Partial decoupling of interactome modules in heat shock
To analyze the changes of yeast interactome modules after heat

shock further, we compared the modular distribution of proteins in

unstressed and heat shocked yeast cells. Figure 3A shows the

cumulative distribution of the ‘effective number of modules’. The

‘effective number of modules’ measure efficiently captures the

cumulative number of all modular fractions, where a protein

belongs to (see Materials and Methods and [8] for details). After

heat shock yeast proteins belonged to a significantly fewer number

of interactome modules (Wilcoxon paired test, p,2.2*10216). In

other words this means that modules of the yeast interactome had

a smaller overlap after heat shock than in the unstressed state,

since there were less proteins belonging to multiple modules, i.e.

modular overlaps.

Assessing the modular structure one level higher, where

modules were treated as elements of a coarse-grained network

[8], we compared the effective degree of modules of unstressed and

heat shocked yeast cells (Figure 3B). The effective degree captures

the total number of fractional weighted connections of a module to

another (for details, see Materials and Methods). Upon heat shock

interactome modules were connected to significantly smaller

number of other modules (Mann-Whitney U test, p = 0.02299).

Since a link between modules is related to the overlap between

them ([8], for details see Materials and Methods), the decrease of

inter-modular contacts upon heat shock reflects once again a

smaller overlap between the interactome communities.

The decrease of modular overlap was similar in other stress

conditions (e.g. in oxidative stress, reductive stress, osmotic stress,

nutrient limitation, see Figure S5 of Text S1), although the het-

erogeneity of these conditions did not allow to create a coherent

picture in every details. The partial decoupling of the interactome

modules of stressed yeast cells (Figure 3) is in agreement with the

increase of weighted network diameter (Table 1) and with the

appearance of a larger multifocality in both the subnetworks of

strongest and weakest links (Figure 1), as well as in the 3D image of

modular structure (Figure 2). All these findings show a partial

disintegration of the yeast interactome upon heat shock.

Heat shock-related proteins as integrators of the partially
decoupled yeast interactome

Prompted by our data showing a partial disintegration of the

yeast interactome after heat shock, we became interested to assess

those proteins, which preserve the residual integration of the

interactome upon heat shock. First, we assessed the community

centrality changes of yeast proteins after heat shock, since high

community centrality values characterize those yeast proteins,

which receive a large influence from others [8], and thus integrate

the responses of the yeast interactome. As a second step, we

studied the bridges, i.e. the inter-modular proteins playing a key

role in the remaining connection of interactome modules after

heat shock.

Figure 4 shows the comparison of the community centrality

values [8] of yeast proteins before and after heat shock highlighting

five markedly different behaviors. Group A proteins increased

their community centrality upon heat shock, Groups B and C

contain proteins, which had a continuously high community

centrality, while those proteins, which decreased their community

centrality are in Group D. Finally, Group E proteins had a

continuously low community centrality. Table S3 of Text S1 lists

the proteins of the various groups of Figure 4 with their name and

functional annotation. Proteins increasing their community

centrality (Group A) upon heat shock included major molecular

chaperones sequestering, disaggregating and refolding misfolded

proteins (Hsp42 and Hsp104), as well as stabilizing cellular

Stress-Induced Disintegration of Yeast Interactome
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membranes (Hsp12) [35]. Group A proteins were also involved in

stress signaling and in stress response regulation (e. g. Psr2

phosphatase, Rsp5 ubiquitin ligase) [36,37], in autophagy

regulation (Tor1, Tor2), in the reorganization of the cytoskeleton

(Las17 actin assembly factor) [38] and also in yeast carbohydrate

metabolism (Glk1 glucokinase, Hxt6 and Hxt7 glucose transport-

ers). These proteins were all heat shock proteins, since they showed

increased mRNA expression upon heat shock. Yeast proteins with

continuously high community centrality (Group B) included

ubiquitin, a ribosome associated, constitutive form of Hsp70 and

several key enzymes of carbohydrate metabolism. Proteins having

a high, but decreasing importance upon heat shock (Group C)

were constituents of the ribosome. Importantly, enzymes and

proteins involved in pre-rRNA processing, thus in the synthesis of

new ribosomes, showed a large decrease in their community

centrality and formed a major part of Group D. These changes

reflected the down-regulation of protein synthesis and cell

proliferation, which are hallmarks of the heat shock response.

Figure 2. Changes of the modular structure of the yeast protein-protein interaction network after heat shock. Unstressed (panel A)
and heat shocked (15 min heat shock at 37uC, panel B) yeast BioGRID protein-protein interaction networks were created as described in the Materials
and Methods section. The 2D representation of yeast interactomes was visualized using the Fruchterman-Reingold algorithm. The vertical positions
reflect the community centrality values of the nodes calculated by the NodeLand influence function method [8], and were plotted using a fourth root
scale. Modular assignment of yeast proteins was performed by the ProportionalHill module membership assignment method [8]. Nodes were colored
according to the module they maximally belong to. The functions of modules were assigned by the functions of the core modular proteins as
described in the Materials and Methods section. The functional labels and the arrows had the same colors as their respective modules. Panel A.
Modular structure of the unstressed yeast interactome. Two overlapping major modules had a large centrality: a ribosomal module-pair and a module
representing carbohydrate metabolism. Panel B. Modular structure of the interactome of heat shocked yeast cells. The centrality of ribosomal
modules decreased, which is in agreement with the diminished translation in heat shock. Besides modules of carbohydrate metabolism, upon heat
shock several, formerly minor, heat shock-induced modules gained centrality, and became visible on the 3D plot. Modules related to autophagy, a
key factor of the stress-response, also increased their centrality.
doi:10.1371/journal.pcbi.1002187.g002
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Group E proteins with a continuously low importance included

several proteins with yet unknown functions, which is understand-

able knowing the minor role of these proteins both in unstressed

and heat shocked yeast cells.

