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Cellular behavior in response to stimulatory cues is governed by information encoded within a complex intracellular
signaling network. An understanding of how phenotype is determined requires the distributed characterization of
signaling processes (e.g., phosphorylation states and kinase activities) in parallel with measures of resulting cell
function. We previously applied quantitative mass spectrometry methods to characterize the dynamics of tyrosine
phosphorylation in human mammary epithelial cells with varying human epidermal growth factor receptor 2 (HER2)
expression levels after treatment with epidermal growth factor (EGF) or heregulin (HRG). We sought to identify
potential mechanisms by which changes in tyrosine phosphorylation govern changes in cell migration or proliferation,
two behaviors that we measured in the same cell system. Here, we describe the use of a computational linear mapping
technique, partial least squares regression (PLSR), to detail and characterize signaling mechanisms responsible for
HER2-mediated effects on migration and proliferation. PLSR model analysis via principal component inner products
identified phosphotyrosine signals most strongly associated with control of migration and proliferation, as HER2
expression or ligand treatment were individually varied. Inspection of these signals revealed both previously identified
and novel pathways that correlate with cell behavior. Furthermore, we isolated elements of the signaling network that
differentially give rise to migration and proliferation. Finally, model analysis identified nine especially informative
phosphorylation sites on six proteins that recapitulated the predictive capability of the full model. A model based on
these nine sites and trained solely on data from a low HER2-expressing cell line a priori predicted migration and
proliferation in a HER2-overexpressing cell line. We identify the nine signals as a ‘‘network gauge,’’ meaning that when
interrogated together and integrated according to the quantitative rules of the model, these signals capture
information content in the network sufficiently to predict cell migration and proliferation under diverse ligand
treatments and receptor expression levels. Examination of the network gauge in the context of previous literature
indicates that endocytosis and activation of phosphoinositide 3-kinase (PI3K)-mediated pathways together represent
particularly strong loci for the integration of the multiple pathways mediating HER29s control of mammary epithelial
cell proliferation and migration. Thus, a PLSR modeling approach reveals critical signaling processes regulating HER2-
mediated cell behavior.
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Introduction

Recent advances in mass spectrometry have enabled the
extensive characterization of intracellular signaling networks
[1,2]. Coupled with the increasing appreciation that cell
behavior is governed by a network of signaling events, these
advances have been used to identify novel elements of
network activation giving rise to cell behavior. Identification
of such elements in the past has largely been accomplished in
a nonstructured way through the manual parallel comparison
of fold-change phosphorylation and cell phenotype [3,4]. We
sought to use a mathematical formalism based on linear
mapping to draw predictive connections between cell
behavior (migration and proliferation) and a mass spectrom-
etry dataset describing changes in intracellular tyrosine
phosphorylation as human epidermal growth factor receptor
2 (HER2) was overexpressed under a variety of ligand
treatment conditions.

HER2, a member of the ErbB family of receptors, is
overexpressed in ;30% of breast cancer patients and
correlates with poor prognosis and high invasiveness [5].
Other members of the ErbB receptor family include
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epidermal growth factor receptor (EGFR), human epidermal
growth factor receptor 3 (HER3), and HER4. These receptors
give rise to one of the most extensively studied signaling
networks in biology through a variety of ligand binding and
dimerization schemes [6,7]. Epidermal growth factor (EGF)
and heregulin (HRG), two ErbB family ligands, have been
shown to induce both proliferation and migration to varying
extents in breast cancer cells, although the signaling
mechanisms responsible for this are not fully understood
[8,9]. EGF predominantly binds EGFR to induce both EGFR
homodimers and EGFR–HER2 heterodimers, whereas HRG
predominantly binds HER3 and HER4, inducing HER2–HER3
and HER2–HER4 heterodimers. To obtain a dynamic and
quantitative description of intracellular signaling in response
to treatment with EGF or HRG and changing HER2 levels, we
employed a mass spectrometry approach that measured levels
of tyrosine phosphorylation on both receptors and other
intracellular signaling molecules. Cell migration and prolif-
eration were also quantified under the same treatment
conditions [10]. Partial least squares regression (PLSR), a
technique previously shown to be useful for the creation of
signal–response models based on highly dimensional datasets,
was used to correlate phosphorylation events to both
migration and proliferation [10].

In this study, we significantly extend our previous analysis
of HER2-mediated signaling and cell function by using a
PLSR model to identify a reduced set of phosphorylation
measurements and computational rules that together can be
used to predict a priori cell migration and proliferation. We

also characterize ligand-specific changes in cell signaling
that govern migration and proliferation through the novel
application of inner product analysis. Specifically, we derive
lists of the most important phenotypically relevant proteins
characterizing each of 30 possible transitions between our
six cell conditions (EGF, HRG, and serum-free treatments in
both low and high HER2-expressing cells). Inspection of the
lists reveals both regulatory signaling cascades consistent
with known HER2 biology and novel hypotheses. Using a
conceptually similar procedure, we also derived lists of
proteins that uniquely correlated with either migration or
proliferation, postulating that these proteins serve as
migration- or proliferation-specific signals in our system.
Finally, we analyzed the PLSR model to derive a subset of
phosphorylation sites most informative for the quantitative
prediction of migration and proliferation. We identified
nine phosphosites (signals) on six proteins from the original
62 phosphosites (signals), and showed that a model based on
only those nine sites had a goodness of fit to experimental
data similar to the full model. We identify the nine signals
as a ‘‘network gauge,’’ a subset of molecules in the vast
network of signaling molecules that together serve as a
sensitive readout for cellular response. The nonobvious
nature of the nine selected signals highlights the complexity
of the network and the usefulness of the modeling
approach. Analysis of the network gauge suggests that two
elements of network architecture, endocytosis and phos-
phoinositide 3-kinase (PI3K)-related signaling, are highly
informative loci for the control of proliferation and
migration. Importantly, models constructed from both the
full and network gauge signaling data that were trained only
on data from a low HER2-expressing cell line predicted
levels of migration and proliferation in a HER2-over-
expressing cell line for both EGF and HRG treatments.
This suggests that both cell types process information in the
signaling network according to the same set of multilinear
rules.

