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Abstract

Transduction of graded synaptic input into trains of all-or-none action potentials (spikes) is a crucial step in neural coding.
Hodgkin identified three classes of neurons with qualitatively different analog-to-digital transduction properties. Despite
widespread use of this classification scheme, a generalizable explanation of its biophysical basis has not been described. We
recorded from spinal sensory neurons representing each class and reproduced their transduction properties in a minimal
model. With phase plane and bifurcation analysis, each class of excitability was shown to derive from distinct spike initiating
dynamics. Excitability could be converted between all three classes by varying single parameters; moreover, several
parameters, when varied one at a time, had functionally equivalent effects on excitability. From this, we conclude that the
spike-initiating dynamics associated with each of Hodgkin’s classes represent different outcomes in a nonlinear competition
between oppositely directed, kinetically mismatched currents. Class 1 excitability occurs through a saddle node on invariant
circle bifurcation when net current at perithreshold potentials is inward (depolarizing) at steady state. Class 2 excitability
occurs through a Hopf bifurcation when, despite net current being outward (hyperpolarizing) at steady state, spike
initiation occurs because inward current activates faster than outward current. Class 3 excitability occurs through a quasi-
separatrix crossing when fast-activating inward current overpowers slow-activating outward current during a stimulus
transient, although slow-activating outward current dominates during constant stimulation. Experiments confirmed that
different classes of spinal lamina I neurons express the subthreshold currents predicted by our simulations and, further, that
those currents are necessary for the excitability in each cell class. Thus, our results demonstrate that all three classes of
excitability arise from a continuum in the direction and magnitude of subthreshold currents. Through detailed analysis of
the spike-initiating process, we have explained a fundamental link between biophysical properties and qualitative
differences in how neurons encode sensory input.

Citation: Prescott SA, De Koninck Y, Sejnowski TJ (2008) Biophysical Basis for Three Distinct Dynamical Mechanisms of Action Potential Initiation. PLoS Comput
Biol 4(10): e1000198. doi:10.1371/journal.pcbi.1000198

Editor: Lyle J. Graham, UFR Biomédicale de l’Université René Descartes, France
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Introduction

Action potentials, or spikes, are responsible for transmitting

information through the nervous system [1]. The biophysical basis

of spike generation is well established [2], but the stereotypic spike

shape belies variation in spike initiating mechanisms. The myriad

different ion channels expressed in different neurons produce

diverse patterns of repetitive spiking [3,4]. The fact that equivalent

stimulation can elicit qualitatively different spiking patterns in

different neurons attests that intrinsic coding properties differ

significantly from one neuron to the next.

Hodgkin recognized this and identified three basic classes of

neurons distinguished by their frequency-current (f–I) curves [5].

The ability of class 1 neurons to fire slowly in response to weak

stimulation endows them with a continuous f–I curve, whereas

class 2 neurons have a discontinuous f–I curve because of their

inability to maintain spiking below a critical frequency. Class 3

neurons fail to spike repetitively, typically spiking only once at the

onset of stimulation; their f–I curve is undefined since calculation

of firing rate requires at least two spikes for an interspike interval

(ISI) to be measured. Although neuronal coding properties may

change on slow time scales (e.g., because of adaptation or

bursting), Hodgkin’s classification provides a fundamental descrip-

tion of analog-to-digital transduction occurring on the time scale of

single ISIs, and therefore addresses the very essence of how

individual spikes are initiated.

The distinction between class 1 and 2 excitability has proven

extremely useful for distinguishing neurons with different coding

properties [6–12]. Properties such as the phase-reset curve are not

directly related to the f–I curve per se, but can be explained by the

same dynamical mechanisms that account for continuity or

discontinuity of the f–I curve. In terms of their nonlinear

dynamics, class 1 neurons spike repetitively when their stable

fixed point is destroyed through a saddle-node on invariant circle

(SNIC) bifurcation (sometimes referred to simply as a saddle-node

bifurcation) whereas class 2 neurons spike repetitively when their

fixed point is destabilized through a subcritical Hopf bifurcation

[7,13]. The dynamical mechanism for spike initiation in class 3

neurons has not been explained. Given that mechanistic

understanding of spike initiation clearly provides greater insight
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into neural coding than a purely phenomenological description of

spiking pattern, the coding properties of class 3 neurons could be

more readily explained if we understood the spike initiating

dynamics in those neurons. Furthermore, abstract dynamical

explanations of spike initiation must be translated into biophysi-

cally interpretable mechanisms if we are to explain the biophysical

basis of neural coding.

This study set out to identify the biophysical basis for qualitative

differences in neural coding exemplified by Hodgkin’s three

classes. By relating spike initiating dynamics with transduction

properties, and by identifying the biophysical basis for those

dynamics, we explain how Hodgkin’s three classes of excitability

result from a nonlinear, time-dependent competition between

oppositely directed currents.

Results

Reproduction of Experimental Data in a Two-
Dimensional Model

Spinal sensory neurons fall into several categories based on

spiking pattern [14–18]. Tonic-, phasic-, and single-spiking lamina

I neurons exhibit the characteristic features of class 1, 2, and 3

excitability, respectively, based on their f–I curves (Figure 1A).

Spiking pattern is related to, but not synonymous with, Hodgkin’s

classification scheme. For instance, phasic-spiking neurons are not

class 2 because they stop spiking before the end of stimulation, but

the fact that they stop spiking so abruptly suggests that they cannot

maintain spiking below a certain rate, which is consistent with a

discontinuous (class 2) f–I curve; in contrast, adaptation causes

tonic-spiking neurons to spike more slowly but without stopping,

consistent with a continuous (class 1) f–I curve.

To explain the differences between cell classes, our first step was

to reproduce the behavior of each class in as simple a

computational model as possible, and then to analyze that

minimal model. We found that a 2D Morris-Lecar-like model

could display class 1, 2, or 3 excitability with variation of as few as

one parameter (Figure 1B). The discontinuous f–I curve

characteristic of class 2 excitability was observed when parameter

bw (see below) was set between values giving class 1 or 3

excitability, but phasic-spiking could not be reproduced in the 2D

model. Phasic-spiking was achieved by incorporating adaptation

(Figure 1C), although this makes the model 3D because adaptation

operates on a slower time scale than the activation and recovery

variables comprising the 2D model. If the neuron was allowed to

fully adapt before a second stimulus was applied, the second

stimulus elicited only one spike, which suggests that adaptation

caused a slow transition from class 2 to class 3 excitability (see

below). But, since un-adapted phasic-spiking neurons exhibit class

2 excitability, we used the class 2 model without adaptation for

subsequent phase plane analysis.

In the process of building the model (see Methods), bw was

identified as an important parameter given its capacity to convert

the model between all three classes of excitability. The biophysical

meaning of bw is deferred until Figure 4, after its functional

significance has been established. See Figure 8 for the effects of

changing other parameters. Therefore, to begin, we explored the

effects on the model’s f–I curve of systematically varying bw

(Figure 1D). The model exhibited class 1 excitability for

bw.210 mV, but class 2 and 3 excitability coexisted for all

bw,210 mV; in other words, class 2 or 3 excitability was

exhibited depending on stimulus intensity Istim. This is evident in

Figure 1B where, in the model with bw = 213 mV, rheobasic

stimulation elicited a single spike while stronger stimulation

elicited repetitive spiking. This pattern is characteristic of phasic-

spiking spinal lamina I neurons (Figure 1A) and is commonly

observed in other ‘‘class 2’’ neurons including the squid giant axon

[2], trigeminal motoneurons [19], and fast-spiking neocortical

interneurons [10,20]. Conversely, ‘‘class 3’’ neurons should

theoretically begin spiking repetitively if given extremely strong

stimulation. In reality, strong stimulation elicits, at most, a burst of

2–4 high frequency spikes in single-spiking spinal lamina I neurons

[14], which is consistent with Hodgkin’s classification in which

class 3 neurons are said to ‘‘repeat only with difficulty or not at all’’

[5]. Responses to strong stimulation can be more accurately

reproduced in the model by incorporating slow processes like

cumulative Na+ channel inactivation, but such processes were not

included in the models analyzed here in order to keep the model as

simple as possible and because such strong stimulation is arguably

unphysiological in the first place.

