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Abstract

The liver plays a key role in removing harmful chemicals from the body and is therefore often the first tissue to suffer
potentially adverse consequences. To protect public health it is necessary to quantitatively estimate the risk of long-term
low dose exposure to environmental pollutants. Animal testing is the primary tool for extrapolating human risk but it is
fraught with uncertainty, necessitating novel alternative approaches. Our goal is to integrate in vitro liver experiments with
agent-based cellular models to simulate a spatially extended hepatic lobule. Here we describe a graphical model of the
sinusoidal network that efficiently simulates portal to centrilobular mass transfer in the hepatic lobule. We analyzed the
effects of vascular topology and metabolism on the cell-level distribution following oral exposure to chemicals. The spatial
distribution of metabolically inactive chemicals was similar across different vascular networks and a baseline well-mixed
compartment. When chemicals were rapidly metabolized, concentration heterogeneity of the parent compound increased
across the vascular network. As a result, our spatially extended lobule generated greater variability in dose-dependent
cellular responses, in this case apoptosis, than were observed in the classical well-mixed liver or in a parallel tubes model.
The mass-balanced graphical approach to modeling the hepatic lobule is computationally efficient for simulating long-term
exposure, modular for incorporating complex cellular interactions, and flexible for dealing with evolving tissues.
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Introduction

As the number of man-made environmental chemicals contin-

ues to grow, there is an urgent need to develop effective tools to

test their potential risk to humans. The number of environmental

chemicals that are produced in substantial quantities now numbers

approximately 10,000 [1]. In order to determine the potential risk

to humans of exposure to these compounds, it is critical to

establish a dose-response curve – the functional dependence of toxic

endpoints, e.g. hepatic lesions, on exposure to that compound.

Traditional long-term animal testing to determine dose-response is

time consuming, expensive, and requires the sacrifice of thousands

of animals without clear relevance to humans. Recognizing this

need for new approaches to toxicity testing [2,3,4], the U.S.

Environmental Protection Agency is conducting ongoing efforts to

collect in vitro data [5] to make inferences about in vivo toxicity in

both test animals [6] and humans [7].

Without appropriate context, in vitro testing is insufficient for

predicting effects in vivo. Context can be established through

informatics, i.e. correlating in vitro data with known in vivo

phenotypes, or modeling efforts in which abstract rules are

hypothesized to determine in vivo outcomes as a function of

variables, some of which may be determined in vitro. Whereas

empirical models describe the available data and are therefore

best limited to interpolation, physiologic models attempt to

describe the underlying biology in sufficient detail to emulate the

true dynamics. Physiologic models generate new hypotheses

which can subsequently be tested to refine the model. Both

informatics and modeling approaches create frameworks without

which there could be little meaningful interpretation of in vitro

data.

Our goal is to establish an in silico model for dose-response that

can be calibrated using in vitro characterizations of chemical effects.

The liver is often the site of initial exposure to hazardous

compounds and their metabolites due to first-pass metabolism of

blood from the gastro-intestinal tract via the hepatic vein. In

mammals the hierarchical structure of the liver terminates in 105

to 106 functional units called lobules [8] first identified by Kiernan

[9]. Each hepatic lobule receives blood from up to six portal triads,

each typically consisting of a hepatic arteriole and a portal venule

in addition to a bile ductule [10]. Blood flows through intervening

spaces between the cells, i.e. sinusoids [11], and drains into the

central vein. Hepatocytes are arranged in plates one to two cells

thick, organized radially around the central vein. A two-

dimensional slice of a hepatic lobule is shown in Figure 1.

Compounds within the blood are exchanged with the hepatocytes

sequentially as blood passes through the sinusoids. The action of

the enzymes within the hepatocytes on compounds produces

metabolites that may be more or less harmful than the parent

compound. Although mechanisms of chronic chemical-induced

injury are not completely understood, it is believed to involve

multiscale molecular and cellular interactions that culminate in

tissue damage.

Tissue dosimetry is traditionally estimated using physiologically-

based pharmacokinetic (PBPK) models. A PBPK model consists of

a system of ordinary differential equations (ODEs) for the

concentration of a compound (or compounds) in different tissues.

Typically some key tissues are treated as separate compartments
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for which a tissue-specific concentration is calculated, while other

tissues are modeled using aggregate compartments. More

complicated dynamics within a tissue, such as diffusion or

membrane transport, are often modeled with additional sub-

compartments but each sub-compartment is well-mixed. The

equations are parameterized by subject- or species-specific

physiologic parameters such as cardiac output and tissue volumes

as well as compound-specific parameters such as diffusion/

transport rates and tissue-specific plasma to tissue ‘‘partition

coefficients’’ corresponding to the assumption of a rapidly-

established equilibrium between concentration of compound

stored in the tissue and the concentration of compound in the

plasma flowing through the tissue. PBPK models relate the

concentration of compounds inhaled or ingested from the

environment to internal tissue doses [12,13,14].

In addition to the well-mixed approach, the parallel tubes model

of liver function has often been used to calculate in vivo hepatic

metabolism based upon in vitro measures such as intrinsic hepatic

clearance [15,16]. Typically used at steady-state, the parallel tubes

model assumes that each lobule is a tube connecting a portal triad

and central vein, along which concentration varies spatially.