In summary, chaperones, proteins of stress signaling and other heat

shock proteins, redirecting yeast carbohydrate metabolism in heat-

shock, became key players in the residual integration of yeast protein-

protein interaction network after heat shock. On the contrary, those

proteins, which had been major integrators of the non-stressed yeast

interactome (such as proteins of the ribosome or ribosome synthesis)

lost their integrating function, and contributed to the partial, modular

disintegration of yeast interactome after heat shock.

Next, we selected Group A through C proteins as they had large

community centrality value in heat shocked conditions, and

examined their localization in the subnetwork of the yeast

interactome containing the strongest links (Figure 5). Considering

that Group A proteins had low community centrality values in

unstressed condition, it is not surprising that only one of Group A

protein was visible in the subnetwork containing the top 4% of

strongest links (Figure 5A). Group A proteins (smallRlarge

community centrality) appeared as nodes having strongest links,

and occupied rather dispersed locations after heat shock

(Figure 5B). Group B proteins (largeRlarge community centrality)

were accumulated in one of the two alternative centers of the

Figure 3. Heat shock induces a partial decoupling of the modules of the yeast interactome. Unstressed and heat shocked (15 min heat
shock at 37uC) yeast BioGRID protein-protein interaction networks were created as described in the Materials and Methods section. Overlapping
modules were calculated by the NodeLand influence function method combined with the ProportionalHill module membership assignment method
[8] as described in Materials and Methods. Panel A. Overlap of yeast interactome modules in unstressed condition (blue dots) and upon heat shock
(red dots). The overlap of yeast interaction modules was represented by the cumulative distribution of the effective number of modules of yeast
proteins (for the detailed explanation of the meaning of ‘effective number’ describing a weighted sum of modules, see Materials and Methods). Upon
heat shock the number of modules, that a yeast protein simultaneously belongs to, was significantly decreased (significance for the distribution by
the Wilcoxon paired test, p,2.2*10216). In other words this means that there were smaller overlaps between the interactome modules. Panel B.
Cumulative distribution of the degree of yeast interactome modules in unstressed condition (blue dots) and upon heat shock (red dots). The effective
degree of modules was calculated as described in Materials and Methods. Upon heat shock the cumulative distribution of effective degree of
modules was significantly decreased (Mann-Whitney U test, p = 0.02299), which means that the protein-protein interaction network modules were
less connected in heat shock than in the unstressed state.
doi:10.1371/journal.pcbi.1002187.g003

Stress-Induced Disintegration of Yeast Interactome
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subnetwork in unstressed condition, and became more dispersed

after heat shock (cf. Figure 5C and Figure 5D). Group C proteins

(extra largeRlarge community centrality) occupied the other

alternative center, the dense core of the subnetwork in unstressed

yeast cells, while, similarly to the other groups, they became more

dispersed after heat shock (cf. Figure 5E and Figure 5F).

In summary, proteins with large community centralities had

rather condensed positions in the interactomes of unstressed yeast

cells, while they occupied more scattered, dispersed positions after

heat shock. This reflects well the key role of the proteins with large

community centralities to maintain the integration of the cumulus-

type, multifocal interactome of heat shocked yeast cells at multiple

positions.

As a first inquiry to assess the role of bridges in the maintenance

of interactome integrity after heat shock, we highlight a group of

four proteins (Table 2; Hsp42, Hsp70, Hsp104 and glycogen

phosphorylase). These proteins, beyond their very remarkable

increase in community centrality values, were the only proteins,

which had a parallel increase in their modular overlap upon heat

shock (where the latter was defined as the effective number of their

modules, the measure used already in Figure 3A). We note that

this behavior was peculiar, since the modular overlap had a

general decrease after heat shock (see Figure 3). Therefore it was

plausible to claim that the 4 proteins listed in Table 2 were not

only central, but also behaved as bridges, connecting parts of the

partially disintegrated interactome after heat shock. It is

noteworthy that 3 out of the 4 proteins are molecular chaperones

(Hsp42, Hsp70, Hsp104), while glycogen phosphorylase is a key

enzyme of energy mobilization, a necessity in stress. This finding is

in agreement with the results of previous studies and assumptions

[39,40].

As a second inquiry to study the role of bridges in the

interactome of unstressed and heat shocked yeast cells, we

examined changes of bridgeness of yeast proteins. Figure 6 plots

the bridgeness of yeast proteins before and after heat shock.

Bridgeness was defined as before [8], involving the smaller of the

two modular assignments of a node in two adjacent modules

summed up for every module pairs. This value is high, if the node

belongs more equally to two adjacent modules in many cases, i.e. it

behaves as a bridge between a single pair, or between multiple

pairs of modules. Such bridging positions correspond to saddles

between the ‘community-hills’ of the 3D interactome community

landscape shown on Figure 2. Note that the bridgeness measure

characterizes an inter-modular position of the node between

adjacent modules, while the modular overlap measure reveals the

simultaneous involvement of the node in multiple modules.