Thus, neurons should not strictly be labeled class 2 or 3 but,

rather, as exhibiting predominantly class 2 or 3 excitability based

on the range of Istim over which they exhibit each class. However,

phasic-spiking lamina I neurons exhibited class 3 excitability over

a negligible stimulus range (i.e., ,5% of the range for Istim tested

as high as 200 pA) and single-spiking neurons never exhibited class

2 excitability for Istim as high as 500 pA. So, although a neuron

may exhibit both class 2 and class 3 excitability, lamina I neurons

exhibit almost entirely one or the other class over the physiologically

relevant stimulus range. We therefore label tonic-, phasic-, and

single-spiking spinal lamina I neurons as class 1, 2, and 3 neurons,

respectively. Although practical, such labeling may be inappro-

priate for other cell populations if a more balanced mix of class 2

and 3 excitability exists within a single cell type.

Dynamical Basis for Different Classes of Excitability
Having reproduced each class of excitability in a 2D model, our

next step was to exploit the simplicity of that model to uncover the

spike initiating dynamics associated with each class. Because the

model is 2D, its behavior can be explained entirely by the

interaction between two variables: a fast activation variable V and

Author Summary

Information is transmitted through the nervous system in
the form of action potentials or spikes. Contrary to popular
belief, a spike is not generated instantaneously when
membrane potential crosses some preordained threshold.
In fact, different neurons employ different rules to
determine when and why they spike. These different rules
translate into diverse spiking patterns that have been
observed experimentally and replicated time and again in
computational models. In this study, our aim was not
simply to replicate different spiking patterns; instead, we
sought to provide deeper insight into the connection
between biophysics and neural coding by relating each to
the process of spike initiation. We show that Hodgkin’s
three classes of excitability result from a nonlinear
competition between oppositely directed, kinetically
mismatched currents; the outcome of that competition is
manifested as dynamically distinct spike-initiating mecha-
nisms. Our results highlight the benefits of forward
engineering minimal models capable of reproducing
phenomena of interest and then dissecting those models
in order to identify general explanations of how those
phenomena arise. Furthermore, understanding nonlinear
dynamical processes such as spike initiation is crucial for
definitively explaining how biophysical properties impact
neural coding.

Dynamics of Spike Initiation
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Figure 1. Hodgkin’s three classes of neuronal excitability. (A) Sample responses from spinal lamina I neurons representing each of Hodgkin’s
three classes. Hodgkin’s classification is based on the f–I curve which is continuous (class 1), discontinuous (class 2), or undefined because
measurement of firing rate requires at least two spikes (class 3). Data points comprising a single spike (ss) are indicated with open symbols in (A) or
gray shading in (B–D). (B) Each cell class could be reproduced in a Morris-Lecar model by varying a single parameter, in this case bw. Like in (A),
rheobasic stimulation (minimum Istim eliciting $1 spike) elicited a single spike at short latency in class 2 and 3 neurons compared with slow repetitive
spiking in class 1 neurons. Despite reproducing the discontinuous f–I curve, the 2D model could not reproduce the phasic-spiking pattern. (C) Phasic-
spiking was generated by adding slow adaptation, thus giving a 3D model described by C dV/dt = Istim2ḡfast m‘(V)(V2ENa)2ḡsloww(V2EK)2
gleak(V2Eleak)2gadapta(V2EK) and da=dt~wa 1

�
t1ze ba{Vð Þ=cas{a

� �
where a controls activation of adaptation and ḡadapt = 0.5 mS/cm2,

wa = 0.05 ms21, ba = 240 mV, and ca = 10 mV. Bottom traces show single-spike elicited by second stimulus applied shortly after the end of first

Dynamics of Spike Initiation
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a slower recovery variable w. This interaction can be visualized by

plotting V against w to create a phase portrait. Behavior of the

model can be understood by how the V- and w-nullclines intersect;

nullclines represent everywhere in phase space where V or w

remain constant.

Right panels of Figure 2A illustrate the spike initiating dynamics

associated with class 1 excitability. Before stimulation, the V- and

w-nullclines intersect at three points; the leftmost intersection

constitutes a stable fixed point that controls membrane potential.

Stimulation shifts the V-nullcline upwards. If the V-nullcline was

stimulus, which suggests that adaptation slowly shifts the neuron from class 2 towards class 3 excitability. (D) Firing rate (color) is plotted against Istim

and bw. Separable regions of the graph correspond to different classes of excitability. Neuronal classification is based on which class of excitability is
predominant (i.e., exhibited over the broadest range of Istim) and is indicated above the graph.
doi:10.1371/journal.pcbi.1000198.g001

Figure 2. Each class of excitability is derived from a distinct dynamical mechanism of spike initiation. (A) Phase planes show the fast
activation variable V plotted against the slower recovery variable w. Nullclines represent all points in phase space where V or w remain constant. V-
nullclines (colored) were calculated at rest (red) and at the onset of stimulation (blue) (Istim is indicated beside each curve); w-nullclines do not change
upon stimulation and are plotted only once (gray). Black curves show response of model with direction of trajectory indicated by arrows. Class 1
neuron: Red and gray nullclines intersect at three points (red arrowheads) representing stable (s) or unstable (u) fixed points. Stimulation shifts that V-
nullcline upward and destroys two of those points, thereby allowing the system to enter a limit cycle and spike repetitively. The trajectory slows as it
passes through constriction between blue and gray nullclines (yellow shading) thereby allowing the neuron to spike slowly, hence the continuous f–I
curve. Class 2 neuron: Red and gray curves intersect at a single, stable fixed point. Spiking begins when stimulation destabilizes (rather than destroys)
that point. The f–I curve is discontinuous because slow spiking is not possible without the constriction (compare with class 1 neuron). Class 3 neuron:
Stimulation displaces but does not destroy or destabilize the fixed point. System variables V,w can follow different paths to the newly positioned
fixed point: a single spike is initiated when stimulation instantaneously displaces the quasi-separatrix (dotted curves) so that the system, which
existed above the (red) quasi-separatrix prior to stimulation, finds itself below the (blue) quasi-separatrix once stimulation begins; the trajectory must
go around the head of the quasi-separatrix (*) to get to the new fixed point – we refer to this mechanism of spike initiation as a quasi-separatrix-
crossing or QSC. Dashed black curve shows alternative, subthreshold path that would be followed if trajectory remained above the (blue) quasi-
separatrix. (B) Bifurcation diagrams show voltage at fixed point and at max/min of limit cycle as Istim is increased. A bifurcation represents the
transition from quiescence to repetitive spiking. Type of bifurcation is indicated on each plot. The range of Istim over which a QSC occurs is indicated
in gray and was determined by separate simulations since a QSC is not revealed by bifurcation analysis.
doi:10.1371/journal.pcbi.1000198.g002

Dynamics of Spike Initiation
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shifted far enough (i.e., if Istim exceeded rheobase), two of the

intersection points were destroyed and the class 1 model began to

spike repetitively. Disappearance of the two fixed points and the

qualitative change in behavior that results (i.e., the transition from

quiescence to repetitive spiking) is referred to most precisely as a

saddle-node on invariant circle (SNIC) bifurcation [13].

Center panels of Figure 2A illustrate the spike initiating

dynamics associated with class 2 excitability. Before stimulation,

the V- and w-nullclines intersect at a single, stable point. Spiking

began when the vertical shift in the V-nullcline caused by

stimulation destabilized that point through a Hopf bifurcation

[7]. Destabilization occurred when the V- and w-nullclines

intersected to the right of the local minimum in the V-nullcline

whereas the fixed point was stable when the nullclines intersected

to the left of the minimum (this is not strictly true, but it is a very

close approximation). Destabilization of the fixed point (in class 2

excitability) is distinct from destruction of the stable fixed point (in

class 1 excitability), but both cause the neuron to spike repetitively

rather than remaining at a stable, subthreshold voltage.

Left panels of Figure 2A illustrate the spike initiating dynamics

associated with class 3 excitability. In this case, the V- and w-

nullclines intersected at a single, stable point that remained stable

for Istim.rheobase, meaning spike initiation occurred without a

bifurcation. The system moved to the newly positioned stable fixed

point, but could do so via different paths: trajectories starting

below the quasi-separatrix made a long excursion around the

elbow of the V-nullcline, resulting in a single spike; trajectories

starting above the quasi-separatrix followed a more direct,

subthreshold route. We refer to the boundary in phase space

from which trajectories diverge (see Figure 1 in [21]) as a quasi-

separatrix (see below). Importantly, although system variables V

and w cannot change instantaneously, the quasi-separatrix does

move instantaneously as Istim changes; therefore, stimulation can

move the quasi-separatrix so that a point (V,w) that was above the

quasi-separatrix before stimulation ends up below the quasi-

separatrix during stimulation. We refer to this mechanism as a

quasi-separatrix-crossing (QSC) since spike initiation requires that

system variables cross from one side of the quasi-separatrix to the

other. Such a mechanism was first described by Fitzhugh [22,23].