Results

Mass Spectrometry Approach Measures 62 Intracellular
Signals in Human Mammary Epithelial Cells
As previously described, we developed and employed a

mass spectrometry approach to measure the effect of HER2
overexpression in 184A1 human mammary epithelial cells
(HMEC) [10]. Two closely related cell lines with known
receptor expression levels were used; a parental cell line (P)
with 200,000 EGFR, 20,000 HER2, and 20,000 HER3, and a
HER2-overexpressing cell line (24H) with 200,000 EGFR,
600,000 HER2, and 30,000 HER3 per cell [10]. Both cell lines
have very low levels of HER4. Thus, the 24H cell line was used
to assess effects of HER2 overexpression, with the parental
cell line serving as a baseline for these measurements. HMECs
were treated with saturating levels of EGF or HRG, and under
each treatment condition the tyrosine phosphorylation of 62
phosphosites was quantified at 0, 5, 10, and 30 min. Figure 1
displays the 248 time courses collected. Our measurements
revealed the dynamic activation of molecules commonly
associated with ErbB signaling (e.g., extracellular regulated
kinase 1 [ERK1] and SH2-containing protein [Shc]) and
others less commonly associated with the ErbB network (e.g.,
human transferrin receptor [TfR], ephrin A2 receptor
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Author Summary

Cells in the human body interpret extracellular information to
‘‘decide’’ on the execution of particular behaviors such as migration,
proliferation, and differentiation. Many diseases, such as cancer,
occur when these decision-making processes are compromised. The
transfer of extracellular information to the intracellular space is often
accomplished through receptor proteins whose chemical properties
are altered as extracellular conditions change. These receptors
transfer information in the intracellular space through the transfer of
phosphate groups from one molecule to another. In particular, the
transfer of phosphate groups to tyrosine sites is critical for cellular
signaling. How the cell decides to execute a particular behavior on
the basis of many changing phosphorylation events, however, is not
understood. Here, we apply a computational approach to under-
stand and predict how cells make the decision to migrate and
proliferate as extracellular information changes. In particular, we
wanted to understand the basis of decision-making processes in
cells overexpressing a receptor protein called human epidermal
growth factor receptor 2 (HER2). This receptor is overexpressed in
;30% of breast cancer patients and correlates with poor prognosis.
Taking advantage of a recently published dataset that quantified
tyrosine phosphorylation events in HER2-overexpressing cells, we
created models to understand and to predict HER2-mediated
changes in migration and proliferation. The model identified small
subsets of measured phosphorylation events that are predictive of
changes in behavior with HER2 overexpression. Analysis of the
phosphorylated subset of proteins implicated certain cellular
processes as being crucial for cellular decision making, and
suggested potential biomarkers and targets for therapeutic use in
HER2-overexpressing cancers. Further application of our technique
should aid in the understanding of cellular decision processes from
large sets of cell signal and behavior data.

Modeling HER2 Effects on Cell Behavior



[EphA2], and the previously unidentified KIAA 1217).
Comparison with previously published maps of ErbB and
migration-associated signaling networks reveals broad net-
work coverage with the 62 measured signals [7,11].

Cell Proliferation and Migration Are Differentially Affected

by HER2
Cellular migration and proliferation were measured under

the same conditions described above [10]. HER2 overexpres-
sion correlates with increased cell migration under all ligand-
stimulating conditions (Figure 2A). EGF treatment increased
the rate of migration for both cell lines by the highest
absolute amount, whereas HRG treatment did not increase
migration as compared with the serum-free case in either cell
line. In contrast to migration, proliferation was not signifi-
cantly altered by HER2 overexpression (Figure 2B). Both
HRG and EGF increased proliferation above serum-free
levels, with EGF stimulating the highest absolute amount of
proliferation [10].

Model Analysis Reveals Phenotype-Relevant Signaling
Sets That Characterize Ligand and Receptor Expression
Transitions
A model based on PLSR was created to linearly regress

signaling metrics onto cellular migration and proliferation
metrics ([10] and Methods). The model accurately recapitu-
lated experimental data and had a goodness of prediction
(Q2) of 0.89 (Figure S1). Each signal comprised four metrics:
the 5, 10, and 30 min phosphorylation levels, and the integral
of the time course from 0 to 30 min. The integral was used as
a measure for total phosphorylation. The 0-min time point
was included in the row of serum-free observations (see
Methods).
Decomposition via PLSR of the signal (X) and response (Y)

datasets provided a reduced-dimension map (called the
scores vector t, see Methods) on which network signaling
changes in response to ligand or receptor perturbation could
be interpreted. The plot axes (referred to as principal
components) are linear combinations of the signaling metrics

Figure 1. A Mass Spectrometry Approach Measured 248 Phosphorylation Profiles

The title at the top of each entry indicates the phosphosite measured. Median normalized phosphorylation (see Methods) is plotted at 0, 5, 10, and 30
min. For each phospho-site, four conditions were measured: parentalþHRG (80 ng/ml), 24HþHRG (80 ng/ml), parentalþ EGF (100 ng /ml), and 24Hþ
EGF (100 ng/ml). Error bars indicate 6 standard deviation. The data were obtained from [10].
doi:10.1371/journal.pcbi.0030004.g001
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described above. Figure 3 plots the changes corresponding to
ligand or receptor perturbation on a two-dimensional graph
whose axes are the first two principal components (the third
component, which captures only 4% of the Y-block variance
described by the full model, is omitted here for ease of
visualization). The plot shows, as expected, that HRG treat-
ment stimulates the signaling network distinctly from the
EGF treatment case. If HRG treatment activated the same set
of signals as EGF with different magnitudes, we would observe

the þEGF and þHRG vectors overlapping, with one being
longer than the other. Since HRG and EGF drive the
formation of different HER dimers (i.e., HER3–HER2 versus
EGFR–HER2 or EGFR–EGFR), we expect differential activa-
tion of the signaling network. Interestingly, the difference
between EGF and HRG signaling is larger in 24H cells relative
to parental cells as indicated by the offset of the two vectors
(77 degrees versus 37 degrees, respectively), due in large part
to a drastic shift in EGF-induced signaling with HER2

Figure 2. HER2 Overexpression Affects Migration but Not Proliferation

Parental (black) and 24H (red) data shown for: (A) migration, as measured by a wound healing assay, and (B) proliferation, as measured by [3H]
thymidine incorporation. Migration error bars represent the 95% confidence intervals for the fit of the slope using linear regression. Proliferation error
bars represent the standard deviation from four different biological replicates for each condition. The data were obtained from [10].
doi:10.1371/journal.pcbi.0030004.g002

Figure 3. PLSR-Generated Scores Plot Reveals Different Signaling Strategies for EGF and HRG

(A) A scores plot identifies separation in signaling strategies associated with receptor overexpression or differential ligand treatment along two
signaling axes.
(B) HRG and EGF treatment give rise to different sets of signals, and the difference is exaggerated in 24H cells.
(C) The linear superposition of the difference vector between 24H and parental serum-free conditions and each ligand’s vector explains 24H þ HRG
signaling but not 24Hþ EGF signaling.
doi:10.1371/journal.pcbi.0030004.g003
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overexpression (Figure 3B). If we linearly superpose changes
in signaling due to HER2 overexpression in the absence of
ligand (i.e., the signaling changes under serum-free condi-
tions between P and 24H cells) and the changes in signals as
we add a ligand (i.e., signaling changes as either HRG or EGF
are added to P cells), we can approximate the signals
generated by 24H cells under HRG treatment (Figure 3C).
We cannot do the same, however, for 24H cells under EGF
treatment, emphasizing the nonadditive interplay between
changes in cellular ligand–receptor conditions and the signals
they generate (Figure 3C). In the case of our HMEC system,
previous quantitative measurement and modeling of dimer
kinetics has shown that HER2 overexpression in the presence
of HRG leads to a relatively small shift in the number of
HER2–HER3 dimers (;10,000). Alternatively, HER2 over-
expression in the presence of EGF leads to a large increase in
EGFR–HER2 dimers (;150,000) and a decrease in EGFR
homodimers (;65,000) [10]. Changes in signaling with HER2
overexpression under serum-free conditions could be due to
either spontaneous homodimerization or autocrine signaling.
Thus, given our analysis of the scores plot, we hypothesize
that increases in HER2 under HRG treatment principally add
to the signaling network through the independent addition of
signals generated through HER2 homodimerization or auto-
crine signaling. HER2 overexpression under EGF treatment,
however, results in the addition of these signals plus a novel
suite of signals generated primarily through an increase in
EGFR–HER2 dimers and loss of EGFR homodimers. These
data support a previous finding that increasing levels of
phosphorylated EGFR and HER2 induce novel signaling
elements associated with lower affinity intracellular recep-
tor–protein binding [12].