The highlighted zones of Figure 6 show that the importance of 9

bridges increased, that of 7 bridges remained fairly unchanged,

while the importance of only 3 bridges decreased upon heat shock.

The increase of the number of key bridging proteins upon heat

shock shows the increased importance of a few interactome-

intergating proteins after stress (a very strong tendency for a

significant change, with p = 0.051 by Mann-Whitney U test,

between the highlighted bridges of Figure 6 having a value larger

than 10). The position of the 7 persistently high bridges and the 9

heat shock-induced bridges in the subnetwork of the yeast

interactome containing the strongest links is shown on Figure S6

of Text S1. Bridges appeared in this subnetwork at a larger ratio

(31% compared to 69% before and after heat shock, respectively),

and were re-organized to more inter-modular positions in the

interactome of the strongest links after heat shock (Figure S6 of

Text S1). Name and function of key bridges are listed in Table S4

Figure 4. Yeast proteins with altered community centrality upon heat shock. Unstressed and heat shocked (15 min heat shock at 37uC)
yeast BioGRID protein-protein interaction networks were created as described in the Materials and Methods section. Community centrality values of
proteins were calculated by the NodeLand influence function method [8]. Each blue dot represents a yeast protein having its community centrality
value in unstressed state plotted on the x axis, while the same value after heat shock plotted on the y axis. The 1:1 correlation is represented by the
black dashed line. Five groups of proteins with extreme behavior were labeled by red circles, and indicated by letters A through E: smallRlarge
community centrality (A), large community centrality in both conditions (B), extra largeRslightly smaller community centrality (C), largeRsmall
community centrality (D), small community centrality in both conditions (E). Names and functions of proteins belonging to groups A through E are
listed in Table S3 of Text S1.
doi:10.1371/journal.pcbi.1002187.g004
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of Text S1. The 5 bridges present in both the unstressed condition

and after heat shock in the strongly linked subnetwork were Srp1,

Yef3, Smt3, Ubi4 and Med7, key proteins of nuclear transport,

transcription, translation and protein degradation complexes,

respectively. The 6 additional bridges appearing only after heat

shock in the strongly linked subnetwork were Whi3, Rpn3, Rsp5,

Cbk1, Hek2 and Srs2, key proteins of protein degradation, DNA

repair, mRNA sequestration and metabolism, respectively: all

essential processes for cell survival in stress.

In summary, a rather interesting, complex picture emerged

on interactome changes of heat shocked yeast cells. On one

hand, the interactome developed a decreased integrity apperar-

ing at several hierarchical levels of the local to global topology.

The most remarkable change of all these was the heat shock-

induced partial uncoupling of interactome modules. On the

other hand, the remaining inter-modular connections remained

or became enforced by a few key proteins involved in cell

survival.

Discussion

The major findings of the current paper are the following: heat

shock induces i.) an increase in the weighted diameter of yeast

protein-protein interaction network (Table 1); ii.) subnetworks of

strongest and weakest links as well as the modular structure show a

more multifocal appearance upon heat shock (Figure 1 and

Figure 2); iii.) modules became partially decoupled in heat shock

(Figure 3); and finally, iv.) a few, selected, inter-modular proteins

help the integration of the partially uncoupled interactome of heat

shocked yeast cells (Figure 4, Figure 5 and Figure 6).

Figure 5. Topological positions of proteins with heat shock-altered community centrality in the network of the strongest
interactions of the yeast interactome. Protein-protein interaction networks of unstressed (panels A, C and E) and heat shocked (15 min heat
shock at 37uC; panels B, D and F) yeast cells were created as described in Materials and Methods. The subnetworks of their strongest links were
determined and visualized as described in the legend of Figure 1. Similarly to the color-codes of Panels A and B of Figure 1, light grey colors denote
the top 4%, while dark-grey colors the top 1% of interactions, respectively. Special groups of proteins with altered community centrality (Groups A
through C, as described in the legend of Figure 4 and in Table S3 of Text S1) are marked with larger blue filled circles in the unstressed conditions
(panels A, C and E) and with larger red filled circles in the heat shocked conditions (panels B, D and F), respectively. Panels A and B. Topological
positions of ‘Group A’ proteins having a smallRlarge community centrality transition upon heat shock. Only a single ‘Group A’ protein was among
the top 4% of link weights in non-stressed condition (Panel A). ‘Group A’ proteins became visible and dispersed upon heat shock (Panel B). Panels C
and D. Topological positions of ‘Group B’ proteins having large community centrality in both conditions. Proteins were condensed in one of the
alternative centers before heat shock (Panel C) and became more dispersed after heat shock (Panel D). Panels E and F. Topological positions of group
C proteins having an extra largeRslightly smaller community centrality transition upon heat shock. Proteins were occupying the other alternative
center of the subnetwork in unstressed condition (Panel E), and became dispersed upon heat shock (Panel F).
doi:10.1371/journal.pcbi.1002187.g005
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A minor part of our findings was rather obvious. As an example

of this: it is more-less expected that many heat shock-induced

proteins will have a larger community centrality, since they have

an increased weight of their interactions (Figure S1 of Text S1),

and therefore, may receive a larger influence of other interactome

segments. However, the partial disintegration of the yeast

interactome after heat shock is by far not an obvious consequence

of heat shock-induced mRNA changes, but a highly non-trivial

adaptation to stress at the system level. It is important to note, that

this major finding, the partial disintegration of yeast interactome

after heat shock, appeared at several levels on network topology.