The quasi-separatrix was plotted by integrating backward in

time (20.01 ms time step) from point * indicated on Figure 2A;

that point was chosen based on where forward trajectories clinging

to the quasi-separatrix eventually dissipate, thus suggesting the end

of the quasi-separatrix, which is arguably the best location to begin

plotting the reverse trajectory. We refer to this boundary as a

quasi-separatrix since a true separatrix corresponds to the stable

manifold associated with a saddle-point, but both represent a

boundary from which trajectories diverge.

Figure 2B shows the bifurcation diagrams associated with the

dynamical mechanisms explained in Figure 2A. The SNIC and

Hopf bifurcations are readily distinguishable on those diagrams.

Transition between these two types of bifurcations occurred near

bw = 210 mV, which, on the phase plane, corresponds to the V-

and w-nullclines meeting tangentially at the minimum of the V-

nullcline so that rheobasic stimulation simultaneously destroys and

destabilizes the fixed point (data not shown). There was no

bifurcation for bw = 221 mV and Istim,80 mA/cm2; stronger

stimulation eventually caused a Hopf bifurcation, but such

stimulation is unphysiological and is likely to activate other

processes not included in the model (see above). The range of Istim

over which spike initiation occurred through a QSC is indicated

with gray shading. Notice that a neuron that generated repetitive

spiking through a Hopf bifurcation (bw = 213 mV) would, for a

narrow range of weaker Istim, generate a single spike through a

QSC, consistent with data in Figure 1.

Validation of the Model
Since model parameters were chosen to produce one or another

spiking pattern, simply reproducing a given pattern is not

necessarily informative—this constitutes an inverse problem akin

to circular reasoning. To ensure that the model does not simply

mimic spiking pattern, it must predict behaviors separate from

those used to choose parameters. The model makes such a

prediction: spikes initiated through different dynamical mecha-

nisms are predicted to exhibit different variability in their

amplitudes. Specifically, spikes initiated through an SNIC

bifurcation should have uniform amplitudes because all supra-

threshold trajectories follow the invariant circle formed when the

stable manifolds (green curves on Figure 3A) fuse at the moment of

the bifurcation. In contrast, spikes initiated through a QSC are

predicted to have variable amplitudes that are sensitive to stimulus

intensity because each trajectory (including how far it extends on

the abscissa) depends on where that trajectory starts relative to the

quasi-separatrix.

To test this, we stimulated the model neurons with noisy, near-

threshold Istim fluctuations. As predicted, the class 1 model

produced uniformly sized spikes whereas the class 3 model

produced variably sized spikes (Figure 3A). The class 2 model

exhibited spikes with intermediate variability (data not shown),

which was expected given that near-threshold stimulation can

elicit spikes through a QSC in this cell class (see above). Equivalent

testing in real neurons confirmed the predicted pattern of spike

amplitude variability (Figure 3B). Since spike amplitude variability

was not the basis for choosing model parameters, experimental

confirmation of our prediction of differential variability in spike

amplitude argues that our model and the dynamical mechanisms

inferred therefrom provide a robust explanation of spike initiation

rather than superficially mimicking spiking pattern.

Biophysical Correlate of the Differences between Class 1,
2, and 3 Models

With the model thus validated, our next step was to compare

class 1, 2 and 3 models to identify differences in parameters that

could be related to differences in the biophysical properties of real

neurons. As shown in Figure 1, varying bw converted the model

between all three classes of excitability. bw controls horizontal

positioning of the w-nullcline on the phase plane (Figure 4A, inset),

which corresponds to the voltage-dependency of Islow in the 2D

model (Figure 4A; see Methods). However, since phenotypic

diversity is typically attributed to expression of different channels

rather than to drastic changes in the voltage-sensitivity of a single

channel [24], we hypothesized that different cell classes express

different channels. To model this, we split Islow into IK,dr and Isub,

thus transforming the 2D model into a 3D model. Grouping

currents with similar kinetics is a method for reducing dimension-

ality (e.g., [25]); here, we deliberately ungroup those currents in

order to increase the biological realism of the model. The low-

dimensional model is better for mathematical analysis, but the

higher-dimensional model is arguably better for biological

interpretation.

We fixed the voltage-dependencies of IK,dr and Isub, and varied

the direction and magnitude of Isub in order to represent variable

expression levels of a channel carrying inward or outward

current. Those changes affected the net slow current (Isub+IK,dr)

in the 3D model the same way that varying bw affected Islow in

the 2D model (compare Figure 4B with Figure 4A). Note that the

voltage-dependency of Isub is such that the current activates at

Dynamics of Spike Initiation
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subthreshold potentials. These data therefore suggest that spike

initiating dynamics may differ between neurons depending on

the expression of different slow ionic currents, and, more

specifically, that class 3 neurons express a subthreshold outward

current and/or class 1 neurons express a subthrehsold inward

current, with class 2 neurons expressing intermediate levels of

those currents.

Several lines of experimental evidence support this prediction.

First, the response to brief, subthreshold depolarizing pulses was

amplified and prolonged relative to the equivalent hyperpolarizing

response in class 1 neurons, consistent with effects of a

subthreshold inward current (Figure 5A, right); the opposite

pattern was observed in class 3 neurons, consistent with effects of a

subthrehsold outward current (Figure 5A, left). Second, in voltage

clamp, stepping command potential from 270 mV to perithres-

hold potentials elicited the largest outward current in class 3

neurons, followed by class 2 and class 1 neurons (Figure 5B). The

relative positioning of I–V curves plotted from those experiments

(Figure 5C) bore a striking resemblance to the relative positioning

of I–V curves in the 2D and 3D models (Figure 4); this is especially

true if the persistent Na+ current that was blocked by TTX in the

aforementioned experiments is taken into account; this current is

expressed exclusively in tonic-spiking neurons [26]. Application of

4-AP confirmed the presence of a persistent, low-threshold K+

current in single-spiking lamina I neurons (Figure 5D).

Connection between Subthreshold Currents and Spike-
Initiating Dynamics

Thus, lamina I neurons express the sort of currents predicted by

our model, but that result is purely correlative, i.e., based on

comparison of simulated and experimental I–V curves. Are the

identified currents necessary and sufficient to explain differences in

the excitability of lamina I neurons? One prediction is that

blocking the subthreshold inward current in class 1 neurons, or the

subthreshold outward current in class 3 neurons, should convert

those neurons to class 2 excitability. To test this, we pharmaco-

logically blocked the low-threshold Ca2+ or K+ current in class 1

and 3 neurons, respectively. As predicted, spiking was converted to

a phasic pattern (Figure 6A) and f–I curves became discontinuous

(Figure 6B) in both cases, consistent with conversion to class 2

excitability. This demonstrates the necessity, in spinal lamina I

neurons at least, of subthreshold inward and outward currents for

producing class 1 and 3 excitability, respectively.