Although the scores plots allow us to visualize signaling
changes, it is often of interest to relate observed differences
back to original measured signaling metrics. We accomplish
this by taking the inner product of any vector in the scores
plot with the principal component axes, and thereby derive
lists of proteins that most strongly correlate with the
transition associated with the vector (see Methods). Figure 4
outlines this approach and indicates the 30 cell state
transitions analyzed. We discuss here a subset of those
transitions, but all results are available in Dataset S1.
HER2 overexpression in the presence of EGF, as discussed

above, produced interesting signal network changes and
increased cell migration but did not affect cell proliferation
(see Figure 2). Using our approach, we identified proteins
correlating most positively with HER2-associated increases in
motility under EGF treatment (Table 1). HER2 phosphor-
ylation at tyrosine 1248 and that of Crk-associated substrate
(p130Cas) at tyrosine 327 feature prominently in the list,
agreeing with previous reports linking the HER2-specific
activation of p130Cas to increased invasion in breast
epithelial cells [9]. Another protein listed is annexin A2 (also
known as lipocortin 2), a molecule previously known to
mediate cytoskeletal–membrane interactions, therefore link-
ing it to critical processes governing cell migration [13].
While expression of annexin A2 has been found to decrease
or increase cell migration, depending on the cell system, little
is known about how its phosphorylation correlates with cell
migration [14,15]. Here, we speculate that annexin A2 is part
of the mechanism that increases cell migration under HER2
overexpression in the presence of EGF, and we identify a
novel phoshorylation site, tyrosine 237, that may regulate its
role in the activation of migration. Phosphorylation of the
SH2 domain–containing phosphatase SHP-2, another mole-
cule that appears in Table 1 multiple times, has been shown
to increase cell migration in breast cancer cells, although
connection to particular phosphorylation events has been
sparse [16]. Here we implicate the tyrosine 62 site in SHP-29s
activation and eventual effect on cell migration. Interestingly,
SHP-2 and annexin A2 have been found to complex in
endothelial cells, suggesting the possible presence of a co-
regulatory scheme in our HMEC system [17].
A list of proteins most negatively correlated with pheno-

type includes all measurements of EGFR phosphorylated at
tyrosine 1173 as well as Src, which has been shown to
phosphorylate EGFR tyrosine 1173 (Table 2, [18]). These
molecules exhibit decreased phosphorylation in response to
increasing HER2 expression and concomitant increases in
migration under EGF treatment. The tyrosine 1173 site on
EGFR has been shown to recruit SH2 domain–containing
phosphatase SHP-1, which helps coordinate EGFR dephos-
phorylation and mitogen-activated protein kinase deactiva-
tion [19]. We speculate that decreased tyrosine 1173
phosphorylation is part of the mechanism through which
HER2 increases the downstream signaling governing in-
creased migration.
Next, we sought to understand the effect of changing ligand

under given receptor expression levels (Tables 3 and 4).
Substitution of EGF for HRG with 24H cells increases both
proliferation and migration, although the absolute increase in
migration is greater (Figure 2). Interestingly, many proteins
that negatively correlate with this transition are linked to the
migration-relevant p130Cas pathway (Table 4). This pathway

Figure 4. A Strategy for the Study of 30 Possible Cellular Transitions

Each arrow represents the difference vector between two cell states. The
changes in the signaling network associated with the transition between
the two states are calculated by taking the inner product of the
difference vector with the weights vector (see Methods).
doi:10.1371/journal.pcbi.0030004.g004
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includes Src and its substrates focal adhesion kinase (FAK) and
p130 Cas [FAK also phosphorylates p130Cas] [20,21]. Counter-
intuitively, then, EGF appears to negatively regulate a classical
migration pathway to increase cell migration. The new EGF-
stimulated signals not only increase migration but prolifer-
ation as well. In Table 3, we observed proteins previously
linked in the literature to migration (e.g., annexin A2,
glucocorticoid receptor DNA binding factor 1 [GRF1]), and
others linked to proliferation (EGFR, desmocollin-3 [Dsc3a])
[7,10,13]. KIAA 1217 is a previously unidentified protein that
warrants further investigation for its potential role in EGF-
mediated proliferation and migration.

As mentioned above, the signaling changes associated with
increased HER2 expression in the presence of HRG are very
similar to the same change under serum-free conditions. In
both cases, HER2 overexpression leads to an increase in
migration but not proliferation. Signaling metrics that
positively correlate with this transition include p130Cas and
FAK, indicating that increased migration may be mediated
through this migration-associated pathway (Tables 5 and S1).
Serine/threonine protein kinase PRP4 homolog (PRP4K) and
protein tyrosine phosphatase receptor type A (PTPRA) are
two additional molecules that correlate with increased
migration suggesting a novel role for both in HER2-mediated
migration. Activation of these molecules, as mentioned
above, may be due to spontaneous HER2 homodimerization
or autocrine signaling. Considering Table 6, we note that
phosphorylation of EGFR tyrosine 1173 negatively correlates
with the increase in migration, just as we observed for HER2
overexpression in the presence of EGF. HRG treatment,
however, is generally not thought to regulate EGFR phos-
phorylation, and the presence of tyrosine 1173 in Table 6
suggests that HER2 overexpression in the presence or
absence of HRG drives migration through autocrine signaling
that activates EGFR–HER2 heterodimers. Indeed, we have

shown that there is a measurable but low amount of
transforming growth factor alpha (TGF-a) produced by both
the parental and 24H cells (personal communication, Lisa
Joslin and Douglas Lauffenburger), thus pointing to a
potential mechanism for autocrine-induced signaling
changes.