At the very local level, a significant decrease was observed in the

Table 2. Proteins having an exceptionally increasing modular overlap and increasing community centrality after heat shock.

ORF name Gene name Overlap ratioa Community centrality ratiob Functional annotation

YDR171W HSP42 1.1 18900 Small heat shock protein (sHSP) with chaperone
activity

YPR160W GPH1 1.3 7500 Non-essential glycogen phosphorylase required
for the mobilization of glycogen; activity is
regulated by cyclic AMP-mediated
phosphorylation; expression is regulated by
stress-response elements and by the HOG MAP
kinase pathway

YLL026W HSP104 1.1 27700 Heat shock protein that cooperates with Ydj1p
(Hsp40) and Ssa1p (Hsp70) to refold and
reactivate previously denatured, aggregated
proteins

YER103W SSA4 1.4 6800 Heat shock protein Hsp70 that is highly induced
upon stress

aOverlap denotes the effective number of yeast interactome modules that a protein is assigned to (see Materials and Methods). Overlap ratio was calculated by dividing
the overlap value of the given protein in the heat shock dataset with that in the unstressed state.

bCommunity centrality values of proteins were calculated by the NodeLand influence function method [8]. Community centrality ratio was calculated by dividing the
community centrality value of the given protein in the heat shock dataset with that in the unstressed state.

doi:10.1371/journal.pcbi.1002187.t002

Figure 6. Heat shock-induced changes of bridgeness of yeast proteins. Protein-protein interaction networks of unstressed and heat shocked
(15 min heat shock at 37uC) yeast cells were created and the bridgeness of their proteins was determined as described earlier [8]. Proteins having zero
bridgeness values in one of the conditions were excluded from subsequent analysis. Red boxes denote those proteins, which had a large bridgeness
only after heat shock (top red box containing 9 heat-induced bridges); only before heat shock (left red box containing 3 heat-decreased bridges); or
were persistent bridges in both conditions (red box in top right corner containing 7 persistent bridges, as well as red dotted box in top right corner
containing an additional 18 persistent, albeit less dominant bridges). Proteins were marked by asterisk, if their bridgeness induction or reduction
were more than 105-fold. Names and functional annotations of the bridges in the red boxes are listed in Table S4 of Text S1. The position of the 7
persistent and 9 heat shock-induced bridges in the yeast interactome containing the strongest links is shown on Figure S6 of Text S1.
doi:10.1371/journal.pcbi.1002187.g006
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weighted degrees upon heat shock (Table 1; Figure S3 of Text S1).

At the mesoscopic level a remarkable and highly robust decrease of

modular overlaps occurred (Figure 3). At the global scale, a close

to 5-fold increase of the weighted network diameter was observed

(Table 1.). All these changes point to the same direction and

suggest that a more ‘sparing’ contact structure develops upon heat

shock allowing a better isolation and discrimination of cellular

functions. The heat shock-mediated isolation and discrimination of

cellular functions is also reflected by the change in the structure of

strongest links (cf. Figure 1A and Figure 1B), where a large

number of disjunct network centres develop, and became

connected by a few strong links after heat shock (Figure 1B), as

opposed to a large density of strong links in a few centres in

unstressed yeast cells (see Figure 1A, where the density is so large

that it can not be readily visualized even in the magnified inset).

The observed findings were in a way indirect. Regretfully, no

direct PPI network data exist for heat shocked cells, including

yeast. Therefore, we had to calculate the yeast interactome weights

after heat shock from mRNA data. As we noted earlier, this

approach was justified by the finding that heat shock is a severe

form of stress, where transcriptional and translational changes are

better coupled [25]. Protein levels are also regulated by protein

degradation. Though large-scale data on yeast protein half-lives

exist [41], even these data cover only a part of the yeast genome,

and their modification in heat shock is not known. Despite of these

shortcomings of exact system level data in heat shock, the

robustness of our major finding, the partial uncoupling of yeast

interactome modules, suggests that the phenomenon we observed

is a real, in vivo response of yeasts cells to heat shock.

The interactome modules of unstressed yeast cells defined in this

paper correspond to the results of other modularization methods.

When comparing our results with those obtained by the MCODE

method [42] and of another method based on semantic similarity

[43], the size of predicted complexes were different, but good

functional matches could be identified. When we extended the

comparison to methods detecting modules having a wide range of

size, like the CNM method [44] or that of Mete et al. [45], besides

some minor discrepances, nearly indentical modules were found

having either a large size (like that of ribosomal assembly and

maintenance) or a small size (like that of tRNA processing; data

not shown). In a very interesting study Gavin et al. [14] defined

core components and attachments of yeast protein complexes.

Core components were constant parts, while attachments were

more flexible, fluctuating parts of the protein complexes. Cores of

several modules (see Table S2 of Text S1) were often highly similar

to the core components Gavin et al. [14] (e.g. in case of the

proteasome, mitochondrial translation or RNA polymerase

complexes). Core proteins of the ribosome and carbohydrate

metabolism were found to be in many attachment regions of

Gavin et al. [14] (15 and 4 attachments as opposed to 0.2 and 0.8

cores on the average, respectively). This is in agreement with our

current results showing that these proteins have an extremely high

community centrality, i.e. accommodate a large influence of

multiple interactome segments.