To demonstrate the sufficiency of subthreshold currents for

determining excitability, we explicitly incorporated a subthreshold

inward or outward current by adding an additional term for Isub to

the 2D model with bw = 210 mV (see Equation 7); recall that the

2D model lies at the interface between class 1 and 2 excitability

when bw = 210 mV (see Figure 1D). Adding an inward current

produced class 1 excitability, whereas adding an outward current

produced class 2 or 3 excitability depending on the magnitude of

Figure 3. Comparison of spikes initiated through different dynamical mechanisms. (A) Spikes initiated through a QSC or SNIC bifurcation
exhibit different spike amplitude variability. Data are from 2D models stimulated with noisy Istim (snoise = 10 mA/cm2). V-nullclines are shown for rest
(red) and for one stimulus intensity (blue) although Istim varies continuously during stimulation. Spikes initiated through a QSC exhibit variable
amplitudes (yellow shading) because variations in Istim affect the V-w trajectory: trajectories starting close to the quasi-separatrix (produced by Istim

fluctuations just exceeding rheobase) produce smaller spikes than trajectories starting further from the quasi-separatrix (produced by larger Istim

fluctuations). Spikes initiated through an SNIC bifurcation exhibit little variability (pink shading) because all trajectories follow the invariant circle once
the heteroclinic trajectories (green curves) fuse at the moment of the SNIC bifurcation to form a single homoclinic orbit. Histogram shows distribution
of voltage maxima; maxima above cutoff (*) are considered spikes. Distributions differed significantly between cell classes after normalizing by
maximum or by average spike amplitude (p,0.005 and p,0.001, respectively; Kolmogorov-Smirnov test). (B) As predicted, class 3 (single-spiking)
neurons showed significantly greater variability in spike amplitude than class 1 (tonic-spiking) neurons (p,0.001 regardless of normalization by peak
or average; Kolmogorov-Smirnov test). snoise = 10 pA.
doi:10.1371/journal.pcbi.1000198.g003

Dynamics of Spike Initiation
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gsub (which is controlled by the maximal conductance, ḡsub)

(Figure 7A). With bw = 213 mV (like the class 2 model in

Figure 1B), the default 3D model was class 2; adding a

subthreshold inward or outward current converted it to class 1

or 3, respectively (data not shown). The three classes of excitability

can be readily identified from the bifurcation diagrams of the 3D

model (Figure 7B; compare with 2D model in Figure 2B). Varying

ḡsub affected the f–I curve in this 3D model in exactly the same

manner as varying bw in the 2D model (compare Figure 7C with

Figure 1D). The transition between class 1 and 2 excitability

occurred at ḡsub = 0 mS/cm2, although that value varied depend-

ing on bw (see above). For a given value of Istim, class 1 and 2

excitability were mutually exclusive whereas class 2 and 3

excitability coexisted. Furthermore, the 3D model exhibited

constant or variably sized spikes depending on whether the model

was class 1 or 3, respectively (Figure 7D; compare with Figure 3A

and 3B). This demonstrates the sufficiency of subthreshold inward

and outward currents for producing class 1 and 3 excitability,

respectively.

Thus, expression of distinct subthreshold currents accounts for

the different classes of excitability observed amongst spinal lamina

I neurons. But can other biophysical properties also account for

differences in excitability? And, if so, do those properties confer the

same or different spike initiating dynamics than those described

above? In other words, can we generalize our biophysical

explanation of excitability?

Effects of Varying Other Parameters in the 2D Model
We summarize here how spike initiating dynamics can be

inferred from the phase plane geometry of the 2D model. We start

by considering bw (Figure 8A) since its effects on excitability have

already been described in Figures 1 and 2. An SNIC bifurcation

occurs when the V and w-nullclines intersect tangentially at

rheobasic stimulation (bw.210 mV). A Hopf bifurcation occurs

when the w-nullcline crosses the V-nullcline on its middle arm

(bw,210 mV); although necessary, this is not strictly sufficient for

the bifurcation (see below), but it is a close enough approximation

for our demonstration. A QSC can occur when the w-nullcline

crosses the V-nullcline on its left arm. Given this connection

between phase plane geometry and spike initiating dynamics, one

can predict the effects on excitability of changing the shape or

relative positioning of the two nullclines regardless of which

specific parameters are varied.

Moving the V-nullcline in one direction (via bm) should have the

same effect as moving the w-nullcline in the opposite direction (via

bw), which indeed it did (Figure 8B). The biophysical interpreta-

tion is straightforward: reducing bm causes a hyperpolarizing shift

in the voltage-dependency of Ifast, causing Ifast to be more strongly

activated by perithreshold depolarization and thus encouraging

class 1 excitability. As explained in Figure 4 for bw, a change in bm

may reflect the contribution of a second fast current (inward or

outward) with different voltage-dependency than the classic Na+

current comprising most of Ifast. Increasing ḡfast in the 2D model

without altering its voltage-dependency should also have an effect

comparable to reducing bm, which indeed it did (Figure 8C). Thus,

bw, bm, or ḡfast all affect phase plane geometry (i.e., how the

nullclines intersect) in essentially the same way and with equivalent

consequences for spike initiating dynamics. Although the specific

biophysical mechanism is different in each case (voltage-depen-

dency of gslow, voltage-dependency of gfast, or magnitude of gfast,

Figure 4. Biophysical correlate of differences in bw. (A) The w-nullcline (inset) corresponds to the voltage-dependent activation curve for Islow.
Horizontal positioning of that curve is controlled by bw. Differences between class 1, 2, and 3 models may thus reflect differences in the voltage-
dependency of Islow. (B) It is more likely, however, that the components of Islow vary between cells of different classes (see Results). Islow may comprise
multiple currents with similar kinetics. If Islow = IK,dr+Isub, the position of the net I–V curve can be changed in qualitatively the same way as in (A) by
changing the direction and magnitude of Isub (see insets) without changing the voltage-dependencies of Isub (bz = 221 mV, cz = 15 mV) or of IK,dr

(by = 210 mV, cy = 10 mV); voltage-dependencies of Isub and IK,dr are different, however, with the former being more strongly activated at
subthreshold potentials. These results predict that tonic-spiking neurons express a subthreshold inward current and/or that single-spiking neurons
express a subthreshold outward current.
doi:10.1371/journal.pcbi.1000198.g004
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respectively), the common outcome is a change in the balance of

fast and slow currents near threshold.

It stands to reason, therefore, that reducing ḡslow (where Islow is

outward) should have effects comparable to increasing ḡfast, which

indeed it did (Figure 8D). Relatively large changes in ḡfast or ḡslow

were required to convert excitability from class 1 to class 3, but

one must consider that both of those net currents are most strongly

activated at suprathreshold potentials. If spike initiating dynamics

are dictated by currents at perithreshold potentials (see above),

changes in maximal conductance should have small effects if the

conductance is only marginally activated near threshold. By

comparison, small changes in ḡsub were sufficient to alter spike

initiating dynamics in the 3D model (see Figure 7) because Isub was

strongly activated at perithreshold potentials. Accordingly, reduc-

ing slope of the w-nullcline (by increasing cw) extended the tail of

the activation curve for gslow so that Islow was more strongly

activated at perithreshold potentials; this predictably encouraged

class 3 excitability (Figure 8E).

Figure 5. Different classes of spinal lamina I neurons express different subthreshold currents. (A) Traces show responses to 60 pA, 20-
ms-long depolarizing pulses (black) and to equivalent hyperpolarizing pulses (gray); the latter are inverted to facilitate comparison with former. In
class 1 (tonic-spiking) neurons, depolarization was amplified and prolonged relative to hyperpolarization, consistent with effects of an inward current
activated by perithreshold depolarization. Class 3 (single-spiking) neurons exhibited the opposite pattern, consistent with effects of a subthreshold
outward current, which is also evident from outward rectification (arrow) in the I–V curve. Depolarizing and hyperpolarizing responses were
symmetrical in class 2 (phasic-spiking) neurons, consistent with negligible net subthreshold current. (B) Membrane current activated by voltage-
clamp steps from 270 mV to 260, 250, 240, and 230 mV. For a given command potential, class 3 neurons exhibited the largest persistent outward
current and class 1 neurons exhibited the smallest outward current. Red line highlights difference in current activated by step to 240 mV. (C) Steady-
state I–V curves for voltage clamp protocols in (B). Because recordings were performed in TTX to prevent unclamped spiking, the persistent Na+

current (INa,p), which is expressed exclusively in tonic-spiking neurons, was blocked; to correct for this, INa,p measured in separate voltage clamp ramp
protocols [26] was added to give a corrected I–V curve (dotted line). Compare with Figure 4. (D) 4-AP-sensitive current determined by subtraction of
response before and during application of 5 mM 4-AP to a single-spiking neuron. Protocol included prepulse to 2100 mV, which revealed a small
persistent outward current active at 270 mV that was deactivated by hyperpolarization to 2100 mV (*). Although depolarization also activates a
large transient outward current, we are concerned with the persistent component (arrowhead); effects of the transient outward current are beyond
the scope of this study and were minimized by adjusting pre-stimulus membrane potential to 260 mV for all current clamp protocols. Gray line
shows baseline current.
doi:10.1371/journal.pcbi.1000198.g005
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Spike-Initiating Dynamics: Geometric Representation and
Biophysical Explanation

Results in Figure 8 show that several different parameters can

influence spike initiating dynamics (and, in turn, excitability), but

there appear to be a limited number of phase plane geometries

that result from varying those parameters. Other, more complex

geometries are possible in higher dimensional systems, but the

success of our 2D model in reproducing all of Hodgkin’s classes

attests that nonlinear interaction between two variables is sufficient

to explain the patterns he described. Furthermore, ‘‘ultra-slow’’

processes like adaptation can, on a spike by spike basis, be treated

as providing a constant current. Ultimately, spike generation is a

two dimensional phenomenon requiring fast activation (positive

feedback) to produce the rapid upstroke plus slower recovery

(negative feedback) to produce the downstroke. Beyond shaping

the spike waveform by their interaction at suprathreshold

potentials, we explain here how these feedback processes interact

at perithreshold potentials to control spike initiation.

