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Abstract

Large-scale analyses of protein-protein interactions based on coarse-grain molecular docking simulations and binding site
predictions resulting from evolutionary sequence analysis, are possible and realizable on hundreds of proteins with variate
structures and interfaces. We demonstrated this on the 168 proteins of the Mintseris Benchmark 2.0. On the one hand, we
evaluated the quality of the interaction signal and the contribution of docking information compared to evolutionary
information showing that the combination of the two improves partner identification. On the other hand, since protein
interactions usually occur in crowded environments with several competing partners, we realized a thorough analysis of the
interactions of proteins with true partners but also with non-partners to evaluate whether proteins in the environment,
competing with the true partner, affect its identification. We found three populations of proteins: strongly competing, never
competing, and interacting with different levels of strength. Populations and levels of strength are numerically
characterized and provide a signature for the behavior of a protein in the crowded environment. We showed that partner
identification, to some extent, does not depend on the competing partners present in the environment, that certain
biochemical classes of proteins are intrinsically easier to analyze than others, and that small proteins are not more
promiscuous than large ones. Our approach brings to light that the knowledge of the binding site can be used to reduce
the high computational cost of docking simulations with no consequence in the quality of the results, demonstrating the
possibility to apply coarse-grain docking to datasets made of thousands of proteins. Comparison with all available large-
scale analyses aimed to partner predictions is realized. We release the complete decoys set issued by coarse-grain docking
simulations of both true and false interacting partners, and their evolutionary sequence analysis leading to binding site
predictions. Download site: http://www.lgm.upmc.fr/CCDMintseris/
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Introduction

Protein-protein interactions (PPI) are at the heart of the

molecular processes governing life and constitute an increasingly

important target for drug design [1–4]. Given their importance, it is

clearly vital to characterize PPIs and notably to determine which

protein interactions are likely to be stable enough to have functional

relevance. Computational methods such as molecular docking have

rendered possible to successfully predict the conformation of

protein-protein complexes when no major conformational rear-

rangement occurs during the assembly [5–11]. However, we [12]

and others [13,14] have demonstrated that docking algorithms are

unable to predict binding affinities and thus, presently, cannot

distinguish which proteins will actually interact. This leads to ask

whether this failure comes from the fact that scoring functions, used

to sort the docking solutions, are inefficient for partner identification

or whether the difficulty comes from binding promiscuity between

proteins in the cell that blurs the interaction signal of the functional

partners. In the crowded cell, proteins experience non-specific and

unintended interactions with the intracellular environment leading

to a severe competition between functional and non-functional

partners [15–19]. This brings to light the importance of character-

izing weak, potentially non-functional, interactions in order to

predict functional ones and understand how proteins behave within

a crowded environment [16,20,21].

In this work, we tackle two distinct but related questions: (i) can

a combination of coarse-grain docking and evolutionary informa-

tion identify true interacting partners among a set of potential

ones? (ii) what is the effect of binding promiscuity on a large and

variate dataset of protein structures [22]?

Previously, we have shown that knowing the experimental

binding site of a protein can help to retrieve its native interacting
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partner within a set of decoys [12]. On the other hand, recent

studies reveal that arbitrary docked partners bind in a non-random

mode on protein surfaces [23,24] suggesting that docking true but

also false partners can help to identify protein binding sites. We

developed a novel score based on arbitrary docking and

evolutionary information to predict protein binding sites. The

different docking conformations of a given protein pair are scored

according to their associated energy and the agreement between

the docked interface and the predicted binding sites. An

interaction index is defined, and normalized according to the

whole set of proteins tested, in order to discriminate the interacting

partners from the set of tested interactions.

We evaluate our method with a complete cross-docking (CC-D)

calculation on a set of 168 proteins belonging to the 84 known

complexes described in the Mintseris Benchmark 2.0 [25] and

covering a large spectrum of different protein interfaces. Enzymes,

inhibitors, antibodies, antigens, signaling proteins and others have

been considered as well as interfaces that do or do not undergo

conformational adjustments during interaction. Docking calcula-

tions are made with no knowledge of the experimental complex

structure: unbound structures are used. We use a coarse-grain

docking algorithm [12], whose energy function relies on both van

der Waals and Coulomb potentials. We show that the combination

of a coarse-grain docking algorithm with binding sites prediction

can significantly contribute to the identification of a reasonably

sized set of potentially interacting proteins, that can be further

investigated by more precise docking algorithms or laboratory

experiments.