A Nine-Signal Reduced Model Recapitulates Full-Model
Performance
A reduced model based on a fraction of the 62 originally

measured phosphorylation sites would be useful for the
future study of HER2 effects when full network measurement
is not possible. Analysis of the model revealed nine
phosphorylation sites on six proteins that recapitulated the
performance of the full model. We refer to this subset of
signals as a ‘‘network gauge’’: a small number of phosphor-
ylation sites that together can be interrogated to predict
levels of proliferation and migration. To rank phosphor-
ylation events according to their importance in the full
model, we used a weighted sum of squares technique (see
Methods). Phosphorylation sites whose metrics appeared
more than once in a list of the top 30 weighted sum of
squares metrics were selected for the reduced model. Using
this method, phosphorylation sites on the following six
proteins were identified as important: TfR, annexin A2,
activated cdc42-associated kinase (ACK), SH2-containing
inositol polyphosphate 5-phosphatase (SHIP-2), SH2-con-
taining protein (Shc), and solute carrier protein 38 (SCF38,
also known as SNAT2 or ATA2). All measured tyrosine
phosphorylation sites were included for these molecules
except for the tyrosine 237 site on annexin A2, since it was
not represented at any time on the top 30 list. A model
generated with this six-protein set had an excellent goodness
of fit to experimental data compared with the full model
(Figure 5). In addition, the reduced model maintained a high

Table 2. Signaling Metrics Most Negatively Correlated with
Changes in Cellular Response due to Increased HER2 Expression
under EGF Stimulation

Phosphorylation Site (24H ! P, EGF) Measurement Type

Paxillin S/Y 84/88 30 min

IGF1R Y 1161 Integral

IGF1R Y 1165 Integral

EGFR Y 1173 5 min

Dsc3a Y 818 Integral

Paxillin S/Y 84/88 5 min

FAK Y 576 Integral

EGFR Y 1173 30 min

EGFR Y 1173 Integral

EGFR Y 1173 10 min

FAK Y 576 30 min

Dsc3a Y 818 30 min

Src Y 418 Integral

Dsc3a Y 818 10 min

GIT1 Y 545 5 min

IGF1R Y 1161 30 min

FAK Y 576 5 min

IGF1R Y 1165 30 min

Src Y 418 5 min

Src Y 418 30 min

doi:10.1371/journal.pcbi.0030004.t002

Table 1. Signaling Metrics Most Positively Correlated with
Changes in Cellular Response due to Increased HER2 Expression
under EGF Stimulation

Phosphorylation Site (P ! 24H, EGF) Measurement Type

p130Cas Y 327 10 min

p130Cas Y 327 30 min

SHP-2 Y 62 30 min

SHP-2 Y 62 10 min

PRP4K Y 849 30 min

EphA2 Y/Y 588/594 5 min

SHP-2 Y 62 5 min

HER2 Y 1248 30 min

An A2 Y 237 30 min

HER2 Y 1248 10 min

LDLR Y 845 30 min

HER2 Y 1248 5 min

EphA2 Y 575 10 min

LDLR Y 845 5 min

PTPRA Y 798 30 min

PTPRA Y 798 10 min

An A2 Y 237 10 min

PRP4K Y 849 5 min

HER2 Y 1248 Integral

An A2 Y 237 5 min

doi:10.1371/journal.pcbi.0030004.t001
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goodness of prediction (Q2 ¼ 0.95). A model based on the
bottom-30 ranked metrics had a goodness of fit less than 0.30
to experimental data, suggesting that our ranking appropri-
ately isolated highly informative sets of phosphorylation
metrics.

The somewhat surprising makeup of the network gauge
prompted further investigation into why these six proteins
were so informative. Shc’s tyrosine site at 239/240 regulates
c-myc activation; its tyrosine site at 317 regulates mitogen-
activated protein kinase activation; and its phosphotyrosine-
binding domain is known to associate with phosphatidyli-
nositol-3,4,5-trisphosphate (PIP3), although it is not known
how Shc’s binding affinity for PIP3 changes with tyrosine
phosphorylation [22]. Thus, tyrosine phosphorylation of Shc
affects multiple important signaling pathways, leading us to
speculate that the dynamic and quantitative measurement of
Shc at both tyrosine phosphosites may serve as a sensitive
indicator for the ultimate activation of pathways important
for proliferation and migration. The aforementioned annex-
in A2, a target of kinases such as Src and protein kinase C,
has been found to mediate membrane–cytoskeleton inter-
actions, and its knockdown has been linked to decreased
invasiveness in human glioma cell lines [23]. Annexin A2
clusters strongly with migration in the reduced model,
revealing its role as a relatively migration-specific predictor.
TfR endocytosis brings iron into the cell and is stimulated by
tyrosine 20 phosphorylation [24]. Introduction of iron into
the cell can be a major regulator of cell proliferation and
growth, and TfR has also been linked to migration in
endothelial cells [25,26]. Moreover, TfR has been shown to
partially traffic with EGFR, although it may internalize via a
different mechanism [27–29]. To our knowledge, this is the

first report of EGF-stimulated TfR phosphorylation and
regulation via HER2 expression, and we hypothesize that
tyrosine phosphorylation of TfR is a reliable indicator of
endocytic regulation in our system. ACK, downstream of
cdc42, has been shown to bind clathrin and to regulate TfR
trafficking, implicating it also as a part of the endocytosis
readout [30]. ACK has additionally been shown to be an early
transducer of EGFR signaling and to negatively regulate cell
adhesion through the CrkII-p130Cas pathway, a pathway
shown above to be important in HER2-mediated migration
[9,31,32]. SHIP-2 is a phosphatase that acts on PIP3 and has
been found associated with filamin and actin, implicating it
directly in the regulation of both PI3K signaling pathways
and cell migration [33]. Additionally, SHIP-2 regulates EGFR
trafficking and associates with Shc in response to EGF
binding, further suggesting that SHIP-2 phosphorylation is a
sensitive readout for a wide variety of different signaling
responses [34,35]. SCF38 is a System A amino acid trans-
porter that responds to growth factor signaling [36]. Insulin
stimulation leads to the recruitment of SCF38 to the cell
membrane through a PI3K-dependent signaling mechanism
that coordinates its trafficking from the endosomal compart-
ments [37]. Little is known about potential roles for SCF38 in
ErbB signaling, but based on our model results, further
biochemical studies are warranted.
Two interesting themes, then, emerge from the network

gauge findings: (a) the inclusion of a group of molecules
linked to endocytosis, namely TfR, ACK, and SHIP-2; and (b)
the high proportion of molecules known to interact with
PI3K or PIP3, namely Shc, SHIP-2, TfR, and SCF38. We will
elaborate further on these themes in the Discussion section.