Our study provides the first detailed comparison of the

interactome structure before and after heat shock. However, there

were a few studies, which contained a part of this informa-

tion directly, or indirectly. Valente and Cusick [16] mapped the

modular structure of unstressed yeast cells, and (assuming that the

structure is invariant) determined which modules are up- and

downregulated under heat shock. They found several modules

with similar functions to those of the unstressed cells detected in

our study (e.g. ribosomes, proteasomes and complexes involved in

cell cycle control, or the organization of the chromosome and

cytoskeleton). The heat shock-induced changes were also similar,

showing a high similarity of downregulated modules (e.g. those

responsible for ribosomal function, or chromosome organization).

The upregulated modules were partially consistent with our results

(cell cycle control) with the exception of the proteasome and

cytoskeleton organization complex. In these two exceptions we

detected a central role of these two modules in the unstressed

condition already, which made the detection of their further

upregulation difficult. Another comparison arose from the study of

Komurov and White [15], who identified static and dynamic

modules. Very interestingly, modules that were found only in

unstressed or heat shocked conditions in our study corresponded

to their dynamic modules (regulation of intracellular pH,

proteasome, ribosome biogenesis, trehalose biosynthesis). Wang

and Chen [46] developed an integrated framework of gene

expression profiles, genome-wide location data, protein-protein

interactions and several databases to study the yeast stress

response. Their study shows the system-level mechanism of the

yeast stress response highlighting the major transcription factors of

this process. The study complements ours describing stress-

induced consequences at the systems level. The results of Wang

and Chen [46] demonstrated a large degree of general similarity of

various stress responses in yeast (among others showing that 136

out of 190 transcription factors are conserved in osmotic, oxidative

and heat shock), which is in agreement with the similarity of

interactome-level changes of network topology after various types

of stresses we observed in yeast (Figure S5 of Text S1).

Our results may put the ‘stratus/cumulus debate’ [30,47,48] in

the new contextual framework of cellular dynamics. Our findings

showed that the unstressed yeast interactome resembles more to a

stratus-type, whereas the heat shocked (stressed) interactome

resembles more to a cumulus-type organization. This indicates

that the stratus and cumulus interactome conformations may not

be as antagonistic as thought before, and none of them may be a

clear artifact. Our results suggest that both network conformations

may occur in vivo, and may characterize different states of the

organism. Regretfully no quantitative measures for this structural

feature have been defined so far. This will be a subject of further

interesting studies.

Our earlier surveys of the literature anticipated a stress-induced

decrease in the number and weights of interactions, as well as the

decoupling of network modules. Chaperones were hypothesized to

play a major role in the coupling/decoupling processes, since they

occupied a more central position during stress, and their

occupation by damaged, misfolded proteins after heat shock led

to a release of their former targets. This phenomenon was termed

by us as ‘chaperone overload’ [39,49]. Our recent results support

these previous considerations. Moreover, the present findings

considerably extend the earlier assumptions showing the details

of the heat shock-induced partial disintegration of the yeast

interactome.

What may be the reasons, which make a partial disintegration of

the interactome an evolutionarily profitable response for yeast cells

after heat shock? i.) The decreased number and weights of

interactions may be regarded as parts of the energy saving

mechanisms, which are crucial for survival. The specific decrease

of inter-modular contacts may ‘slow down’ the information

transfer of stressed cells, which is a further help to save energy.

ii.) The increased weighted diameter and the partially decoupled

modular structure of the interactome may localize harmful

damages (e.g. free radicals, dysfunctional proteins), and thus may

prevent the propagation of damage. iii.) Dissociation of modules

may help the mediation of ‘intracellular conflicts’, e.g. opposing

changes in protein abundance and dynamics in stress. iv.) The
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appearance of a more pronounced modular structure may allow a

larger autonomy of the modules. This is beneficial, since more

distinct functional units may work in a more specialized, more

effective way, and at the same time may also explore a larger

variety of different behavior, since in their exploratory behavior

they are not restricted by other modules to the extent than before

stress. The larger autonomy of modules increases both the

efficiency and learning potential of the cell sparing additional

energy.

The observed partial disintegration of the yeast interactome

after heat shock is most probably only transient. The partial de-

coupling of the interactome modules is presumably followed by a

re-coupling after stress, which not only restores a part of the

original, denser inter-modular connections, but may also build

novel inter-modular contacts, giving a structural background to

the adaptation of the novel situation [39,40,50,51]. This brings a

novel perspective to those proteins, which help to maintain the

integration of the yeast interactome during heat shock, since some

of these inter-modular proteins may play a role in the adaptive

reconfiguration of PPI network as a response to the changed

environment. The presence of 3 major chaperones among those 4

proteins, which increased their inter-modular overlap upon heat

shock (Table 2), supports this assumption, since chaperones are

well-known mediators of cellular adaptation in stress and during

evolution [39,49].