Though in vitro studies typically average over the response of a

many hepatocytes within a well, hepatocyte function is known to

vary significantly in vivo [17], e.g., hepatocytes near the central vein

may express very different levels of enzymes than those nearer to

the portal triad. For this reason the lobule is divided into zones of

approximately similar hepatocyte function depending on location

within the lobule. The heterogeneity between these zones is

thought to arise from gradients in oxygen availability, exposure to

nutrients from the portal venules, and hormone concentration

[18]. Modeling the differences between regions of the lobule

should provide key insights into the differences between phenom-

ena observed in homogenous in vitro conditions and heterogeneous

in vivo reality.

The first multi-compartment geometric model of the liver was

developed by Andersen et al. [19]. In that model there were no

cells, but the concentrations of compounds in different zones of

lobules were modeled continuously and could therefore be coupled

to a PBPK model. Liu et al. [20] have followed a similar sub-

compartment coupled to PBPK approach for modeling zonal

heterogeneity due to transporters and enzymes. Recent approach-

es to simulating the response of the liver include that of Ohno et al.

[21] who coupled independent realizations of a model for cellular

dynamics into a linear array to allow some instances of the model

to be close to the source of nutrients and foreign compounds while

others were further removed. Höhme et al. [22] have developed a

discrete model of the hepatic lobule that considers the biochemical

forces between hepatocytes to simulate recovery following acute

chemical toxicity.

Ierapetritou et al. [18] recently conducted a thorough review of

liver tissue simulation approaches in which they summarize the

previously mentioned approaches as well as higher dimensional

models including fluid dynamics approaches based upon approx-

imations of the Navier-Stokes partial differential equations. Such

approaches are data- and computationally-intensive, especially

given the convoluted and dynamic cellular boundary of the

sinusoidal spaces.

Hunt et al. [23] have taken a unique agent-based approach with

individual hepatocytes represented by agents wherein metabolism

can occur. The environment of the agents is determined using a

hybrid graph and grid approach in which compounds are

represented by objects moving through the lobule. Cell-oriented

agent-based modeling (ABM) of tissues offers a number of unique

advantages [24,25]. First, since cells are the functional units of

tissues, the ABM has more physiologic relevance than a

continuum model. Second, the agent responses can be calibrated

and verified through comparison with actual cells in vitro (or ex vivo).

Third, spatial outcomes from the ABM can be translated to

histopathologic effects such as acute lesions and tumor formation.

While the agent-based strategy is suitable for modeling tissue

responses, the approaches to the liver taken so far have not

provided a framework for estimating tissue dosimetry. Though the

spatial distribution of a compound has previously been modeled,

past approaches have represented compounds as agents that are

Central VeinCentral Vein

SinusoidsSinusoids

ArterioleArteriole

Portal VenulePortal Venule

Figure 1. Hepatic lobules receive nutrient-rich blood from the
gut through the portal venule and oxygen-rich blood from the
lungs through arterioles. Blood flows past sheets of hepatocytes
through the sinusoids and into the central vein. Image adapted from an
original by Amber Goetz, first published in [42].
doi:10.1371/journal.pcbi.1000756.g001

Author Summary

Virtual tissues are emerging as a powerful tool for
computational biology. By encoding known biology into
a simulation of tissue function, gaps in knowledge can be
identified. As a simulation of tissue function, in silico
experiments can be performed inexpensively and rapidly.
There are over 6000 chemicals produced in large quantities
that may be present in our environment, many of which
have not been thoroughly examined for human toxicity.
Traditional toxicity testing is expensive, lengthy, and relies
heavily upon the use of animals. For this reason in vitro
toxicity testing techniques are being developed. However,
techniques are needed to relate in vitro results to in vivo
conditions. The liver is often the first tissue to show signs
of toxicity and therefore a predictive liver toxicity simulator
would be a powerful tool to reduce the financial and
animal cost of toxicity testing. As a first step, we have
developed a model for relating environmental exposure to
cell-level concentrations; a model for virtual tissue
microdosimetry. We identify regimes in which this
approach is equivalent to previous techniques, as well as
regimes where large cell-to-cell variability exists. This
variability should have consequences both for normal
liver function and the onset of injury.

Microdosimetry in a Virtual Hepatic Lobule
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difficult to link to traditional exposure modeling. Due to the spatial

heterogeneity of the hepatic lobule, both molecular and cellular, it

is important to model the microanatomic distribution of chemicals

and to relate this to continuous variation in chemical concentra-

tion resulting from changes in human environmental exposure.

We have implemented a microdosimetry model that relates

whole-body chemical exposures to cell-scale concentrations. Our

objective was to develop the framework for simulating the

microanatomic distribution of various environmental chemicals

in a canonical lobule for extended periods of time ranging from

hours to months. This required an approach that is quantitative,

efficient in computational resources, and sufficiently flexible to

account for anatomic changes (due to chemical insult or other

factors) [26]. First, we approximated the microanatomic architec-

ture of the hepatic vasculature and parenchyma assuming a

discrete topology by a graphical model. This allowed us to

systematically explore the consequences of morphologic changes

on the concentration distribution. Second, we transformed the

sinusoidal elements of the vascular network into a system of

microscopic well-mixed compartments through which material

flow was assumed to be one-dimensional. Third, we connected the

virtual lobule to a PBPK model to relate individual exposure to

microdosimetry. For a range of physiologically relevant morpho-

logic parameters we evaluated the microdosimetry in response to

xenobiotic exposure levels and varying physico-chemical

attributes.

Results

Discrete Graphical Model of Sinusoidal Network
The two dimensional morphologic characteristics of the

mammalian hepatic lobule were represented as a discrete

connectivity graph, in which the edges captured spatial proximity.