Table 4. Signaling Metrics Most Negatively Correlated with
Changes in Cellular Response due to Varying Ligand Exposure in
Cells with High HER2 Expression

Phosphorylation Site (EGF ! HRG, 24H) Measurement Type

FAK Y 576 10 min

P38 A Y 182 30 min

p130Cas Y 249 30 min

p130Cas Y 234 30 min

IGF1R Y 1161 30 min

GRF1 Y 1105 30 min

p130Cas Y 249 10 min

Paxillin Y 118 5 min

BCAR3 Y267 30 min

Src Y 418 30 min

p130Cas Y 387 10 min

p130Cas Y 387 30 min

FAK Y 576 5 min

Src Y 418 5 min

FAK Y 576 30 min

p130Cas Y 234 5 min

p130Cas Y 387 5 min

BCAR3 Y267 5 min

p130Cas Y 327 5 min

p130Cas Y 249 5 min

Analyzed results from PLSR-generated scores plot reveals the 20 signaling metrics most
negatively correlated with changes in 24H cell behavior when HRG stimulation (80 ng/ml)
is substituted with EGF stimulation (100 ng/ml).
doi:10.1371/journal.pcbi.0030004.t004

Table 3. Signaling Metrics Most Positively Correlated with
Changes in Cellular Response due to Varying Ligand Exposure in
Cells with High HER2 Expression

Phosphorylation Site (HRG ! EGF, 24H) Measurement Type

GRF1 Y 1105 10 min

KIAA1217 Y 393 5 min

KIAA1217 Y 393 10 min

ITGB4 Y 1207 30 min

Caveolin 1 Y 14 5 min

EGFR Y 1068 30 min

Plakophilin 3 Y 176 5 min

Ack Y 857 30 min

Caveolin 1 Y 14 30 min

EGFR Y 1068 10 min

GRF1 Y 1105 5 min

An A2 Y 29 30 min

EGFR Y 1068 5 min

An A2 Y 29 5 min

SHIP-2 Y 986 5 min

EGFR Y 1148 5 min

SHIP-2 Y 986 10 min

Dsc3a Y 818 5 min

Ephrin-B2 Y 304 5 min

Ack Y 857 5 min

Analyzed results from PLSR-generated scores plot reveals the 20 signaling metrics most
positively correlated with changes in 24H cell behavior when HRG stimulation (80 ng/ml)
is substituted with EGF stimulation (100 ng/ml).
doi:10.1371/journal.pcbi.0030004.t003
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Models Based on Parental Cell Data Alone Accurately

Predict the Effects of HER2 Overexpression on

Proliferation and Migration

We investigated whether the full model and the network
gauge trained only on parental cell data could predict
migration and proliferation levels in response to HER2
overexpression. We trained models on parental serum-free,
EGF, and HRG data, performed PLSR to calculate regression
coefficients, and then used the measured 24H signal values in
the regression equation to predict proliferation and migra-
tion. We found that both the full 62-signal model and the
network gauge were able to predict proliferation and

migration in 24H cells (R � 0.99, Figure 6, Figure S2).
Although the model does not match the migration or
proliferation results exactly in terms of absolute quantities,
it captures salient trends such as the sharp increase in
migration under EGF treatment for 24H cells and the trend
of increasing proliferation when HRG is substituted with
EGF. Interestingly, the model also predicts a slightly
decreased amount of migration under HRG stimulation in
comparison with the serum-free condition, which corre-
sponds to the lack of HRG-mediated migration observed
experimentally. The predictive capability of the model
indicates that although HER2 overexpression changes intra-
cellular signals drastically, the rules by which those signals are

Figure 5. A Linear Model Based on Nine of the Original 62 Signals Recapitulates Experimental Data and Matches Full Model Performance

Results from PLSR modeling show that a computational model based on six signals generates predicted values of cellular migration and proliferation that
correlate strongly with those predicted by the full model and experimentally measured values. Experimental values of migration (A) or proliferation (B)
are graphed along the ordinate, and full-model predictions (black) and reduced-model predictions (red) of migration (A) or proliferation (B) are given
along the abscissa. R2 values indicate the data’s goodness of fit to the line y¼ x. Experimental error bars denote 95% confidence intervals for migration
(see Methods) and 6 standard deviation for proliferation. All computational error bars are calculated from jack-knifing as a standard error.
doi:10.1371/journal.pcbi.0030004.g005

Table 6. Signaling Metrics Most Negatively Correlated with
Changes in Cellular Response due to Increased HER2 Expression
under HRG Stimulation

Phosphorylation Site (24H ! P, HRG) Measurement Type

KIAA1217 Y 393 10 min

IGF1R Y 1161 30 min

Paxillin S/Y 84/88 30 min

Dsc3a Y 818 Integral

Caveolin 1 Y 14 10 min

CrkL Y 132 10 min

EGFR Y 1148 10 min

GIT1 Y 545 5 min

STAT3–2 Y 704 30 min

GRF1 Y 1105 10 min

IGF1R Y 1165 30 min

EGFR Y 1173 30 min

Src Y 418 10 min

EGFR Y 1173 5 min

EGFR Y 1173 Integral

EGFR Y 1173 10 min

Src Y 418 5 min

Dsc3a Y 818 30 min

Dsc3a Y 818 10 min

Src Y 418 30 min

doi:10.1371/journal.pcbi.0030004.t006

Table 5. Signaling Metrics Most Positively Correlated with
Changes in Cellular Response due to Increased HER2 Expression
under HRG Stimulation

Phosphorylation Site (P ! 24H, HRG) Measurement Type

p130Cas Y 327 10 min

p130Cas Y 327 30 min

PRP4K Y 849 30 min

PTPRA Y 798 30 min

p130Cas Y 387 10 min

PTPRA Y 798 5 min

p130Cas Y 234 10 min

PI3KR2 Y 464 30 min

PTPRA Y 798 10 min

SHP-2 Y 62 5 min

EphA2 Y/Y 588/594 5 min

SHP-2 Y 62 10 min

p130Cas Y 387 30 min

FAK Y 397 30 min

PRP4K Y 849 5 min

EphA2 Y 575 10 min

EphA2 Y 588 30 min

SHP-2 Y 62 30 min

RAIG1 Y 347 5 min

HER2 Y 1248 30 min

doi:10.1371/journal.pcbi.0030004.t005
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brought together to affect proliferation and migration, as
defined by PLSR, remain the same as in the parental cells.

PLSR Analysis Reveals Signals That Uniquely Correlate
with Migration and Proliferation

Identification of molecules highly, but uniquely, associated
with either proliferation or migration are of value when
considering strategies to inhibit one behavior without
affecting the other. We previously reported the top 20 signals
associated with migration and proliferation through an
analysis of reduced-dimension PLSR plots [10]. Interestingly,
however, we noted that most signals having a high projection
for one output have a nonzero projection for the second
output. Thus, the importance of a signal with respect to
cellular phenotype is a quantitative assessment, and we can
derive behavior-specific protein metrics by ranking the inner
product of the metric and the relevant behavior after the

inner product of that same metric with the second behavior
has been subtracted (Methods). Tables 7 and 8 list the
phosphorylation sites that most strongly and uniquely
correlate with migration and proliferation, respectively.
Table 7 indicates that attractive migration-specific targets
include annexin A2 237 and HER2 1248 tyrosine phosphor-
ylation. Likewise, Table 8 indicates that Dsc3a or catenin-d1
are good targets for proliferation-specific inhibition. If the
goal is to perturb one behavior without perturbing the other
at all, then the corresponding protein targets could be
calculated by making a list of proteins that had close to zero
projection along the output one desired not to affect. The
problem with this strategy is that the projection along the
behavior one desires to affect may be small as well.
Table 9 lists proteins that positively correlate with both

outputs to the greatest degree (i.e., the sum of the inner

Figure 6. A Reduced-Signal PLSR Model Based Only on Parental Cell Data Predicts 24H Proliferation and Migration