The decrease of modular overlap was similar in other stress

conditions (e.g. in oxidative stress, reductive stress, osmotic stress,

nutrient limitation; see Figure S5 of Text S1), although the

heterogeneity of these conditions inhibited to create a coherent

picture in every details. Prompted by the generality of stress-

induced partial disintegration of the yeast protein-protein

interaction network, and by the generality of the beneficial

reasons behind these changes, we were interested to see, whether

similar changes may occur in other complex systems. Bagrow et al.

[52] showed that network failures of a model system cause the

uncoupling of overlapping modules before the loss of global

connectivity. A similarly modular, sequential disruption of

(presumably inter-modular) links was observed, when single

molecules of the giant protein, titin were pulled introducing a

physical stress [53]. Bandyopadhyay et al. [54] showed that while

protein complexes tend to be stable in response to DNA damage in

a genetic network, genetic interactions between these complexes

are reprogrammed. Similarly to the changes shown on Figure S4

of Text S1, the group of Uri Alon found that networks of

organisms in variable environment are significantly more modular

than networks that evolved under more constant conditions

[33,55]. These studies all revealed the stress-related dynamism of

intermodular regions in other cellular contexts.

Looking at even broader analogies Tinker et al. [56] showed

that food limitation causes a diversification and specialization of

sea otters that greatly resembles to the changes of yeast

interactome modules in stress. A similar increase of modulariza-

tion (patchiness) was observed in increasingly arid environments

suffering from a larger and larger drought stress [57]. A partial

decoupling of social modules was also observed, when criminal

networks faced increased prosecution [58]. A recent study detected

a reorganization of brain network modules during the learning

process [59]. As a far-fetched analogy, stress-induced psychological

dissociation [60] may also be perceived as a partial decoupling of

psychological modalities. The stress-induced uncoupling/recou-

pling cycle greatly resembles Dabrowski’s psychological develop-

ment theory of positive disintegration [61], as well as the

Schumpeterian concept of ‘‘creative destruction’’ describing

long-term socio-economic changes [62]. In agreement with this

general picture, Brian Uzzi and co-workers [63] recently showed

that brokers shift their link-structure of instant messaging from

weak to strong ties under the initial phase of crisis-like events at the

stock-exchange, which may reflect a partial de-coupling of weakly

linked broker-network modules together with an increase of

strong link-mediated intra-modular cohesion. Estrada et al. [64]

proposed a model, where communicability and community

structure of socio-economic networks are affected by external

stress (e.g. by social agitation, or crisis). They showed that

community overlaps diminished with the increase of stress.

Increased modularity of the banking system may be a very

efficient way to prevent the return and extension of the recent

crisis in economy as pointed out recently by Haldane and May

[65], and as applied by the Volcker Rule in the USA. These broad

analogies are supported further by the previously proposed [31]

generality of the two basic network conformations, the stratus- and

cumulus-like network topology observed here before and after heat

shock, respectively.

In summary, the major finding of our study was that heat shock

i.) induces the increase in the weighted diameter of the yeast

interactome; ii.) sets up multifocality in both subnetworks and

modules of the yeast interactome, as well as iii.) contributes to the

decoupling of the modules of the heat shocked yeast interactome.

Parallel with these changes a few remaining inter-modular

connections play an enhanced, prominent role in the residual

integration of the yeast interactome. Our work may provide a

model of a general, system-level adaptation mechanism to environ-

mental changes.

Materials and Methods

Yeast protein-protein interaction (PPI) networks
The budding yeast (S. cerevisiae) PPI data were from the

BioGRID dataset [24] (www.thebiogrid.com, 2.0.58 release),

which is a freely accessible database of physical and genetic

interactions. To avoid indirect interactions only the physical

interactions of the database were used. These interactions

(contained in the experimental system column of the database)

included physical in vitro interactions such as biochemical activity-

derived, co-crystal structure-related, far-Western, protein-peptide,

protein-RNA, or reconstituted complex interactions, as well as

physical in vivo (like) interactions, such as affinity capture mass

spectrometry, affinity capture RNA, affinity capture Western, co-

fractionation, co-localization, co-purification, fluorescence reso-

nance energy transfer and two-hybrid interactions. The giant

component of the obtained PPI network was used containing

5,223 nodes and 44,314 interactions. In the absence of reliable and

large-scale weighted yeast protein-protein interaction data,

network link weights were generated from mRNA microarray

datasets as described later. We also analyzed the high-confidence

PPI dataset of Ekman et al. [23], where the giant component of the

network comprised 2,444 proteins and 6,271 interactions. These

results were consistent with our presented findings (Figure S7A of

Text S1), although the small scale of network and the nature of

interactions (which were not restricted to physical interactions as

our dataset), reduced the biological relevance of this latter analysis.