Interpretation of the phase plane geometry can be formalized by

doing local stability analysis near the fixed points ([27], see also

chapter 11 in [28]). In class 3 neurons, { 1
C

LIinst

LV
v

ww

tw
at the stable

fixed point. This means, at steady state, that positive feedback is

slower than the rate of negative feedback, ww/tw. Subthreshold

activation of Islow produces a steady state I–V curve that is

monotonic and sufficiently steep near the apex of the instanta-

neous I–V curve that V is prohibited from rising high enough to

strongly activate Ifast (Figure 9A, left). However, because the two

feedback processes have different kinetics, a spike can be initiated

if the system is perturbed from steady state: if V escapes high

enough to activate Ifast (e.g., at the onset of an abrupt step in Istim),

fast-activating inward current can overpower slow-activating

outward current—the latter is stronger when fully activated, but

can only partially activate (because of its slow kinetics) before a

spike is inevitable. Through this mechanism, a single spike can be

initiated before negative feedback forces the system back to its

stable fixed point, hence class 3 excitability. Speeding up the

kinetics of Islow predictably allows Islow to compete more effectively

with Ifast (see below).

In class 2 neurons, { 1
C

LIinst

LV
w

ww

tw
at the unstable fixed point,

meaning positive feedback outpaces negative feedback, and

repetitive spiking ensues. The steady state I–V curve (Figure 9A,

center) is monotonic but less steep than in the class 3 model.

Under these conditions, stimulation can force V high enough that

fast-activating inward current competes with slow-activating

outward current. As in the class 3 neuron (see above), it is crucial

that Ifast activates more rapidly than Islow in order for positive

feedback to outrun negative feedback, since the latter would

dominate and prohibit spiking if given enough time to fully

activate. The difference from class 3 excitability is that fast positive

feedback can outrun slow negative feedback with constant

stimulation in a class 2 neuron; in the class 3 neuron, positive

feedback can outrun negative feedback only during the stimulus

transient.

In class 1 neurons, hIss/hV = 0 at the saddle-node, meaning the

steady state I–V curve is non-monotonic with a local maximum

above which depolarization activates net inward current at steady

state (Figure 9A, right). The negative feedback responsible for

spike repolarization only begins to activate at higher, suprathresh-

old potentials. Under these conditions, fast positive feedback has

no slow negative feedback with which to compete at perithreshold

potentials and the voltage trajectory can pass slowly through

threshold, thereby producing slow spiking and a continuous f–I

Figure 6. Necessity of oppositely directed subthreshold currents to explain excitability in spinal lamina I neurons. (A) Blocking a
subthreshold Ca2+ current with Ni2+ converted tonic-spiking neurons to phasic-spiking (right). Blocking a subthreshold K+ current with 4-AP
converted single-spiking neurons to phasic-spiking (left). Compare with naturally occurring phasic-spiking pattern (center). (B) Application of Ni2+ and
4-AP converted class 1 and 3 neurons, respectively, to class 2 neurons according to the f–I curves. Firing rate was determined from the reciprocal of
first interspike interval. According to these data, a subthreshold inward current is necessary for class 1 excitability, a subthreshold outward current is
necessary for class 3 excitability, and class 2 excitability occurs when neither current is present.
doi:10.1371/journal.pcbi.1000198.g006
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curve. That contrasts class 2 and 3 neurons in which activation of

Ifast races subthreshold activation of Islow to determine whether a

spike is initiated. And although class 2 neurons can spike

repetitively, they cannot maintain spiking below a critical

frequency lest slow-activating outward current catch up with the

fast-activating inward current.

Slope of the steady state I–V curve at perithreshold voltages (i.e.,

voltages near the apex of the instantaneous I–V curve) thus reveals

the strength and direction of feedback with which Ifast must

compete. Changing the direction and magnitude of Isub in the 3D

model had the same consequences on the steady state I–V curve

(data not shown) as changing bw in the 2D model. Changing other

parameters in the 2D model, such as ḡNa, also had similar effects

(Figure 9B), which illustrates how the magnitude of slow current

active at perithreshold voltages can be changed by modulating

threshold rather than changing the voltage-dependency or density

of the slow current itself (like in Figure 8B and 8C).

The I–V curve does not, however, provide information about

the temporal features of the competition between kinetically

mismatched currents. The relative kinetics of fast and slow

currents are critical for class 2 and 3 excitability, whereas they are

irrelevant for class 1 excitability since there is no competition (see

above). To investigate this further, we changed the kinetics of Islow

by varying ww in the 2D model. Consistent with our dynamical

explanations of spike initiation, speeding up Islow increased the

minimum stimulation required to produce class 2 or 3 excitability

(especially the latter), whereas slowing down Islow had the opposite

effects; the minimum stimulation required to produce class 1

excitability was unaffected (Figure 9C). Increasing wz had the same

effects in the 3D model (data not shown).

Figure 7. Sufficiency of oppositely directed subthrehsold currents to explain excitability. (A) Responses from 3D model described in
Figure 4B. Without Isub, the model operated at the interface between class 1 and 2 excitability (see (C)). Adding an outward current (Esub = 2100 mV)
produced class 2 or 3 excitability, with the latter becoming more predominant (i.e. over a wider range of Istim) as ḡsub was increased. Adding an
inward current (Esub = 50 mV) produced class 1 excitability. (B) Bifurcation diagrams show voltage at fixed point and at max/min of limit cycle as Istim

was increased. Class 1, 2, and 3 versions of the 3D models exhibited exactly the same spike initiating dynamics seen in class 1, 2 and 3 versions of the
2D models (compare with Figure 2B). (C) Firing rate (color) is plotted against Istim and ḡsub. These data are qualitatively identical to those for the 2D
model (see Figure 1D) and indicate that direction and magnitude of Isub are sufficient to explain different classes of excitability. The phasic-spiking
that results from adaptation (see Figure 1C) can be understood in terms of slowly activating outward current (or inactivating inward current) causing
a shift from class 2 to class 3 excitability. (D) As with the 2D model (Figure 3A), the class 3 version of the 3D model exhibited significantly greater spike
amplitude variability than the class 1 version when driven by noisy stimulation (p,0.001, respectively; Kolmogorov-Smirnov test). snoise = 10 mA/cm2.
doi:10.1371/journal.pcbi.1000198.g007
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Figure 8. Common phase plane geometries associated with different parameter changes. (A) bw controls positioning of the w-nullcline
(i.e. voltage-dependency of Islow). For bw = 0 mV, the nullclines intersect tangentially at rheobasic stimulation, which translates into an SNIC
bifurcation. For bw = 213 mV, the w-nullcline crosses the V-nullcline on its middle arm, which translates into a Hopf bifurcation. For bw = 221 mV, the
w-nullcline crosses the V-nullcline on its left arm, meaning spike initiation is limited to a QSC. See Figure 2B for corresponding bifurcation diagrams.
Thus, spike initiating dynamics (and the resulting pattern of excitability) are directly related to phase plane geometry (i.e. how the nullclines
intersect). (B) bm controls positioning of the V-nullcline (i.e., voltage-dependency of Ifast). Reducing bm had the same effect on phase plane geometry
as increasing bw. The predicted consequences for excitability are confirmed on the bifurcation diagrams. Like Islow, Ifast may comprise more than one
current; therefore, differences in the voltage-dependency of the net fast current may reflect the expression of different fast currents rather than
variation in the voltage-dependency of any one current (see Figure 4). For (B–E), bw = 210 mV, cw = 13 mV, and all other parameters are as indicated
in Methods unless otherwise stated. (C) Varying ḡfast changed the shape rather than positioning of the V-nullcline, but both had equivalent
consequences for excitability. (D) Varying ḡslow also changed the shape of the V-nullcline, in a slightly different manner than ḡfast, but with the same
consequences for excitability. (E) Varying cw, which controls the slope of the voltage-dependent activation curve for Islow, altered the w-nullcline,
again, with predictable consequences for excitability. bw = 0 mV.
doi:10.1371/journal.pcbi.1000198.g008
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If the balance of fast and slow currents at perithreshold potentials