The two main anatomic entities considered are hepatocytes, the

parenchymal cells responsible for the metabolism of chemicals,

and vasculature, i.e. sinusoids through which chemicals flow to the

hepatocytes. These are represented by different node types

including: hepatocytes, sinusoidal primitives, arterial and venous

sources, and the central vein, while edges represent connectivity

and spatial proximity between the nodes. Mass transfer through

the sinusoidal network occurs through edges: The edges

connecting vascular nodes transfer material through the sinusoids,

whereas edges between the vascular and cellular nodes exchange

material between the sinusoids and parenchyma.

A simplified geometry of the lobule was defined using the

following morphologic parameters: the number portal triads

(defining the vascular inputs), the branching factor of the sinusoids,

the number of sinusoids entering the central vein, and the sizes of

sinusoids, hepatocytes, and the lobule. The graphical model of the

lobule was constructed algorithmically using these parameters and

visualized spatially (Figure 2). The ‘‘virtual lobules’’ generated in

this manner presented a complex sinusoidal architecture repre-

senting a substantial challenge for estimating the distribution of

xenobiotics and nutrients.

Figure 2. The virtual lobule morphology is constructed
iteratively. First, sinusoids outward from the central vein (i). In
addition to small random variations in the direction of propagation, the
sinusoids branch into two sinusoids pointed away from the central vein
with probability Pbr (ii). Multiple sinusoids are started from the central
vein in an attempt to fill space (iii). Portal ‘‘triads’’ consisting of arterioles
and venules through which blood enters the lobule are added to the
perimeter of the lobule and connected to the vasculature (iv). Finally,
the sinusoids are lined with hepatocytes as space allows (v).
doi:10.1371/journal.pcbi.1000756.g002

Microdosimetry in a Virtual Hepatic Lobule
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The graphical model of the lobule was generated iteratively

(the algorithm is described in the methods section). The

sinusoidal network was constructed starting with the central vein

and extending radially outwards to the portal region. Beginning

with a node representing the central vein, sinusoid primitives

(nodes) were sequentially appended to form the initial vascula-

ture. Small random variations in the placement and branching of

sinusoidal primitives were used to reconstruct the histologic

appearance of a hepatic lobule. Second, the hepatic arterioles and

portal venules, were placed at the perimeter of the lobule and

connected sinusoidal network. Third, the parenchymal cells were

placed contiguously with the sinusoidal network. Because we

chose to connect the portal venule and arterioles to the central

vein in two dimensions the spatial layout was not completely

space-filling.

The approach described above is flexible, allowing the

generation of diverse lobular topologies through which flows can

be simulated. Five basic morphologies were examined, as depicted

in Figure 3, in which the number of portal triads (more accurately

dyads since bile was neglected), the probability of sinusoid

branching Pbr, and the presence of random noise were all varied.

No random noise or branching and one portal dyad produced a

lobule with a single tube (panel a in Figure 3) that in the limit of

many sinusoidal segments approaches a parallel tubes model. With

multiple portal dyads a classical lobule structure [27] that allows

both direct flow from the portal triads to the central vein and

mixing flow between portal triads is produced (panel b in Figure 3).

A 10% chance of sinusoid branching (panels c and d) produced

nearly space-filling lobule graph while a 5% chance of sinusoid

branching (panel e) did not.

Miller et al. (1979) observed that the branching of sinusoids is

greater near the portal triad than near the central vein [28].

Human lobules have been observed to typically have between

three and six portal triads per lobule [8,10,27], though many

‘‘triads’’ actually consist of dyads missing either an arteriole, bile

duct, or most commonly a portal venule [10]. Given these

observations, we believe that the geometries that include multiple

portal triads and random branching of the sinusoids (panels c, d,

and e) appear qualitatively more physiologic.

Blood Flow in the Sinusoidal Network
Blood circulation through the graphical model of the

vasculature was simulated as a network flow (Figure 4). Because

the sinusoidal diameter is much smaller than hepatocytes [29],

there are a large number of sinusoid primitives in each virtual

lobule. To efficiently solve for the flow, the sinusoid primitives

were aggregated into the following components: ‘‘straight’’ or

linear sequences and ‘‘branch’’ sections where straights meet

and mix. As shown in Figure 5, graph aggregation results in a

smaller graph that preserves the spatial distribution of the

sinusoids. Each aggregated node was assumed to be well-mixed,

that is, each constituent sinusoid primitive i has the same

concentration Cm
i (see Table 1 for a list of all symbols used in

this document).

Mass-balanced flow through the aggregate graph was deter-

mined by solving for the flow across each edge of the sinusoid

graph G(V,E) due to the sources at both the arterial and venous

elements of each portal triad. In general, solving for network flow

from node i to node j across edge Eij requires |E| different weights

Qm
ij (i.e., flow rates). Mass-balance provides only |V| constraints –

one at each node – so additional constraints were needed.

We made use of the hemodynamical equivalent of Ohm’s law

[30,31]:

Q
m
ij~

Pj{Pi

Rij

where Pi is the pressure at node i and the resistance Rij:R was

assumed to have the same value R for all edges. We note that Rij

could be determined using schemes such as the cross-sectional area

of each branch. Hemodynamics provides |E| additional con-

straints, but introduces |V| additional unknown pressures Pi.