Yeast mRNA microarray data
Yeast whole-genome mRNA expression datasets were from

Holstege et al. [26] (called as the ‘‘Holstege-dataset’’) as a

reference dataset for the baseline, non-stressed yeast gene

expression profile, and from Gasch et al. [19] (called as the

‘‘Gasch-dataset’’) measuring relative expression profiles in various

stress conditions. The Holstege-dataset contained data of 5,449,
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while the Gasch-dataset contained data of 6,152 yeast genes,

respectively. From the Gasch-dataset we selected heat shock as the

archetype of stress conditions. Besides being a widely examined

form of stress, heat shock is considered as a ‘‘severe stress’’ by

Halbeisen and Gerber [25], where a good correlation between

translational and transcriptional changes have been found. We

analyzed the ‘hs-1’ condition of the Gasch-dataset (15 minutes of

37uC heat shock), where broader time series were monitored than

at ‘hs-2’ or other heat shock conditions (the stress condition names

are the same as used by Gasch et al. [19]). We performed our

analysis using longer durations of 37uC heat shock (40 and

80 minutes compared to that of the 15 minutes of the ‘‘hs-1’’

dataset, [19]). In line with the expectations, heat shock induced

gene expression was less remarkable after 40 minutes and returned

close to the baseline level after 80 minutes. Therefore we

performed a detailed analysis only with the 15 minutes heat shock

dataset. Importantly, our major finding, the decrease of modular

overlaps after stress was robust, and persisted in all heat shock

conditions tested. The decrease of modular overlap was similar in

other stress conditions (e.g. in oxidative stress, reductive stress,

osmotic stress, nutrient limitation, see Figure S5 of Text S1),

although the specificity and heterogeneity of these conditions

inhibited to create a coherent picture in every details.

Although logarithmic transformations are extensively applied in

the literature, we used absolute expression values. The use of

absolute expression values instead of logarithmic values was in part

due to the technical difficulty that after the logarithmization step

negative protein-protein interaction weights would also arose that

could not be interpreted. Negative weights of the logarithmized

mRNA data could be avoided applying a 1000-fold increase as a

rescaling correction, which is appropriate all the more, since

protein levels are roughly by this magnitude higher than the

corresponding mRNA levels [66]. Using this methodology, we got

similar major findings as those shown in the paper (Figure S7B of

Text S1). However, due to the larger number of correction steps

we did not pursue this approach in detail.

Conversion of mRNA expression data to protein-protein
interaction network weights

Weights of interactions in the PPI network were generated from

the mRNA expression data in two steps. 1.) In the first step the

baseline, non-stressed protein abundances were taken as the

mRNA expression levels of the Holstege-dataset [26], then the

baseline protein abundance values were multiplied by the relative

mRNA changes of the Gasch-dataset [19], resulting in the

approximated protein abundances after heat shock.

Since the Gasch-dataset contained only relative values, and

therefore could not be used as a baseline-dataset, we had to use the

Holstege-dataset to calculate the baseline weights of the PPI

network. To check, whether our results are sensitive for baseline

selection, we performed our analysis using another gene expression

dataset, where time zero data were also provided [18]. This

approach resulted in a similar decrease of modular overlaps (data

not shown), showing that using two different datasets for mRNA

abundances do not cause unexpected variability. Due to the

greater ratio of missing data (,14% in baseline data and ,11%

after heat shock) we did not prefer this dataset in detailed analyses.

We also tried to use protein abundances instead of mRNA

abundances for the unstressed condition [67,68], but due to the

large amount of missing data in these data sets (.50%) we have

not pursued this approach further.

When using the mRNA changes as approximations of changes

in protein levels, in agreement with Halbeisen and Gerber [25], we

assumed that the mRNA expression data in heat shock correlate

well with protein abundance. Missing expression data for proteins

in the PPI network (436 nodes total in the baseline network, less

than 9% in case of the Holstege-dataset, as well as 504 nodes total

in the network after heat shock, less than 10% of the Gasch-

dataset) were substituted by the median expression values (0.8 in

case of the Holstege-dataset, and 0.9931 in case of the Gasch-

dataset), where the median was selected instead of the mean, since

the distributions also contained extreme values.

2.) In the second step link-weights of the PPI network were

generated by averaging of the abundances of the two proteins

linked. We also tried multiplication instead of averaging that gave

very similar results and provided sufficiently robust data in case of

the smaller, high-confidence PPI dataset of Ekman et al. [23] (see

Figure S7A of Text S1). However, we rejected this approach in

case of the BioGRID dataset, as in case of this much larger dataset

it resulted in a ‘rougher’ community landscape with more extreme

changes of community centralities than averaging, which has been

generally used in calculation of our data.

The use of an unweighted baseline PPI network resulted in

much less consistent data due to the large difference between the

homogeneity of the unweighted baseline and the inhomogeneity of

the weighted heat shocked PPI networks. The physical meaning

of heat shock-induced changes in gene expression is encoded

precisely by the changes of link weights at the network level. This

assumption makes it understandable that an unweigthed network

gave false positive results in important parts of the analysis. This

has two major reasons. On one hand, community centrality values

are largely affected by the density of interactions. Therefore, in an

unweigthed network, proteins having a high link density in their

neighborhood would result in high community centrality values

independently from their expression level. On the other hand, the

metrics used in the analysis (e.g. overlap as the effective number of

modules) are sensitive measures of fine topological changes,

therefore they were largely different in the unweighted, homog-

enous interactome as compared to the weighted, heterogeneous

interactome.

In principle, ‘relative changes’ of mRNA expressions could also

be used for comparison (where a, say, 4-fold increase in mRNA

expression of a given gene can be split to a 2-fold decrease of its

baseline abundance and a 2-fold increase of its abundance after

stress corresponding to the abundances of the same protein in

resting and stressed yeast cells, respectively). However the use of

these ‘relative changes’ of mRNA expression resulted in a large

variability of the baseline PPI network weights (Figure S8 of Text

S1). The method using the average of protein abundance values as

interaction weights, we described above, gave a reliable probabi-

listic model, since the more abundance the associated proteins

had, the more possible they interacted, and the more weight of

their PPI network link possessed. Moreover, by considering the

baseline expression rates, we received a more exact description of

the importance of proteins in the yeast cell in both baseline and

stressed conditions.