A PLSR model of nine signals constructed from parental cell data only was used to predict (A) proliferation and (B) migration levels in 24H cells and then
compared with measured experimental values. Experimental error is denoted by 95% confidence intervals for cell migration (see Methods) and 6
standard deviation for cell proliferation. Computational error bars were calculated as the 95% confidence intervals based on jack-knifing.
doi:10.1371/journal.pcbi.0030004.g006

Table 7. Analysis Results of PLSR X-Y Loadings Plot Reveals the
20 Signaling Metrics Most Uniquely Correlated with Migration

Phosphorylation Site (Migration-Specific) Measurement Type

GRF1 Y 1105 5 min

LDLR Y 845 10 min

EphA2 Y/Y 588/594 30 min

Erbin Y 1104 5 min

An A2 Y 23 5 min

Erbin Y 1104 10 min

An A2 Y 237 10 min

EphA2 Y 588 10 min

PZR Y 263 5 min

SHB Y 355 5 min

Src Y 418 5 min

TfR Y 20 10 min

An A2 Y 237 5 min

HER2 Y 1248 Integral

HER2 Y 1248 5 min

PI3KR2 Y 464 5 min

ITGB4 Y 1207 10 min

An A2 Y 237 30 min

PTPRF Y 308 5 min

KIAA1217 Y 393 5 min

doi:10.1371/journal.pcbi.0030004.t007

Table 8. Analysis Results of PLSR X-Y Loadings Plot Reveals the
20 Signaling Metrics Most Uniquely Correlated with Proliferation

Phosphorylation Site (Proliferation-Specific) Measurement Type

Dsc3a Y 818 30 min

Dsc3a Y 818 10 min

Dsc3a Y 818 Integral

EGFR Y 1173 Integral

EGFR Y 1173 10 min

Paxillin S/Y 84/88 30 min

EGFR Y 1173 30 min

Paxillin S/Y 84/88 Integral

Catenin d1 Y 228 Integral

CrkL Y 132 Integral

Catenin d1 Y 228 30 min

CrkL Y 132 10 min

Paxillin S/Y 84/88 5 min

EGFR Y 1173 5 min

GRF1 Y 1105 Integral

p130Cas Y 327 10 min

P38 A Y 182 5 min

EphB1 Y 600 Integral

p130Cas Y 387 10 min

P38 A Y 182 Integral

doi:10.1371/journal.pcbi.0030004.t008
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products with both migration and proliferation). While there
exists some redundancy with the migration and proliferation
lists we published earlier ([10]), as expected, novel proteins
such as p130Cas, FAK, and PRP4K have an elevated
importance when their effects on migration and proliferation
are summed. Although p130Cas is usually associated with
control of invasion and cell motility in HER2–overexpressing
breast epithelial cells, recent reports link it to proliferative
control in HER2-dependent mammary epithelial tumori-
genesis [38]. FAK phosphorylated at the tyrosine 576 site also
appears on the list while being absent from the individual
migration or proliferation lists. FAK regulates breast cancer
cell migration and invasion, and also plays a role in cell cycle
and proliferative control, although evidence for the latter
role has been sparse in HER2-overexpressing systems [39–41].
Here, we hypothesize that FAK plays a critical role in the
control of both proliferation and migration in the HMEC cell
line, and taken together with the appearance of p130Cas and
Src, we hypothesize that the well-described Src–FAK–Cas
pathways play an essential role in the control of both
proliferation and migration in HMEC cells. This activity
could be captured by our network gauge in numerous ways.
For instance, information about Src activity may be included
via annexin A2 phosphorylation levels.

Table 10 lists the 20 proteins that demonstrated weakest
correlation with both migration and proliferation (i.e., the
sum of their projections along both behaviors were small).
The list is of some interest for two reasons: (a) some of the
proteins are also listed in Tables 7–9, but at different times or
at different phosphorylation sites (i.e., FAK or p130Cas),
indicating the need for phospho-specific, time-resolved data;
and (b) the presence of some proteins presumed to be of
substantial relevance to HER2- associated signaling, such as
ERK. The reason ERK is not important for the model here is

that its variance upon receptor or ligand perturbation does
not consistently linearly correlate with consequent prolifer-
ation or migration measures across all conditions. Nonethe-
less, we have observed that treatment with mitogen-activated
protein extracellular kinase inhibitor PD98059 has an effect
on the proliferation of HMEC cells (unpublished observa-
tions). This raises an important caveat concerning the model,
namely that there can be proteins important for cell
responses that do not consistently correlate across all or
most treatment conditions. We do not claim to be able to
identify all of the false negatives (or positives), but rather
state that a model of this type remains predictive and
enabling of conceptual insights.

Discussion

We have demonstrated the use of PLSR to characterize the
relative importance of tyrosine phosphoryation events for
cell migration and proliferation in two human mammary
epithelial cell lines with varying HER2 expression levels
under both EGF and HRG treatment. In addition, we have
identified an important subset of molecules from our original
large signaling dataset to serve as a network gauge for the
prediction of migration and proliferation (Figure 7). Our
results both highlight previously identified elements in the
HER2 signaling network, and suggest new pathways and
targets critically implicated in HER2-mediated signaling and
its effect on migration and proliferation.
Scores plot analysis (Figure 3) helped generate global

intuition as to how different combinations of ligand and
receptor expression activated the phosphotyrosine signaling
network. We related these changes back to original measure-
ments through the use of inner products, generating lists of
proteins correlated with any given ligand or receptor
transition. Because the lists are derived after applying PLSR,

Table 9. Analysis Results of PLSR X-Y Loadings Plot Reveals the
20 Signaling Metrics Correlated Most Strongly with Both
Migration and Proliferation

Phosphorylation Site

(Migration and Proliferation)

Measurement Type

p130Cas Y 327 10 min

IGF1R Y 1165 30 min

Src Y 418 30 min

GIT1 Y 545 5 min

IGF1R Y 1161 30 min

SHP-2 Y 62 30 min

FAK Y 576 5 min

EphA2 Y 575 5 min

EphA2 Y/Y 588/594 5 min

SHP-2 Y 62 10 min

p130Cas Y 327 30 min

SHP-2 Y 62 5 min

PRP4K Y 849 30 min

Src Y 418 Integral

HER2 Y 1248 30 min

Dsc3a Y 818 10 min

An A2 Y 237 30 min

Dsc3a Y 818 30 min

EphA2 Y 575 10 min

EGFR Y 1173 5 min

doi:10.1371/journal.pcbi.0030004.t009

Table 10. Analysis Results of PLSR X-Y Loadings Plot Reveals the
20 Least Correlated Signaling Metrics for Both Migration and
Proliferation