Together with mass balance we have |E|+|V| constraints for

|E|+|V| unknowns. This system of equations can be represented

with a matrix and, given source flows and outlet pressure, can be

solved by diagonalization. Since we are not currently interested in

sinusoidal pressure, R and the outlet pressure were taken as one.

This assumption does not effect the quantitative values of Qm
ij since

they depend only on the relatively values of Pi.

As can be seen in Figure 4, randomly generating sinusoids can

lead to dead-end sinusoids for which no flow is predicted. These

sinusoids are removed from the lobule and additional hepatocytes

are added where possible.

To evaluate the appropriateness of these assumptions and the

suitability of the approach to arbitrary graphical structures, we

return to Figure 3, where predictions are made for a rat liver

lobule and compared to measurements made by Komatsu et al.

(1990) for the radial dependence of flow of erythrocytes in the

sinusoids with distance from the central vein. In vivo microscopy

was used by Komatsu et al. to observe the exposed livers of ten

Sprague-Dawley rats and flow was measured in three zones – near

the central vein, near the portal venule, and intermediate [31].

Flow was observed to increase with distance from the portal

venule, presumably as blood from the portal arteriole and other

portal triads mixed in. As can be seen on the left-hand side of

Figure 3, only geometries where random branching is present

(panels c, d, and e), produce profiles with increasing flow as the

central vein is approached. Given the indeterminacy in where flow

was measured relatively to the central vein, it is hard to

determining the precise radial profile of the flow. All geometries

produce mean flow within a factor of two of the measured values,

supporting the approximate appropriateness of this graphical

approach to hemodynamics in the hepatic sinusoids. A list of

simulation parameters used is given in Table 2.

Chemical Distribution in the Sinusoidal Network and
Cells

The final step needed to determine the concentration Cm
i for

each sinusoid i is to find the concentration of compound(s) in the

blood flowing into the liver. Our approach requires the rate and

chemical concentration(s) for blood flow from the gut and the

hepatic arteries. We used a simple PBPK model (Figure 6) with

oral and inhalation routes of exposure (PBPK model parameters

are listed in Table 3). Microdosimetry for each lobule was

determined from the pharmacokinetic exposure model by

assuming an arteriole flow equal to Qm
art = Qliv/Rliv:lob/NPT and

a venule flow Qm
ven = Qgut/Rliv:lob/NPT where Rliv:lob is the ratio

of liver to lobule volume and NPT is the number of portal triads

per central vein. Concentrations within the lobule are determined

by solving

d~CCm

dt
~Q

<
:~CCm{~MM: I

<
:~CCm

where Mi is the summed clearance of all hepatocytes adjacent to

aggregate sinusoid i, and I is the identity matrix. Note that at

steady state the flow can be determined from just the geometry

Microdosimetry in a Virtual Hepatic Lobule
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Figure 3. Five different lobule morphologies were examined. They are: a) one portal triad, no branching or noise, b) six portal triads with
noise and additional sinusoids, c) six portal triads, 10% chance of branching, d) three portal triads with 10% branching, and e) six portal triads with 5%
chance of branching. Though the overall layout (middle column) can be compared qualitatively with physiology, we evaluate these geometries by
comparing the flow (left-hand column) predicted for a rat with in vivo measurements of flow in rat sinusoids (Komatsu et al. (1990) [31]). We also
compare (right-hand column) the radial dependence of concentration at tmax with the prediction for a well-mixed compartment with equivalent
metabolic clearance (heavy dashed line). Comparison of profiles b-e with profile a provides an approximate comparison to a parallel tubes prediction.
The solid line indicates the mean for multiple lobules and sinusoids, while the shading indicates the 95% quantile (variability).
doi:10.1371/journal.pcbi.1000756.g003
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G(V,E) and the metabolism M, in which case Q
<
:~CCm~~MM: I

<
:~CCm and

there is no need to solve for dynamic concentration changes, since

new concentrations can be calculated analytically.

For a completely physiologic, three-dimensional lobule Rliv:lob

would be equal to the number of lobules in the liver –

approximately 106 [32]. We determined Rliv:lob, the ratio of the

total volume of the liver to the total volume of the sinusoidal spaces

and hepatocytes in the simulated lobule, to be approximately 108,

which is roughly 100 times greater than the physiologic value. We

expect a greater value for two reasons: First, many components of

the lobule other than the sinusoidal spaces and hepatocytes, such

as endothelial and stellate cells, extracellular space, and bile ducts,

contribute to the volume of the lobule. Including these additional

components, and therefore increasing the volume of the simulated

lobule, will reduce Rliv:lob. Second, each simulated lobule is

assumed to have a thickness equal to a sinusoidal diameter

(23.5 mm [29]). As is illustrated in Figure 7, many (quasi-)two-

dimensional lobules are needed to fill the same volume (and thus

preserve mass balance) as single three-dimensional lobule. The

difference between Rliv:lob and the actual number of lobules

indicates that 100 simulated lobules are currently needed to fill the

space of a single physiologic lobule.

Using the lobule geometries (given in Figure 3) ensembles of ten

lobules were used for simulating blood flow. For each geometry the

flow was simulated for an oral exposure of 10 mMol total

(equivalent to 0.03 mg per kg body weight for a 200 molecular

weight compound and a 70 kg subject) with an intrinsic hepatic

clearance due to metabolism of 10 mL/min/million hepatocytes.