Analysis of the modular structure of the yeast
interactome

Yeast PPI network modules were determined using the Node-

Land influence function calculation algorithm with the Proportio-

nalHill module membership assignment method of the ModuLand

module determination method family described by the authors’

lab recently [8]. During the post-processing of the module

assignment no merging of primary modules was applied. The

ModuLand method determines extensively overlapping network

modules by assigning proteins to multiple modules, which reflects

well the functional diversity of proteins. The ModuLand method
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constructs a community landscape, where the landscape height of

a protein corresponds to a community centrality value showing the

influence of the whole PPI network to the given protein, thus the

importance of the appropriate protein in the whole yeast

interactome. In fact, community centrality is a summarized value,

where in the first step of the method (currently: the NodeLand

influence function calculation algorithm) all increments of the

influence of other proteins to the given protein are summed up. In

the second step of the calculation process (currently: the

ProportionalHill modules membership assignment method) pro-

teins with locally high community centrality (corresponding to

‘hills’ of the community landscape, see the 3D image of Figure 2)

form the core of a module of the interactome. Individual proteins

are characterized by their membership assignment strength to all

interactome modules. (Usually one or a few of the modules are the

ones, where the protein belongs the most, while all the other

modules contain the protein only marginally). With the Modu-

Land framework the functional annotation of modules becomes

rather easy, since it can be derived from the functions of the ‘core

proteins’ having the largest community centrality in the module.

In the current work core proteins of a given module were

determined as the 5 proteins having the maximal community

centrality (the number of core proteins has been extended to 8 in

some exceptional cases, where indicated). Comparison of the

functions of proteins with lower community centralities than that

of the core proteins did not change the consensus of functional

annotation of modules ([8] and Table S1 of Text S1).

Calculation of the effective degree of nodes and
modules, as well as the effective number of modules

The effective degree of nodes and modules, as well as the

effective number of modules were calculated as described earlier

[8]. All effective numbers refer to a set of data, where the sum is

not calculated as a discrete measure, but as a continuous mea-

sure taking into account the weighted values of the data. The

effective numbers were calculated using the subsequent equation:

ni V i½ �f g~exp {
P

i

pi log pi

� �
, where data were in set V, V[i]

was the value of data i, and pi~
V i½ �P

j

V j½ �. The dataset, V contained

i.) in case of the effective degree of nodes the weights of the

interactions of the given node as defined earlier; ii.) in case of the

effective degree of modules the weights of the links of the given

module to all neighboring modules as defined here later; and iii.) in

case of the effective number of modules the module membership

assignment strengths of the given node to all modules of the yeast

interactome. The weight of the link between modules i and j was

the sum of the node-wise calculated overlap values Oij(n):

W i,jð Þ~
P

n

Oij nð Þ, where Oij(n) was proportional to the module

membership assignment strengths Hi(n) and Hj(n), and was

normalized to the community centrality as: Oij nð Þ~2
Hi nð ÞHj nð Þ

c nð Þ ,

where c(n) was the community centrality of node n, and the factor 2

referred to that both directions between the modules have been

taken into account.

Functional categorization of proteins and modules of
yeast protein-protein interaction networks

For the functional categorization of yeast PPI network modules

(see Table S1 of Text S1 and Table S2 of Text S1), the Gene

Ontology (GO) term, biological process [69] (http://www.

yeastgenome.org/cgi-bin/GO/goTermFinder.pl) of the core

modular proteins (as defined above) were compared. A modular

GO term was assigned, if the core proteins shared a significant

(p,0.01) amount of their GO terms. GO terms of only the most

central modules were identified, since they were supposed to have

a relevant role in cellular functions. The threshold was applied by

the community centrality values of the most central proteins of

modules (where community centrality values were greater, than

500), and this resulted in 15 or 14 modules for the unstressed or

heat shocked conditions, respectively. In those exceptional cases,

when the 5 core modular proteins did not result in a meaningful

functional assignment (in case of 5 modules representing 17% of

the 29 modules total), we extended the core-set to 8 proteins. Only

2 modules (representing 7% of the 29 modules total) were found,

where none of these definitions resulted in any common

assignment.

Statistical methods
For the statistical evaluation of data the non parametric

statistical tests of the Mann-Whitney U test and the Wilcoxon

paired test were applied using the R-statistical program (https://

www.r-project.org) as described in the actual experiments. The

hypergeometric test was performed as provided by the Gene

Ontology Term Finder: http://www.yeastgenome.org/cgi-bin/

GO/goTermFinder.pl.

Supporting Information

Text S1 This supporting information (Text S1) contains a detailed

information on the distribution and variabilty of interaction weights,

on correlation of mRNA abundances with unweighted degrees and

on degree distributions of heat shocked yeast interactomes; a

comparison of the metabolic networks of Buchnera aphidicola and

Escherichia coli; additional data on the decrease of modular overlap in

stresses other than heat shock and using other model parameters; as

well as on the topological position of major bridges in the

interactome in 8 supporting figures. The supporting information

also contains the functional annotation of modules as well as the

identity of major proteins with high community centrality and

bridgeness values in 4 supporting tables.

(PDF)
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