is the crucial determinant of excitability, then perithreshold

inactivation of a slow outward current (e.g., an A-type K+ current,

IK,A) should encourage class 1 excitability the same way perithres-

hold activation of a slow inward current does. To test this, we

incorporated IK,A by warping the w-nullcline to create a 2D model

similar to that of Wilson [29]. Rather than initiating spikes through a

Hopf bifurcation, the V-nullcline intercepted the negatively sloping

region of the w-nullcline tangentially (Figure 10A) and repetitive

spiking was generated through an SNIC bifurcation (Figure 10B),

which resulted in a continuous f–I curve (not shown) typical of class 1

excitability. Furthermore, inactivation of IK,A introduced a region of

negative slope into the steady state I–V curve that overlapped the

apex of the instantaneous I–V curve (Figure 10C; compare with

Figure 9). The same results were found if IK,A was explicitly

incorporated to produce a 3D model (data not shown). Thus, IK,A

increased rheobase but its slow inactivation as voltage passed

through threshold amounted to a slow positive feedback process that

encouraged class 1 excitability. The converse has been shown in

medial superior olive neurons, where inactivation of INa encourages

coincidence detection associated with class 3 excitability [30].

Discussion

Our results demonstrate that the three classes of excitability first

described by Hodgkin [5] represent distinct outcomes in a

nonlinear competition between fast and slow currents active at

perithreshold potentials. We have experimentally confirmed

(Figure 5) that spinal lamina I neurons express the currents

predicted by our simulations (Figure 4) and that those currents are

necessary (Figure 6) and sufficient (Figure 7) to produce the

excitability exhibited by each cell type. Figure 11 summarizes the

phase plane geometry associated with each class of excitability

together with the results of local stability analysis near the fixed

point, which explain how different spike initiating dynamics arise

from a competition between fast and slow feedback processes.

Voltage-dependent inward and outward currents mediate positive

and negative feedback, respectively. Effects of changing the

magnitude, voltage-dependency, or kinetics of those currents can

be conceptualized in terms of how those parameter changes

impact that competition; the consequences of such parameter

changes for spike initiating dynamics are thus readily explained.

Our approach for uncovering the biophysical basis for

Hodgkin’s classification was to forward engineer a simple model

in order to help reverse engineer complex neurons. The benefit of

such an approach is that the model starts simple and is made only

as complex as required to reproduce the phenomena of interest;

extraneous details are thus excluded. Building a biologically

realistic, high-dimensional model that exhibits one or another

firing pattern is reasonably straightforward, but such a model

almost certainly contains extraneous detail and may fail to provide

greater insight than the experiments upon which it is based. The

challenge when forward engineering simple models is that one

may reproduce the phenomena of interest through a mechanism

that is not the same as that used by real neurons; for example, a

QSC produces a single-spiking pattern, but single-spiking neurons

may use a completely different mechanism to produce the same

result. This constitutes an inverse problem that requires careful

consideration in order to validate the forward engineered model,

as we demonstrated in Figure 3.

The forward engineering approach gave a model complex

enough to reproduce each class of excitability yet simple enough for

its spike initiating dynamics to be rigorously characterized using

phase plane analysis. By expressing the problem geometrically, we

were able to visualize and uncover the functional equivalence of

changing different model parameters (Figure 8). As a result, our

biophysical explanation of excitability is not specific to one set of

neurons but, rather, should generalize to all neurons; for instance,

spinal lamina I neurons exhibit different classes of excitability

because they express different slow, subthreshold currents (Figures 5

and 6), but other neurons may achieve similar diversity through

other mechanisms affecting spike initiation. Even a single neuron

may exhibit different spike initiating dynamics depending on

outside conditions such as the strength of background synaptic

input [31]. According to our analysis, oppositely directed currents

compete to determine spike initiation. Net current must be inward

to sustain the depolarization necessary to initiate a spike (that much

is obvious), but the balance between oppositely directed currents is

not static. The importance of differences in the activation kinetics

of the competing currents is far less obvious. In this regard, local

stability analysis at the fixed point was critical for formalizing our

explanation of the time-dependency of the competition, and for

providing the insight that prompted us to test the effects of

changing the relative kinetics of the competing currents (Figure 9C).

Figure 9. Competition between kinetically mismatched currents. (A) Top panels show individual currents in 2D model; bottom panels show
how they combine to produce the instantaneous (Iinst) and steady state (Iss) I–V curves. Double-headed arrows highlight effect of bw on the voltage-
dependency of Islow. Class 3 neuron: Islow activates at lower V than Ifast, meaning slow negative feedback keeps V from increasing high enough to
initiate fast positive feedback at steady state. Fast positive feedback (that results in a spike) can be initiated only if the system is perturbed from
steady state. Quasi-separatrix (blue) has a region of negative slope (*) indicating where net positive feedback occurs given the kinetic difference
between fast and slow currents: positive feedback that activates rapidly can compete effectively with stronger negative feedback whose full
activation is delayed by its slower kinetics. If V is forced rapidly past the blue arrowhead, fast positive feedback initiates a single spike before slow
negative feedback catches up and forces the system back to its stable fixed point. Quasi-separatrix is plotted as the sum of all currents but with Islow

calculated as a function of w at the quasi-separatrix (see phase plane in Figure 2A) rather than at steady state and is shown here for Istim = 60 mA/cm2.
Class 2 neuron: Islow and Ifast activate at roughly the same V. A Hopf bifurcation occurs at the point indicated by the arrow, where { 1

C
LIinst
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w

ww

tw
(see

Results). This means that fast positive feedback exceeds slow negative feedback at steady state; as for class 3 neurons, this relies on positive feedback
having fast kinetics since the net perithreshold current is still outward (i.e., steady state I–V curve is monotonic). Note that the slope of the steady-
state I–V curve is less steep in the class 2 model than in the class 3 model. Class 1 neuron: Islow activates at higher V than Ifast, meaning slow negative
feedback does not begin activating until after the spike is initiated. This gives a steady state I–V curve that is non-monotonic with a region of negative
slope (*) near the apex of the instantaneous I–V curve. The SNIC bifurcation occurs when hIss/ht = 0 (arrowhead) because, at this voltage, Ifast

counterbalances Ileak and any further depolarization will cause progressive activation of Ifast. (B) Changing ḡfast in the 2D model had equivalent effects
on the shape of the steady state I–V curves. Unlike in (A), voltage at the apex of the instantaneous I–V curve (purple arrows) changes as ḡfast is varied;
in other words, the net current at perithreshold potentials can be modulated by changing fast currents (which directly impact voltage threshold)
rather than by changing the amplitude or voltage-dependency of slow currents. This is consistent with results in Figure 8. (C) Speeding up the
kinetics of Islow impacts the onset of class 2 and 3 excitability. Compared with original model (ww = 0.15; black), increasing ww to 0.25 (red) increased
Istim required to cause a Hopf bifurcation or a QSC, but did not affect Istim required to cause an SNIC bifurcation; reducing ww to 0.10 (green) had the
opposite effect (summarized in right panel). Increasing ww also widened the discontinuity in the class 2 f–I curve and allowed class 2 and 3 neurons to
achieve higher spiking rates with strong Istim because of the faster recovery between spikes; reducing ww had the opposite effects.
doi:10.1371/journal.pcbi.1000198.g009
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The mechanistic explanation of excitability afforded by

quantitative analysis (i.e., phase plane analysis, local stability

analysis, and bifurcation analysis) is precisely what is needed to

make sense of the ever accumulating mass of experimental data. It

provides an organizing framework for understanding which

parameters are important and why, for instance, by explaining

the functional equivalence of different biophysical changes (see

Figure 8). By comparison, the reverse engineering approach,

whereby the computational model is built with experimentally

measured parameter values, does not typically provide results that

can be so readily generalized.