We compared the average concentration throughout the lobule

SCmT, as predicted by our approach, with the prediction Cliv for a

PBPK model with a well-mixed liver compartment with equivalent

metabolic clearance CL~Rliv:lob

P

i

Mi (i.e. the product of the

clearance per hepatocyte, the total number of hepatocytes in a

lobule, and the effective number of lobules Rliv:lob). It is important

to note that the overall pharmacokinetics depends on the lobule

layout because the effective number of lobules Rliv:lob is

determined by volume alone and therefore the total clearance of

the liver depends on the number of hepatocytes relative to the

volume of the lobule.

Though the overall clearance varied with geometry, the impact

of different geometries on the average concentration in the lobule

was small. As shown in Figure 8, for the assumed metabolism rate

the mean predicted concentration did not vary greatly from what

would be predicted for a more traditional well-mixed compart-

ment. To compare results between geometries the concentrations

were scaled by Cliv predicted for the appropriate CL. We find that

in all cases the predicted average concentration slightly exceeds the

well-mixed PBPK prediction, but that otherwise the pharmaco-

kinetics are very similar.

Plotted on the right-hand side of Figure 3 is the radial-

dependence of concentration on position relative to the central

vein at tmax – the time at which the lobule reaches maximum

average concentration, SCmTmax. In all cases the mean concen-

tration decreased slightly from the portal triads to the central vein

– the predicted concentration was similar to the parallel tubes

model. Thus, the mean predictions were similar to typical

approaches for predicting liver concentrations.

Geometry had a much greater impact on the variability in

predicted concentrations Figure 3. For all the lobules with random

branching great variability was observed at the edges of the lobule,

maximally distant from the central vein. Some regions receive

slightly higher concentrations while other, stagnant regions

received almost none. This supports the idea of considering

sinusoidal topology for estimating changes in the local environ-

ment of a hepatocyte in addition to radial location between the

central vein and the portal triad (i.e. zone I, II, or III). Since there

were not large differences between the predictions for the three

lobules with random branching, we arbitrarily chose to simulate

lobules with six portal triads and 10% chance of branching

CVCV

PTPT

PTPT

b)b)

CVCV

PTPT

PTPT
c)c)

CVCV

PTPT

PTPTa)a)

Figure 4. Sinusoid connectivity was represented with a graph.
Spatial proximity between sinusoids within simulated lobule (a) was
used to generate connectivity graphs (b), which are aggregated (c) in
order to solve for flow from the portal triads to the central vein using
ODEs.
doi:10.1371/journal.pcbi.1000756.g004
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(geometry c in Figure 3) for the remained of the studies in this

paper. A larger ensemble of fifty lobules was generated for these

studies.

Chemical Kinetics
To test whether a continuum approximation (ODEs) was

appropriate for modeling mass transfer in the sinusoidal graph we

estimated the number of molecules at a hepatocyte. If the number

of molecules at higher concentrations is not large enough a

stochastic approach [33] would be preferable. As shown in

Figure 9, the upper bound on the number molecules at a total dose

of 10 mM is was nearly a million molecules per hepatocyte, as

calculated by multiplying the concentration in the sinusoid

8
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7

Central vein

1

3
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6

7

Sinusoidal 
Primitive

2

Straight Aggregate Node

Branch Aggregate Node

Figure 5. Similar nodes were aggregated to reduce the complexity of the sinusoid connectivity graph.
doi:10.1371/journal.pcbi.1000756.g005

Table 1. List of Symbols.

Symbol Definition

Pbr Sinusoidal Branching Probability

G(V,E) sinusoid graph consisting of vertices (nodes) V and edges E

Qm
ij Micro flow rate (L/h) across from node i to node j

Fi Total flow into node i

Qm
art Micro flow rate (L/h) through each arteriole

Qm
art Micro flow rate (L/h) through each venule

Rliv:lob Ratio of liver to lobule volume

Qgut Flow rate (L/h) through gut tissue

Qliv Flow rate (L/h) of arterial blood into liver

Cm
i Concentration of within aggregate sinusoid i and each constituent

sinusoid

Cliv Concentration for a well-mixed liver compartment

SCmT Concentration averaged over the lobule

SCmTmax Maximum concentration averaged over the lobule

Cm
i,max Maximum concentration within aggregate sinusoid i

tmax Time at which maximum average concentration is reached

doi:10.1371/journal.pcbi.1000756.t001

Table 2. Lobule Simulation Parameters.

Oral dose 10 mMol

Number of Lobules per Ensemble Analyzed 50

Agent-based model steps per Iteration 8

time per iteration 0.2 h

Total hours simulated 5

Number of Portal Triads 6

Number of Sinusoid starts at central vein 6

Sinusoidal Branching Probability Pbr 10%

Radius of Lobule 15 hepatocytes

diameter of hepatocyte 100 mm (assumed)

Thickness of lobule 23.5 mm [29]

Diameter of sinusoid primitive 25 mm [29]

doi:10.1371/journal.pcbi.1000756.t002

Microdosimetry in a Virtual Hepatic Lobule
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adjacent to each hepatocyte and dividing by the number of

hepatocytes accessing that sinusoid. Though a small fraction of

hepatocytes are exposed to almost no molecules, a continuum

approach appears appropriate.

The maximum concentration in the tissue following a dose is a

commonly used measure of tissue exposure in pharmacokinetics.