The large computational effort necessary to accomplish this

work was realized with the help of World Community Grid

(WCG), that coordinated thousands of internautes providing their

computer time to dock about 300000 conformations per protein

pair for the set of 28224 possible pairs in the Mintseris Benchmark

2.0. For each pair, we selected about 2000 decoys. For non-

partners, we find weak as well as strong interactions. The decoy set

is released and it provides an important reference set of structures

that can serve as a proxy for the non-specific protein-protein

complexes that occur transiently in the cell or that are avoided by

spatial-temporal constraints. These latter are hard to characterize

experimentally but they are of biochemical relevance, as

highlighted by other studies [26–29].

To simulate the variability of crowded environments for a

protein in the cell, we study how easily a protein finds its true

partner with respect to many random subsets of proteins

supposedly competing with it. We realize a thorough analysis of

these interactions and we address the question of whether a

successful prediction of a protein partner depends on the

environment composition or not. We quantify the effect of

competing partners in predictions, and we characterize in a

quantitative manner three distinguished populations of proteins

interacting with a protein P: those that strongly compete with the

true partner of P, those that never compete with it, and those that

interact with P with variable levels of strength. For each protein P,

we propose a numerical index that provides the strength of the

interaction with all other proteins in the environment, and that

gives a signature for P.

To our knowledge, this is the first study performing a large-scale

CC-D calculation, proposing an analysis of the binding promis-

cuity of the protein set, and providing to the scientific community

the associated dataset of decoys [30,31] at the same time. Previous

large-scale analyses used docking by shape complementarity that

quickly scans through several thousands proteins in a matter of

seconds [32,33] but ignore the electrostatic contribution playing

however an important role in protein interactions [34–37]. We

compared our method to two previously done studies [32,33].

Both of them do not perform a CC-D experiment, but a large-

scale analysis of selected protein pairs.

Finally, we checked whether evolutionary information can be

used to considerably restrict the number of docking interfaces to

be examined and to render molecular computation feasible for a

larger scale investigation of PPIs, based on thousands of proteins

instead of hundreds. This result makes the protocol proposed here

feasible for scaling up the analysis.

Results

The 168 proteins of the Mintseris Benchmark 2.0 [25] form 84

binary complexes known to interact in the cell. They cover three

broad biochemical categories and three difficulty categories related

to the degree of conformational change at the protein-protein

interface. They are classified as Enzyme-Inhibitors (46 proteins),

Antibody-Antigen (20), Antigen-Bound Antibody (24), Others (78),

and also as Rigid Body (126), Medium (26), Difficult (16). The set

is constituted by 51 multimeric proteins and by 117 monomeric

ones forming 41 complexes where at least one of the protein is

multimeric.

CC-D was realized on the full dataset from unbound structures,

leading to 28224 docking simulations. Each calculation explored

about 300000 ligand-receptor orientations, corresponding to

ligand and receptor complete surfaces, and asked for more than

7 months computational time on WCG. This CC-D scaled up the

one introduced in [12], carried out on 6 enzyme-inhibitor

complexes.

The docking algorithm simulates the actual docking process in

which ligand-receptor pairwise interaction energies are calculated.

The energy function we used takes into account van der Waals

(modeled by a Lennard-Jones potential) and electrostatic (modeled

by a Coulomb potential) terms (see Methods).

Predictions of protein partners
For each protein in the dataset, the problem of partner

identification is tackled with two main experiments. The first

Author Summary

Protein-protein interactions (PPI) are at the heart of the
molecular processes governing life and constitute an
increasingly important target for drug design. Given their
importance, it is vital to determine which protein
interactions have functional relevance and to characterize
the protein competition inherent to crowded environ-
ments, as the cytoplasm or the cellular organelles. We
show that combining coarse-grain molecular cross-dock-
ing simulations and binding site predictions based on
evolutionary sequence analysis is a viable route to identify
true interacting partners for hundreds of proteins with a
variate set of protein structures and interfaces. Also, we
realize a large-scale analysis of protein binding promiscuity
and provide a numerical characterization of partner
competition and level of interaction strength for about
28000 false-partner interactions. Finally, we demonstrate
that binding site prediction is useful to discriminate native
partners, but also to scale up the approach to thousands of
protein interactions. This study is based on the large
computational effort made by thousands of internautes
helping World Community Grid over a period of 7 months.
The complete dataset issued by the computation and the
analysis is released to the scientific community.
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experiment assumes to know the residues belonging to the

experimental interface of the proteins. This means that the

residues lying at the interface of two proteins in a native complex

are supposed to be known while no knowledge of the complex

conformation is assumed. The second experiment replaces

experimental interfaces by predictions of binding sites based on

docking and evolutionary information. The evaluation of the

quality of the interaction signal in this PPI large-scale study is of

major importance. In particular, the contribution of docking

information compared to evolutionary information in partner

identification needs to be quantified. To do so, the analysis based

on experimental interfaces allows us to evaluate in a precise

manner how much a good prediction of the interaction sites

improves partners identification, experimental interfaces playing

the role of perfect predictions. In the sequel, we also use it to

decipher whether a property of protein interactions that has been

observed from computational predictions has a biological origin or

whether it is a consequence of the noise of the prediction.
Knowing experimental interfaces. As pointed out in [12],

the combination of the energy score produced by docking and the

knowledge of the experimental interface should help to retrieve the

true interacting partners. For this, we define a predictive PPI index

(NII) in order to estimate the probability of two proteins to

interact. As in [12], we determine what fraction of the docking

interface is composed of residues belonging to the experimentally

identified interface (named FIR, for Fraction of Interface Residues)

for the receptor (FIRrec) and for the ligand (FIRlig), and we define

the overall fraction of the complex as FIR~FIRrec|FIRlig.