Phosphorylation Site (Least Important) Measurement Type

FAK Y 397 5 min

CDK2 Y 15 5 min

EphA2 Y 772 30 min

BCAR3 Y267 10 min

Paxillin Y 118 30 min

p130Cas Y 234 30 min

FAK Y 397 30 min

RAIG1 Y 347 10 min

ERK2 Y 187 10 min

IGF1R Y 1161 5 min

SH2D3A S/Y 218/231 10 min

BCAR3 Y267 30 min

ERK1 Y 204 30 min

GIT1 Y 545 10 min

Paxillin Y 118 10 min

PTPRA Y 798 Integral

SH2D3A S/Y 218/231 5 min

RAIG1 Y 347 5 min

ERK1 Y 204 10 min

p130Cas Y 327 Integral

doi:10.1371/journal.pcbi.0030004.t010
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the proteins highlighted have already been identified as
important for the description of changes in cellular behavior.
This procedure represents an improvement over traditional
analysis of large mass spectrometry datasets (usually fold-
change analysis) and demonstrates, to our knowledge, the first
time an approach based on inner products has been used to
extract understanding from PLSR-based biological models.
Our lists (Tables 1–6) show that a particular behavior may be
controlled through different network signaling strategies
depending on cellular input. For instance, when EGF treat-
ment replaces HRG in 24H cells, migration is stimulated
through a different set of molecules than are used to elevate
migration when HER2 levels are increased.

The reduction of the mass spectrometry dataset to nine
highly informative phosphorylation sites on six proteins
suggests elements of network architecture that likely control
migration and proliferation, namely endocytosis and signal-

ing through PIP3- and PI3K-mediated pathways. Three of the
six highly informative proteins, TfR, SHIP-2, and ACK, are all
linked to endocytosis [24,30,35]. The tight connection
between endocytic regulation and the signaling networks
governing cell migration and proliferation has been docu-
mented, most powerfully in a recent study using RNA
interference against the human kinome [42]. The results of
this study indicate that more kinases than previously
appreciated are involved in endocytosis, and taken together
with other recent efforts implicate endocytosis as a high-level
regulator and sensor of cell-signaling networks [42,43].
Endocytosis can occur via many different mechanisms,
principally clarthrin-mediated endocytosis and caveolar/
raft-mediated endocytosis, with each mechanism regulating
different sets of kinases and cell behaviors [42,43]. The fact
that TfR endocytosis was identified as highly informative
instead of EGFR endocytosis might be due to the fact that
EGFR internalization is mediated by both clarthrin-mediated
endocytosis and caveolar/raft-mediated endocytosis after
treatment with high amounts of EGF, whereas TfR is thought
to internalize independent from RCE [28]. The dynamic and
quantitative resolution in our signaling assay was most likely
critical for the capture of endocytic events, as endocytosis
strongly regulates both signal duration and intensity. Fur-
thermore, although our assay did not measure spatial
distribution, endocytic information may have served as a
proxy for that, further explaining its presence in the reduced
model. Signaling through PI3K and PIP3 affects both
commonly recognized downstream targets, such as protein
kinase B, and important distinct pathways such as those
containing ERK and p53 [44]. A recent mapping of the
complete ErbB signaling network reveals PIP3 and its
upstream kinase PI3K as highly informative nodes upon
which a large fraction of signaling information converges
[45]. Not surprisingly, then, we identify four proteins in our
network gauge that interact with or are downstream of PIP3
or PI3K. These molecules are: Shc, SHIP-2, TfR, and SCF38
[22,37,46]. Thus, model reduction not only identifies a
network gauge, but also suggests salient elements of the
signaling network.
The PLSR model’s ability to predict levels of proliferation

and migration in 24H cells given only data from parental cells
indicates that, although signals drastically change as we move
from parental to 24H cells, the cell decides upon levels of
migration and proliferation according to the same ‘‘rules.’’
These rules are nonintuitive but amount to the calculation of
behavior according to the regression equation given by the
PLSR model. Identification of conserved algorithms used to
control behavior across cell type highlights the potential to
predict a priori how changes in signaling will affect cell
behavior and gives insight into conserved themes for cellular
decision-making processes. Thus, the linear mapping of
phospho-proteomic data onto cellular phenotype identified
a key set of signals descriptive and predictive of phenotype in
breast epithelial cells. It also identified subsets of signals that
govern phenotype under either ligand or receptor perturba-
tion, and in that process revealed new hypotheses about
HER2-mediated signaling events. Of course, these hypotheses
need to be tested through further focused molecular and
biochemical work. Nevertheless, the modeling approach we
introduce here is a powerful first step toward understanding
signaling networks and the behaviors they control.

Figure 7. A Network Gauge Predicts Cell Behavior and Suggests Critical

Elements of Network Architecture

A nine-signal PLSR model trained on parental data predicts migration
and proliferation in 24H cells. The line thickness emerging from each
protein indicates the relative average importance of each protein in the
model for migration (black) or proliferation (gray). Prediction of
migration or proliferation is a function of model importance and the
amount of phosphorylation measured in either parental cells or 24H
cells. The proteins constituting the model are transferrin receptor (TfR),
annexin A2 (An A2), solute carrier protein 38 (SCF38), SH2-containing
protein (Shc), SH2-containing inositol polyphosphate 5-phosphatase
(SHIP-2), and activated cdc42-associated kinase 2 (ACK2). Previously
documented associations with endocytosis (red circle), PIP3/PI3K signal-
ing (blue circle), or both (yellow circle) are shown. The absence of
association with either endocytosis or PIP3/PI3K signaling is denoted by
a white circle (An A2).
doi:10.1371/journal.pcbi.0030004.g007
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Methods

Mass spectrometry. Samples were analyzed using mass spectrom-
etry as previously described [10,47].

Cell migration. Migration was assayed as previously described
[10,48]. Briefly, a wound healing analysis provided rates of wound
closure. Error bars represent the 95% confidence intervals for the fit
of the slope using linear regression.

Cell proliferation. Proliferation was assayed as previously de-
scribed [10]. Briefly, a thymidine incorporation assay was used to
measure proliferation 25 h after ligand stimulus. Error bars represent
the standard deviation from four different biological replicates for
each condition.

Partial Least Squares Regression. The PLSR model was generated
using a SIMCA-P (10.0) software package as described elsewhere [10].
Briefly, an MxN data matrix (X) was generated from the mass
spectrometry signaling dataset. Each column corresponded to one of
the following four metrics: protein phosphorylation at 5 min, 10 min,
30 min, or the integral of protein phosphorylation from 0–30 min,
used as a proxy for the total amount of protein phosphorylation
during the 30-min duration. There were 248 columns in total,
corresponding to the four metrics 3 62 phosphosites. Each row
represented a different cellular condition, with a total of six rows
corresponding to parental serum-free, parental plus EGF (100 ng/
mL), parental plus HRG (80 ng/ml), 24H serum-free, 24H plus EGF
(100 ng/ml), and 24H plus HRG (80 ng/mL). An MxP matrix (Y) was
generated from the cellular output data, with the rows corresponding
to the same cellular conditions listed above and the columns
representing cell migration and cell proliferation. All data were
mean-centered and scaled to unit variance.