For the simulated lobule a local Cm
i,max can be calculated for each

hepatocyte as a result of different sinusoids receiving different

concentrations. Figure 10 shows the distribution of Cm
i,max

experienced by all the hepatocytes in an ensemble of fifty lobules

with intrinsic hepatic metabolic clearance of 10 mL/min/million

hepatocytes. The values have been normalized to the Cmax

predicted for a well-mixed liver with the same overall metabolic

clearance (indicated but the solid line). The peak for the

distribution is in excess of the well-mixed prediction, while the

breadth is quite wide, indicating that at this rate of metabolism

some hepatocytes receive exposures nearly 40% greater than

would be predicted for a well-mixed liver while others receive

almost no exposure.

Ito and Houston [15] summarize a range of intrinsic

metabolism rates including values as low as 1.4 mL/min/million

hepatocytes (caffeine) and as large as 1800 mL/min/million

hepatocytes (propranolol). This wide variability in metabolism

rate has consequences for the variability predicted across the
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Figure 6. A physiologically-based pharmacokinetic model was used to relate oral and inhalation exposure to blood flow into the
liver.
doi:10.1371/journal.pcbi.1000756.g006
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lobule. As shown in Figure 11, the variability in exposure received

by different hepatocytes grows from a few percent to nearly 800%

for a metabolism rate of 1000 mL/min/million hepatocytes. For

rapid metabolism those hepatocytes first exposed to blood from

the portal triad receive eight times the exposure that would be

predicted for a well-mixed liver, while downstream hepatocytes

receive almost no exposure to the parent compound.

Heterogeneity within the lobule is dynamic [34]; a low

metabolism rate may be due to limited distribution of metabolizing

enzymes, while a high rate of metabolism may lead to induction of

enzymes, perhaps heterogeneously. Both of the distributions in

Figure 9 and Figure 10 are broad, indicating that the average

response of the ensemble is not necessarily characteristic of the

response of any one simulated lobule. Given that these and other

variability have been observed, any model of hepatic effect that

depends upon local concentrations, particularly threshold models,

may have a different response for a spatially-extended simulation

than with a well-mixed simulation. The relevance of this

heterogeneity will depend on the parameter regime – for low

metabolism and little variability, the well-mixed approximation is

likely to be sufficient. If large variability is present, e.g. for rapidly

metabolized compounds, it may be crucial to determine which

hepatocytes receive large exposures. This is especially useful for

modeling spatial effects such as the development of lesions in one

region, but not another.

Impact of Microdosimetry on Hepatocellular Responses
We conducted a preliminary analysis of the cellular effects due

to microdosimetry using a simple agent-based model for

hepatocytes. Each agent was defined by a fixed, identical

xenobiotic metabolism rate, and functional states that were

updated at each time step via state transition rules. A simple

approach was used to encode probabilistic state transition rules

conditioned on inputs from the agent environment. Future cellular

models will be able to take better advantage of the freedom to

proliferate and move provided by this approach since flow for a

new arrangement can be determined rapidly by updating the

sinusoid and contact graphs. Here we considered normal

hepatocytes and cell death following exposure to threshold

cytotoxic concentration. The ABM was integrated with the

sinusoidal flow model with each being updated alternately. We

simulated twelve minutes of the flow followed by eight iterations of

the ABM – intended to be sufficiently small time periods for each

model to respond realistically to changes in the other. Experi-

mental verification will be needed to determine the appropriate

time scales.

Given the current cellular model and the predicted increase in

variability with metabolism rate shown in Figure 11, two types of

comparisons were made: a spatially-extended hepatic lobule with

an approximate ‘‘parallel tube’’ model (given by the lobule

geometry in Figure 3a) and variability due to rapid metabolism for

low (1 mL/min/million hepatocytes) and high (1000 mL/min/

million hepatocytes) rates of metabolism. An arbitrary threshold of

chemical concentration has been assumed, above which cell stress

and apoptosis become much more common. Since different

metabolic clearances and lobule geometries lead to different

pharmacokinetics the simulations were normalized by varying the

threshold for enhanced apoptosis – the threshold was set to 110%

of the maximum average lobule concentration predicted for each

configuration.

For a well-mixed lobule, a threshold in excess of maximum

lobule concentration should have no effect. Instead, as shown in

Figure 12 we observed that spatial heterogeneity in toxicant

concentration across the lobule enhanced cell injury before the

chemical was cleared. This effect was not observed in the

approximate parallel tubes model. Enhanced cell death was not

observed at low xenobiotic metabolism rates in the spatially-

extended lobule. Though there is some baseline apoptosis at the

lower metabolism rate, there is roughly five times greater

apoptosis for higher metabolism, i.e. greater variability in

exposure. This suggests that lobular geometry is not solely

responsible for the cell behavior and hepatocyte metabolism is

required for the variability in the cellular response. Variation in

cellular responses is frequently observed [17] and is thus

physiologically relevant. While additional work is required to

evaluate the responses in our model, these findings suggest the

value of spatially extended tissue level models of microcirculation

and cellular dynamics.

Discussion

We have described a microdosimetry model to relate environ-

mental exposures to cellular exposures. This is only a step toward

developing virtual tissues that can predict the in vivo consequences

of chemical exposure based upon in vitro information.

The liver lobule is known to be spatially heterogeneous [18,34].

Zonal differences between central and peripheral hepatocytes

include oxygen availability, hormone concentration, expression of

metabolizing enzymes, (e.g., CYP 3A4), gluconeogenesis, and

glycolysis [18]. One clear conclusion of this modeling work is that

morphology of the liver alone is insufficient to explain the

observed zonation in hepatocyte function or even gradients in

concentration across the lobule. We observed variations that are

driven by the action of hepatocytes, i.e. metabolism, and not by

geometry alone.