According to our results, the direction, magnitude, and kinetics of

currents activating or inactivating at perithreshold potentials

influence the process of spike initiation. Previous studies have

identified the competition between inward and outward currents

as a critical determinant of excitability (e.g., [32]), but our results

go further by explaining the importance of the temporal features of

that competition. Conceptualizing spike initiation as a competition

between fast and slow currents helps explain the shape of the f–I

curve. If Islow is absent or inward at perithreshold potentials,

positive feedback mediated by Ifast faces no competition as it drives

voltage slowly through threshold; a slow voltage trajectory between

spikes means that the neuron can fire repetitively at low rates, thus

producing the continuous f–I curve characteristic of class 1

excitability. If Islow is outward at perithreshold potentials, then Ifast

must compete with slow negative feedback. To compete

successfully, Ifast must exploit its fast kinetics, which means driving

voltage through threshold with sufficient rapidity that Islow cannot

catch up; a rapid voltage trajectory between spikes means that the

neuron cannot fire repetitively at low rates, thus producing the

discontinuous f–I curve characteristic of class 2 excitability.

Whether Islow is ‘‘strong enough’’ to prevent repetitive spiking

altogether (thus producing class 3 excitability) depends on Istim,

hence the diagonal border between class 2 and 3 excitability on

Figures 1D and 7C; in contrast, the direction of feedback is

independent of Istim, hence the vertical border between class 1 and

2 excitability on the same plots.

The adaptation observed in phasic-spiking neurons is also

interesting insofar as it indicates that shifting the balance of fast

and slow currents has important consequences for coding, and that

a given neuron is not restricted to a unique spike initiation

mechanism. Effects of activating an outward current or inactivat-

ing an inward current on ultra-slow time scales (across several ISIs)

can be predicted from plots like Figure 7C: individual spikes are

still generated through one of the three dynamical mechanisms we

have described, but that mechanism can change over time

according to dynamics of the ultra-slow process. Bursting,

stuttering, and other interesting phenomena occur when ultra-

Figure 10. Depolarization-induced inactivation of a subthreshold outward current can also produce class 1 excitability. (A)
Inactivation of an A-type K+ current by subthreshold depolarization should shift the balance of inward and outward currents the same way that
depolarization-induced activation of an inward current does, and is therefore predicted to encourage class 1 excitability. To test this, we warped the
w-nullcline to give it a region of negative slope at subthreshold potentials (see [55]); this was done by changing Equation 5 so that

w? Vð Þ~0:5 1ztanh
V{bw

cw

� �� �
zj 1{tanh

V{bw1

cw1

� �� �� 	
where bw = 210 mV, cw = 10 mV, bw* = 260 mV, cw* = = 20 mV, and j= 0.1. Under

these conditions, the V- and w-nullclines intersected tangentially at rheobasic stimulation. (B) This phase plane geometry resulted in an SNIC
bifurcation and class 1 excitability, as predicted. (C) Inactivation of the A-type K+ current at subthrehsold potentials gave a region of negative slope
on the steady state I–V curve that overlapped the apex of the instantaneous I–V curve.
doi:10.1371/journal.pcbi.1000198.g010
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slow processes interact with the fast-slow dynamics controlling

spike initiation [7,13,33]. Understanding the relatively simple

process of spike initiation will surely facilitate our understanding of

how modulation of intrinsic properties impacts excitability and

how more complex phenomena arise.

Although the dynamical bases for class 1 and 2 excitability have

been established for some time [7], the connection between class 3

excitability and spike initiation through a QSC has not been made

explicitly. The concept of spike initiation through a QSC was first

proposed by FitzHugh [22,23], who considered responses to brief

pulses as well as to prolonged depolarizing and hyperpolarizing

steps. However, Fitzhugh’s explanation seems to have faded or, at

best, is remembered in specific contexts such as post-inhibitory

rebound excitation (e.g., [27]). Class 3 excitability has been

reproduced in a Morris-Lecar-like model [34], but the spike

initiating dynamics were not explored in that study. Izhikevich

[13] accurately described class 3 excitability and ascribed it to

accommodation, but this does not provide as satisfying a dynamical

explanation as a QSC, which can accurately predict whether a

spike will be initiated based on where the trajectory starts relative

to the quasi-separatrix (see Figure 2). Indeed, the predictive power

of a QSC (see Figure 3) attests to its utility and will hopefully lead

to increased application of this concept within the field.

Experimental study of class 3 excitability has been neglected at

least partly because of the mistaken assumption that all neurons

displaying a single-spiking pattern are unhealthy (i.e., that the

quality of the recording is poor). Indeed, an unhealthy neuron will

often fail to spike repetitively, but many other indices of neuronal

health (e.g., resting membrane potential) have proven that a single-

spiking pattern is not synonymous with dysfunction. Indeed,

‘‘healthy’’ single-spiking neurons have been described not only in

the superficial dorsal horn of the spinal cord [14,15,35], but also

deeper in the spinal cord [36], as well as in dorsal root ganglia

[37,38], retina [39], amygdala [40], nucleus tractus solitarius [41],

medial superior olive [42], medial nucleus of the trapezoid body

[43], and anteroventral cochlear nucleus [44]. This list is not

complete, at least in part because of the sampling bias explained

above, but it nonetheless suggests that class 3 neurons are common

within sensory pathways and certainly warrant increased investi-

gation. Interestingly, mossy fiber boutons [45] and the axons of

neocortical pyramidal neurons [46] also exhibit a single-spiking

pattern when stimulated with prolonged depolarizing steps.

Class 3 excitability has been most extensively studied in the

auditory system where the single- (or onset-) spiking pattern has

been shown to result from a low-threshold K+ current [43,47].

Svirskis et al. [30] have also shown that inactivation of Na+ current

factors into the coding properties of those neurons, arguing that

well-timed spikes are generated by rapid depolarizing input that

minimizes activation of IK,lt and inactivation of INa; ideally, that

rapid depolarization is preceded by hyperpolarizing input that

primes the neuron by deactivating IK,lt and deinactivating INa.

That biophysical explanation is consistent with our data. Single-

spiking cells in the auditory system also exhibit variably sized

spikes (e.g., [48]), which is also consistent with our results (see

Figure 3A and 3B), as is the temperature-dependence of that

variability [49]: in our model, the rate at which V changes relative

to w is controlled by ww (see Equation 3) and is liable to vary with

temperature [7], meaning temperature can influence spike

amplitude in the model by changing how quickly trajectories peel

away from the quasi-separatrix (data not shown). Based on these

several lines of evidence, a QSC appears to be a robust

explanation of the single-spiking pattern, not only for spinal

lamina I neurons, but also for similar neurons elsewhere in the

nervous system.

As explained in the Introduction, Hodgkin identified three

classes of neurons based on phenomenological differences in their

spiking pattern [5]. Subsequent work has linked that classification

to differences in neural coding [6–12]. We have not formally

investigated in this study how spike initiating dynamics impact

neural coding, but increased understanding of spike initiation will

facilitate future investigations into important issues such as spike-

timing reliability. Indeed, our data (e.g., Figure 1) suggest that class

Figure 11. Summary of phase plane geometry and local stability analysis. Class 1 excitability results when slow-activating outward current
is absent at voltages below threshold; inward current faces no competition and can drive arbitrarily slow spiking. Class 2 excitability results when
outward current is activated at subthreshold voltages, but although net current is outward at steady state, fast-activating inward current ensures
repetitive spiking above a critical frequency; spiking cannot be sustained below a rate that would allow enough time for slow-activating outward
current to activate sufficiently that net current becomes outward during the interspike interval. Class 3 excitability results when outward current is
sufficiently strong that repetitive spiking is prohibited despite fast-activating inward current; spike generation is only possible when the system is
perturbed from steady state, as during a stimulus transient, during which fast-activating inward current initiates a spike before slow-activating
outward current has an opportunity to counteract the positive feedback process.
doi:10.1371/journal.pcbi.1000198.g011
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3 neurons are ideally suited to encode stimulus onset (timing)

whereas class 1 neurons are better suited to encode stimulus

intensity. Future work will focus on how spike initiating dynamics

impact encoding of different stimulus features.