PLSR was used to solve the regression problem:

Y ¼ Xbþ e ð1Þ

where b is the vector containing the regression coefficients and e is
the residual. A nonlinear iterative partial least squares (NIPALS)
algorithm was used [49,50]. It is instructive to note that the NIPALS
algorithm applied to a single MxN matrix (X) is the representation of
the matrix as a sum of outer products such that:

X ¼ t1p19þ t2p29þ . . .þ e ð2Þ

where ti is called the scores vector and represents one dimension in
the orthogonal basis set for the column space, and pi is called the
loadings vector and represents one dimension in the orthogonal basis
set for the row space. Application of NIPALS in this way is analogous
to the singular value decomposition of the matrix such that:

X ¼ U
X

VT ð3Þ

where each scores vector is equivalent to a column of the product UR,
and each loadings vector is equivalent to a column of V.

The NIPALS algorithm was implemented as described elsewhere
[50]. Briefly, an iterative process is used to define two vectors, w and c,
that maximize the following term:

½Covðt;uÞ�2 ¼ ½CovðXw;YcÞ�2 ð4Þ

where t and u are the scores vectors for the X and Y matrices,
respectively. Loadings vectors for X and Y, called p and q
respectively, are also defined as:

P ¼ XTt=ðtTtÞ; q ¼ YTu=ðuTuÞ ð5Þ

The PLS regression vector b’ is defined as:

b9 ¼ uTt=ðtTtÞ ð6Þ

The set of vectors t,u,w, and c are associated with the maximum
eigenvalues for various covariance matrices, and once defined, their
contribution is removed from the X and Ymatrices, leaving a residual
matrix that can be further modeled with a new set of t,u,w,c,p, and q
vectors. The matrices corresponding to each of these vectors are
defined as T,U,W,C,P, and Q. The residual matrices are defined as:

Xi ¼ Xi�1 � tipT
i ;Yi ¼ Yi�1 � ticT

i ð7Þ

where the maximum value of i (referred to as A later for clarity)
depends on the results of cross-validation. Weights were defined as
w*, which are calculated from w to relate to the original X-matrix
(and not the residual as calculated above) as:

W� ¼WðPTWÞ�1 ð8Þ

Each model was tested for goodness of prediction (Q2) using a
leave-one-out cross-validation approach [51]. Briefly, cross-validation

is performed by omitting an observation from the model develop-
ment and then using the model to predict the Y-matrix values for the
withheld observation. This procedure is repeated until every
observation has been kept out exactly once. The prediction error
sum of squares (PRESS) is then calculated as:

PRESS ¼
X

i

X
m
Ymeasured
i;m � Ypredicted

i;m ð9Þ

Q2 is then calculated as:

Q2 ¼ 1:0 � P
A

a¼1
ðPRESS=SSÞa ð10Þ

where a refers to each individual principal component in the model
and SS is the sum of squares explained by principal component a.
Standard errors and confidence intervals (as evaluated for the models
presented) can be derived from cross-validation as well [51].

To evaluate the scores plot transitions (Tables 1–6), the vector
Tj,1:A – Tk,1:A was evaluated to represent the transition from the
cellular condition described by row k of T to the cellular condition
represented in row j of T. The inner product of this vector and the
weight of variable m (W*

m,1:A) was evaluated for all variables (m ¼
1:248) and then ranked by magnitude.

To identify the signaling metrics most important for the overall
model, a weighted sum of squares (also known as the variable
importance for projection [VIP]) value for each variable (k) was
calculated according to the following formula [51]:

VIPk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KT

XA
a¼1

w2
a;kSSa

XA
a¼1

SSa

vuuuuuuut
ð11Þ

where KT is the total number of variables and the rest of the
variables are as described above. Signals having multiple metrics that
ranked in the top 30 highest VIP scores were chosen for the reduced
model.

To evaluate the importance of a given signal for an output, the
inner product of each metric with a given output was evaluated by:

W�m;1:A � Cn;1:A ð12Þ

for all variables (m ¼ 1:248) for each of both outputs (n ¼ 1:2). To
calculate the unique contribution of the signaling metrics to a given
output (say n ¼ 1), we evaluated the following expression:

W�m;1:A � C1;1:A �W�m;1:A � C2;1:A ð13Þ

for all m. Overall contributions to the model were calculated as:

W�m;1:A � C1;1:AþW�m;1:A � C2;1:A ð14Þ

Supporting Information

Dataset S1. All Scores Transitions Not Listed in the Main Text or in
Table S1 Are Given Here

The listed metrics are ranked from most positively correlated to
negatively correlated for the indicated transition. A table of
abbreviations including accession number, residue, and sequence is
also provided in Table S2.

Found at doi:10.1371/journal.pcbi.0030004.sd001 (63 KB XLS).

Figure S1. A Linear Model Accurately Recapitulates Experimental
Data

Results from PLSR modeling show that a computational model based
on experimental data generates predicted values of cellular migration
and proliferation that correlate strongly with experimentally
measured values. Experimental values of migration (A) or prolifer-
ation (B) are graphed along the ordinate, and model predictions of
migration (A) or proliferation (B) are given along the abscissa. R2

values indicate the data’s goodness of fit to the line y ¼ x.
Experimental error bars denote 95% confidence intervals for
migration (see Methods) and 6 standard deviation for proliferation.
All computational error bars are calculated from jack-knifing as a
standard error.

Found at doi:10.1371/journal.pcbi.0030004.sg001 (217 KB PDF).

Figure S2. A Linear Model Based Only on Parental Cell Data Predicts
24H Proliferation and Migration

A PLSR model constructed from parental cell data only was used to
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predict (A) proliferation and (B) migration levels in 24H cells and
then compared with measured experimental values. Experimental
error is denoted by 95% confidence intervals for cell migration (see
Methods) and 6 standard deviation for cell proliferation. Computa-
tional error bars were calculated as the 95% confidence intervals
based on jack-knifing.

Found at doi:10.1371/journal.pcbi.0030004.sg002 (205 KB PDF).

Table S1. Signaling Metrics Most Important for Changes in Cellular
Response due to Changes in HER2 Expression under Serum-Free
Conditions

Analyzed results from PLSR-generated scores plots reveal the 20
signaling metrics most positively correlated with cell behavior as
HER2 levels are increased.

Found at doi:10.1371/journal.pcbi.0030004.st001 (38 KB DOC).

Table S2. Accession Numbers and Abbreviations for the Mass
Spectometry Dataset

Found at doi:10.1371/journal.pcbi.0030004.st002 (63 KB XLS).

Accession Numbers

Accession numbers and further protein information are listed in
Table S2.
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