A model for a spatially-extended hepatic lobule sets the stage for

investigating emergent behavior in models of hepatocyte function.

If the action of hepatocytes creates spatial variation across the

lobule then any cellular dynamic response that depends on

chemical or nutrient concentration may in turn be altered, which

could be a prelude to zonal patterns of biological functions. More

extreme effects, such as central lobular necrosis, may be due to the

transformation of the compound via metabolism into a more

Table 3. Parameters Used for PBPK Model.

Parameter Value Source

Qcard 336 L/h [43]

Qgut 66 L/h [43]

Qliv 18 L/h [43]

Qgfr 7.5 L/h [43]

Qrest 252 L/h [43]

Bodyweight 70 kg assumed

Lean Fraction of BW 0.7 [19]

Vart, Vven 0.025 L/kg lean bw [19]

Vgut 0.0165 L/kg bw [19]

Vliv 0.035 L/kg lean bw [19]

Vlung 0.27 L [44]

Vrest 0.6 L/kg bw –
(Vart+Vven+Vgut+Vliv+Vlung)

[43]

kad, kinh, Krest:plas, Kliv:plas,
Kgut:plas, Rblood:plas, f

1 assumed

doi:10.1371/journal.pcbi.1000756.t003
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potent compound or zone-dependent variation in sensitivity of the

hepatocytes.

In contrast to the well-stirred model of the liver, the simulated

lobule provides a means of accessing a variety of inter- and

intracellular dynamics. Though the results we obtain are in some

respects similar to previous models, we gain the additional

capability of allowing hepatocyte-specific dosimetry as well as

the potential to alter lobule geometry, e.g. lesions or necrosis, in

response to chemical injury. Since numerical approaches often

allow even large systems of ODEs to be solved much more rapidly

than analogous systems of PDEs [35] and since numerous

algorithms exist for analysis of graphs [36], we believe this

approach is tractable for simulating sub-chronic and chronic

xenobiotic exposure scenarios while preserving mass-balance.

Central VeinCentral Vein

SinusoidsSinusoids

ArteriolesArterioles

Portal Portal VenulesVenules

Figure 7. A physiologic lobule is a three-dimensional polyhedron with a volume between 0.1 and 0.9 mL [8]. Our (quasi-)two-
dimensional simulated lobule is assumed to have a thickness equal to a sinusoidal diameter (23.5 mm [29]). Therefore many identical simulated
lobules in parallel are needed to fill the volume of one physiologic lobule. Blood flow to the simulated lobules is divided by Rliv:lob, the ratio of the
volume of the whole liver to the volume of single lobule.
doi:10.1371/journal.pcbi.1000756.g007
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Because we use a flexible graphical model of tissues, the remaining

micro-anatomic structures (other cell types, extracellular matrix,

bile ducts, etc.) can be included incrementally without significant

changes in our approach.

In contrast to computationally intensive, spatially continuous

approaches such as fluid dynamics, this graph-theoretic approach

has hopefully sacrificed little physiologic detail but gained a great

deal in terms of computational efficiency. Calculating hemodyna-

mical flow on a graph allows rapid determination of flow given

minimal boundary conditions, which will be especially useful for

recalculating flow as morphology changes (e.g. lesion formation) or

as individual sinusoids are temporarily blocked (e.g. Kupffer cells).

A faster dosimetry model allows the focus to center on cellular

phenotypes, which are the key to modeling disease pathogenesis. A

computationally-tractable approach allows for simulating the long

run times associated with sub- and chronic toxicity studies as well

as simulating large populations.

We evaluated our approach to hepatic blood flow in three ways.

First, we qualitatively tuned the appearance of the lobule to match

actual physiology. Second, we compared the predicted pharma-

cokinetics for our spatially-extended lobule with traditional

approaches, finding regimes in which our approach reduced to

the well-mixed liver and the parallel tubes model. Third, we

quantitatively compared the flow predicted for a rat with

observations made in vivo of actual flow. Though all three lines

of evaluations supported our approach, they also all pointed

toward further refinements that may be necessary for simulating

dose-response.

This work addresses the dose portion of the dose-response

curve, allowing assessment of how changes in exposure impact the

hepatic lobule. The greater body of work remains with modeling

response. Sufficiently complex models for hepatocellular dynam-

ics, and eventually models for additional cell types, especially the

Kupffer cells responsible for inflammatory responses, must be

Figure 8. Average concentration throughout lobule for the five morphologies depicted in Figure 3. The ensemble average for all five
lobules is very similar to the well-mixed lobule prediction (indicated by the dashed line) however the different morphologies produce different
whole-liver clearances because the number of hepatocytes as a fraction of the volume of the simulated lobule is geometry-dependent.
doi:10.1371/journal.pcbi.1000756.g008
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developed before we arrive at a useful model for homeostatic liver

function. It remains to be seen whether three-dimensionality or

even a departure from the classical lobule paradigm to simulate

multiple lobules will be needed.

To establish the safety of a compound one ideally finds the

dose-response curve for various toxicity endpoints, so that an

acceptable level of exposure can be determined. Currently the

gold standard of toxicology is animal testing, but the need and

desire for in vitro testing is growing. An in silico model for

predicting dose-response would, at a minimum, provide a screen

for prioritizing compounds that requiring further testing and

perhaps may ultimately be able to predict in vivo consequences for

the large number of compounds for which there is little or no

toxicity data.