To conclude, Hodgkin’s three classes of excitability result from

different outcomes in a competition between fast and slow

currents. The kinetic mismatch between currents is crucial for

allowing single-spiking (class 3 excitability) or repetitive spiking

faster than a critical frequency (class 2 excitability) despite the net

steady state current being outward at threshold. Moreover,

reproduction of qualitatively different spiking patterns in a 2D

model emphasizes that rich dynamics are possible in simple

systems based on their nonlinearities. Identifying functionally

important nonlinearities and then determining how they are

biologically implemented represents a powerful way of deciphering

the functional significance of biophysical properties.

Methods

Slicing and Electrophysiology in Spinal Cord
All experiments were performed in accordance with regulations

of the Canadian Council on Animal Care. Adult male Sprague

Dawley rats were anesthetized with intraperitoneal injection of

sodium pentobarbital (30 mg/kg) and perfused intracardially with

ice-cold oxygenated (95% O2 and 5% CO2) sucrose-substituted

artificial cerebrospinal fluid (S-ACSF) containing (in mM) 252

sucrose, 2.5 KCl, 2 CaCl2, 2 MgCl2, 10 glucose, 26 NaHCO3,

1.25 NaH2PO4, and 5 kynurenic acid; pH 7.35; 340–350 mOsm.

The spinal cord was removed by hydraulic extrusion and sliced in

the parasagittal plane as previously described [50]. Slices were

stored at room temperature in normal oxygenated ACSF

(126 mM NaCl instead of sucrose and without kynurenic acid;

300–310 mOsm) until recording.

Slices were transferred to a recording chamber constantly

perfused at ,2 ml/min with oxygenated (95% O2 and 5% CO2),

room temperature ACSF. Lamina I neurons were visualized with

gradient-contrast optics on a modified Zeiss Axioplan2 microscope

(Oberkochen, Germany) and were patched on with pipettes filled

with (in mM) 135 KMeSO4, 5 KCl, 10 HEPES, and 2 MgCl2, 4

ATP (Sigma, St Louis, MO), 0.4 GTP (Sigma); pH was adjusted to

7.2 with KOH and osmolarity ranged from 270–290 mOsm.

Whole cell current clamp recordings were performed using an

Axopatch 200B amplifier (Molecular Devices, Palo Alto, CA).

Functional classification was determined from responses to

900 ms-long current steps [14] with pre-stimulus membrane

potential adjusted to 260 mV by constant current injection in

order to standardize across cells. Other stimuli included a noisy

waveform generated through an Ornstein-Uhlenbeck process [51],

dIstim=dt~
Iavg{Istim

tnoise

zsnoiseN 0,1ð Þ ð1Þ

where N(0,1) is a random number drawn from a Gaussian

distribution with average 0 and unit variance, which is then adjusted

according to size of the time step. Noise amplitude (snoise) and

filtering (tnoise) are reported in the text. DC offset (Iavg) was adjusted

to give roughly equivalent firing rates across different neurons.

Traces were low-passed filtered at 3–10 KHz and stored on

videotape using a digital data recorder (VR-10B, Instrutech, Port

Washington, NY). Recordings were later sampled at 10–20 KHz

on a computer using Strathclyde Electrophysiology software (J.

Dempster, Department of Physiology and Pharmacology, Univer-

sity of Strathclyde, Glasgow, UK).

Computational Modeling
Two-dimensional model. Our starting model was derived

from the Morris-Lecar model [7,52] with a fast activation variable V

and a slower recovery variable w. V represents voltage and controls

instantaneous activation of fast currents (Ifast); w is a function of

voltage and controls activation of slower currents (Islow). Both Ifast

and Islow may comprise more than one current (see below); currents

with similar kinetics were bundled together in order to create a low-

dimensional model. The system is described by

C dV=dt~Istim{�ggfast m? Vð Þ V{ENað Þ{�ggsloww V{EKð Þ{

gleak V{Eleakð Þ
ð2Þ

dw=dt~ww

w? Vð Þ{w

tw Vð Þ ð3Þ

m? Vð Þ~0:5 1ztanh
V{bm

cm

� �� �
ð4Þ

w? Vð Þ~0:5 1ztanh
V{bw

cw

� �� �
ð5Þ

tw Vð Þ~1=cosh
V{bw

2:cw

� �
ð6Þ

Unless otherwise stated, ENa = 50 mV, EK = 2100 mV, Eleak =

270 mV, ḡfast = 20 mS/cm2, ḡslow = 20 mS/cm2, gleak = 2 mS/cm2,

ww = 0.15, C = 2 mF/cm2, bm = 21.2 mV, cm = 18 mV, cw =

10 mV, and bw was varied as explained below.

This simple 2D model displayed each of Hodgkin’s three classes

of excitability but excluded details unnecessary for explaining the

response properties of interest. Within that minimalist framework,

we sought to isolate parameters sufficient to distinguish one class of

excitability from another. Parameter values were found by

manually varying them to produce a tonic- or single-spiking

pattern. Once a set of parameters was found for each pattern,

parameters were compared and adjusted to isolate those sufficient

to explain each pattern. Varying bw was found to be sufficient to

convert the model between tonic-spiking (class 1 excitability) and

single-spiking (class 3 excitability); varying other parameters

including ḡfast, ḡslow, bm or cw also affected excitability through

the same geometrical changes associated with varying bw (see

Figure 8). Intermediate values of the aforementioned parameters

consistently produced class 2 excitability.

Three-dimensional model. To make the model more

biophysically realistic, we converted the 2D model into a 3D

model (see Figure 4) by splitting Islow into its component parts

which include the delayed rectifier K+ current IK,dr and a

subthreshold current Isub that is either inward or outward

depending on Esub. Activation of gK,dr and gsub was controlled by

y and z, respectively, so that

C dV=dt~Istim{�ggfast m? Vð Þ V{ENað Þ{�ggK,dr y V{EKð Þ{
�ggsub z V{Esubð Þ{gleak V{Eleakð Þ

ð7Þ

dy=dt~wy

y? Vð Þ{y

ty Vð Þ ð8Þ
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y? Vð Þ~0:5 1ztanh
V{by

cy

 !" #
ð9Þ

ty Vð Þ~1=cosh
V{by

2:cy

 !
ð10Þ

dz=dt~wz

z? Vð Þ{z

tz Vð Þ ð11Þ

z? Vð Þ~0:5 1ztanh
V{bz

cz

� �� �
ð12Þ

tz Vð Þ~1=cosh
V{bz

2:cz

� �
ð13Þ

Isub was either inward (Esub = ENa = 50 mV) or outward (Esub = EK =

2100 mV) and ḡsub was varied. Kinetics of Isub were adjusted to

match experimental data so that wz = 0.5 for inward current and

wz = 0.15 for outward current. The steady-state activation curve for z

was the same for all models with bz = 221 mV and cz = 15 mV.

wy = 0.15, by = 210 mV, cy = 10 mV, and all other parameters were

the same as in the 2D model.
Simulation methods. To stimulate the model, Istim (in mA/

cm2) was varied to produce steps, noise, or ramps comparable to

stimuli used in experiments. Equations were integrated numeri-

cally in XPP [53] using the Euler method and a 0.1 ms time step.

Phase plane and bifurcation analyses were performed according to

standard procedures [7,54]. Briefly, phase plane analysis involves

plotting system variables relative to each other. Nullclines

represent areas in phase space where a given variable remains

constant. How the nullclines intersect (i.e., whether the

intersection is stable or unstable) determines whether the system

evolves towards a fixed point or towards a limit cycle (i.e.,

subthreshold membrane potential or repetitive spiking,

respectively).

Nullclines were calculated in XPP [53]. For calculating a

nullcline at time t, all variables not associated with the nullcline

were held constant at their value at time t. Stability of fixed points

was determined from the eigenvalues found by local stability

analysis near the fixed point. A quasi-separatrix is distinct from a

nullcline and was identified by the separation of flow on the phase

plane (i.e., trajectories peal away to the right or left of the quasi-

separatrix). The quasi-separatrix was plotted by integrating

backward in time (20.01 ms time step) from point * indicated

on relevant figures; see Results for additional details.

In bifurcation analysis, Istim was systematically varied to

determine at what point the system qualitatively changes behavior

(i.e., starts or stops spiking), which corresponds to a bifurcation.

Whereas repetitive spiking is generated through a bifurcation,

single-spiking generated through a QSC is not evident on a

bifurcation diagram since the system’s steady state has not

changed. The stimulus range over which a QSC occurs is

therefore indicated based on independent simulations.
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