Then, we describe each receptor-ligand orientation by the product

of its corresponding FIR and energy. Here, contrary to [12], for

each pair of proteins P1,P2, we compute an interaction index (II)

IIP1,P2
~min(FIRP1,P2

|EP1,P2
) ð1Þ

where the minimum is defined over all orientations tested for

P1,P2, and the interaction energy EP1,P2
of the corresponding

conformation.

To compare interaction indexes computed over different pairs,

a normalized interaction index, called NII, is introduced. In [12],

a NII formula is also proposed but it uses a different definition (1)

and it does not model the symmetric role played by ligand and

receptor (see Methods).

The results of the analysis are resumed in the squared matrix

reporting the NII values of each pair of proteins in Figure 1, where

one clearly distinguishes the diagonal that indicates a successful

prediction for many native complexes (see the third column of

Table 1 also, and Figure S1 in Text S1). The performance of the

prediction has been evaluated using a receiver operating

characteristic (ROC) curve and its area under the curve (AUC)

is 0.84. At a NII score threshold of 0.5, one observes a very high

specificity (92) and a good sensitivity (52). See Table 2 and Table

S8 in Text S1 (for other thresholds and performance measures).

The large spectrum of interfaces, the large number of partners in

competition, and the usage of unbound structures (compared to

the bound ones used in [6,12]) render this successful result not a

forgone conclusion. At the contrary, the results provide a very

encouraging insight and confirm search for protein partners by

docking simulations, starting from unbound structures, to be a

feasible task.
Analysis of different classes of interaction based on

experimental interfaces. We systematically analyzed com-

plexes in terms of their biochemical classes and difficulty categories

(see Figure 2, Table 2 and Table S8 in Text S1) to verify whether

partner identification, based on experimental interfaces, is easier

within certain classes than within others. Partners prediction

improves to an AUC~0:85 for Enzyme-Inhibitors, 0.89 for

Antibody-Antigen, 0.91 for Antigen-Bound Antibody, 0.84 for

Others (Figure S2 in Text S1). Similarly, we obtain an

AUC~0:87 for Rigid Body, 0.85 for Medium and 0.77 for

Difficult structures (Figures S3–S4 in Text S1). Therefore, when

the binding sites are known, interactions within classes are clearly

easier to predict. To understand these results, it is important to

observe that Enzyme-Enzyme, Antigen-Antigen and Bound

Antibody-Bound Antibody interactions are well discriminated by

docking. This is highlighted by a large amount of extremely weak

interactions, if any at all, detected within these sub-classes and

illustrated by the corresponding sub-matrices in Figure 2. In

conclusion, the good behavior of partner prediction within

functional classes might be due either to the size effect of the

environment on the prediction or to the composition of the protein

subset used for predicting. This question is explored in ‘‘Native

interactions and competing partners’’.

Using predictions of interaction sites. Here, we drop the

information on the location of the experimental interface of true

partners and use predicted binding sites instead in order to

evaluate our ability to retrieve the true partner in a totally blind

experiment. Predicted interfaces are obtained by combining

evolutionary information, computed with the program JET [38]

(see Methods) and CC-D calculations:

i. JET predictions are used to select a set of residues that are

likely to belong to the real interface according to conservation

and expected physico-chemical properties for interface

residues (see Methods) [38];

ii. Early studies suggested that docking arbitrary partners

together can nevertheless point to the correct interaction

surfaces [23,39]. For this, they observed an accumulation of

the docking solutions around the experimental location of the

true partner. Following this approach, given a protein P, we

used the information extracted from CC-D calculations

involving all proteins in the database, to propose a set of

residues that is highly likely to belong to the binding site of P.

A score (called Normalized Interaction Propensity, or NIP, in

Methods, Eq. (7)), associated to each residue in P, reveals the

probability for a residue to belong to the real interface.