The multiscale approach describe here is intended to be fast

and verifiable, and would allow the determination of whether an

observed in vitro response is relevant in vivo. The limitations in

developing a homeostatic model of liver function are not

computational, but biological. Additional data is needed,

especially information on the statistical distribution of lobule

morphology and the determination of cell state in response to

local inputs. This model provides a framework for making use of

two types of readily available data – histopathology slides and in

vitro measures of cell function. In all likelihood direct

comparison to liver toxicology data will be met initially with

more failures than successes, but where we initially fail we will

learn.

Histopathology images have long been used to obtain

information on microanatomic regions, vasculature, individual

cells, cell types, and cell phenotypes from two- and three-

dimensional images. Though traditionally time-intensive, ad-

vances in automated extraction of information from histopa-

Figure 9. The distribution of the number of molecules at each hepatocyte following a total dose of 10 mMol.
doi:10.1371/journal.pcbi.1000756.g009
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thology images are making it possible to analyze these images at

a single cell resolution [37,38,39]. Additionally it is possible to

extract information about the functional state of cells using

cytomorphologic features or molecular markers [40]. Though

cell-scale assay technology is still developing, it will be essential

for fully calibrating and evaluating models such as this in order

to provide simulated in vivo context for the results of in vitro

assays.

True variability in the response of a given hepatocyte is either a

product of independent microdosimetry and cell variability, or is a

function of the two, depending on the degree of correlation. To

determine the significance of a chemical perturbation it is not

enough to understand the cellular dynamics, but also the context

in which those dynamics exist – i.e., microdosimetry.

Methods

Microdosimetry Model of a Lobule
We have implemented a microdosimetry model for relating

whole-body chemical exposures to cell-scale concentrations. The

model is written in the freely available statistical language R,

version 2.8.1 [41].

Generating Sinusoidal Morphology
Given morphologic parameters Nt, the number of portal triads;

Ns, the number of sinusoids per source/sink; Pbranch, the

probability of a sinusoid branching; and Dmax, the size of the

lobule, and calculating hCV is the angle to the central vein, given

current position:

Figure 10. The distribution of maximum concentration experienced by hepatocytes relative to the prediction of a well-mixed PBPK
model (solid line).
doi:10.1371/journal.pcbi.1000756.g010
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1. Place central vein

2. For each of Ns sinusoids:

1. Select initial angle h0
s

2. Place sinusoidal primitive on edge of central vein at h0
s

3. Call the sinusoid placement algorithm (SPA) with hs = h0
s

4. Increment h0
s approximately 2p/Ns

3. For each of Nt portal triads:

1. Select initial angle ht

2. Place a periportal vein at angle ht and distance 0.8*Dmax

3. For each of Ns sinusoids:

1. Select initial angle h0
s = hCV

2. Place a sinusoid primitive on edge of the periportal vein

at h0
s

3. Call SPA with hs = h0
s

4. Increment h0
s approximately 2p/Ns

4. Place an arteriole randomly at the edge of the periportal

vein

5. For each of Ns sinusoids:

1. Select initial angle h0
s = hCV

2. A sinusoid primitive is placed at the edge of the arteriole

at h0
s and the SPA is called with hs = h0

s

3. h0
s is incremented approximately 2p/Ns

Recursive Sinusoid Placement Algorithm (SPA):

Figure 11. The breadth of the distribution of maximum exposure received by individual hepatocytes, i.e. variability in exposure,
grows with the clearance rate. The shaded region indicates the 95% interval.
doi:10.1371/journal.pcbi.1000756.g011
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1. Calculate the potential position of the next sinusoidal primitive

using hs

2. If either the distance from the central vein exceeds Dmax or

the potential location overlaps with a previously placed

sinusoid, then

1. Return

3. If a randomly drawn number [0,1] is less than Pbranch, then

1. Randomly select h’s from the interval [hCV2p/2, hCV+p/2]

2. Call SPA with angle hs = h’s

4. hs is randomly perturbed

5. Call SPA

Reducing the Complexity of the Sinusoidal Graph
The aggregation process is performed using the following

algorithm:

1) All sinusoid primitive nodes are assigned a corresponding

aggregate node (CAN) initially set to NULL

2) For each sinusoid node I adjacent to the central vein, if the

CAN is NULL, then,

a. if the number of sinusoid neighbors Ni
n = 1, a ‘‘dead

end’’ CAN is created,

b. if Ni
n = 2, a ‘‘straight’’ CAN is created

c. if Ni
n.2 a ‘‘branch’’ CAN is created

d. For each neighbor j, If Ni
n = Nj

n then,

i. The CAN for j is set to the CAN for i unless the

CAN is a straight node already consisting of 5

sinusoid primitive nodes

ii. Step 2d is called recursively for node j

3) Repeat step 2 for each arterial and venous source

4) For each branch CAN i,

Figure 12. The predicted number of apoptotic cells, caused by locally exceeding a threshold of 110% of the maximum average liver
concentration, is negligible for a spatially-extended lobule when the metabolism rate is low (lower curve). For a rapidly metabolized
compound (upper curve) variability in exposure causes some apoptosis in the spatially-extended lobule. The shaded region indicates the 95%
interval.
doi:10.1371/journal.pcbi.1000756.g012
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a. For each neighbor j if j is also a branch then CAN i is

absorbed into CAN j

5) For each straight CAN i, if there is now only one neighbor

and that neighbor is a branch CAN, merge i with the

neighbor

6) For each branch CAN i, if there is only one neighbor

convert I into a dead end CAN
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