For a given pair of proteins P1 and P2, we evaluated all docking

conformations by combining NIP residue scores and JET residue

scores at the corresponding interface (this defines a FIRP1P2
as

indicated in Methods, Eq. (8)) with the energy of the conformation

(see Figure 3). Intuitively, we select the conformation that shows

highest NIP and JET scores at the interface together with a

sufficiently low energy. The best conformation satisfies Eq. (1). As

in section ‘‘Knowing experimental interfaces’’, the resulting II
matrix is normalized into a NII matrix (see Methods, Eq. (3)).

We analyzed partner prediction performances obtained by

using NIP, JET or the combination JET+NIP (see Table 2 and

Table S9 in Text S1; see also Figure S7–S8 and Table S10 in Text

S1). When using only NIP, about half of the dataset (Enzyme-

Inhibitors, Antibody-Antigens and Antigen-Bound Antibody)

reaches an AUC of about 0.60, while the other half (Others)

shows a random behavior. The use of JET highly improves the

performance of three quarters of the dataset (Enzyme-Inhibitors

and Others) with an AUC increase of more than 10% (for each

class), while for the remaining quarter, involving antibodies and

antigens, the AUC drops to 0.52.

To take advantage of the different behavior of NIP and JET on

different biochemical classes, we combined the two approaches.

Protein-Protein Interactions in a Crowd
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We obtained a global improvement for three quarters of the

database (Enzyme-Inhibitors and Others) compared to the results

of NIP alone (0.77 and 0.61, respectively), while increasing the

performance for Antibody-Antigens (0.58) and Antigen-Bound

Antibody (0.56) compared to JET alone.

The poor performance obtained on Antibody-Antigens and

Antigen-Bound Antibody possibly results from (i) a faster sequence

evolution that blurs conservation signals leading to bad binding

site predictions and (ii) from a large number of JET patches

(corresponding to potential binding sites), compared to Enzyme-

Inhibitors and Others, generating a large number of potential

interactions that render more difficult partners discrimination. By

excluding Antibody-Antigen and Antigen-Bound Antibody from

the dataset (see ‘‘Enzyme-Inhibitors & Others’’ in Table 2), the

AUC reaches 0.66 on the 124 remaining proteins. This is an

encouraging outcome considering the absence of experimental

information and the important number of competing proteins.

Notice that on Enzyme-Inhibitors, the combination JET+NIP

improves the already good JET performance to an AUC of 0.77.

In particular, JET+NIP obtains a decrease of less than 10%
compared to predictions based on experimental data. See Tables 1,

2 and Table S9 in Text S1 (for several performance measures and

score thresholds). Finally, very weak interactions among Enzyme-

Enzyme and Bound Antibody-Bound Antibody proteins are

observable, as already noticed for docking based on experimental

interfaces. This is highlighted by the sub-matrices in Figure S8 in

Text S1 and constitutes another encouraging outcome for

exploring interacting networks with docking based on interface

predictions.

Figure 1. Normalized Interaction Index (NII) matrix for the complete dataset of 168 proteins. The matrix is ordered with the experimental
complexes lying on the trailing diagonal. Protein structures corresponding to columns and rows are grouped in functional classes: Enzymes (E),
Inhibitors (I), Antibody (Ab), Antigen (Ag), Bound Antibody (AbB), Others (O). Each entry of the matrix corresponds to the NII value computed for the
corresponding pair of proteins (receptor on the y-axis and ligand on the x-axis). High interaction scores (between 0.7 and 1, blue and black in the
color scale) indicate a high interaction probability. Interaction scores are computed using knowledge of the experimental interfaces. The plot
corresponds to an AUC~0:84. In the color bar the intervals correspond to NII values, where the upper bound is included in each interval. Rows and
columns are labeled with protein names in Figure S1 in Text S1.
doi:10.1371/journal.pcbi.1003369.g001

Table 1. Interaction ranks distribution for the Mintseris
Benchmark 2.0.

Mintseris Benchmark 2.0 - 168 proteins

Top %
# top
proteins 168 vs 168 (%) 56 vs 168 (%)

exp pred exp pred

1 1 42 (25) 6 (4) 16 (29) 3 (5)

5 8 76 (45) 23 (14) 28 (50) 9 (16)

10 17 98 (58) 41 (25) 36 (64) 17 (31)

15 25 118 (70) 50 (30) 45 (80) 20 (36)

20 34 126 (75) 59 (36) 45 (80) 23 (42)

30 50 136 (81) 76 (46) 47 (84) 33 (60)

40 67 145 (86) 98 (59) 49 (88) 38 (69)

50 84 154 (92) 117 (70) 54 (94) 41 (75)

Over the 168 proteins in the Mintseris dataset, we report the number of
proteins (third and fourth columns) whose native complex is identified within
the top x% of complexes obtained by docking the proteins with all 168
proteins in the environment (this means that the NII score of the native
complex falls in the top x% scores). Native complexes identification is realized
either by knowing the experimental interface (exp) or by predicting it (pred).
Cumulative counts and percentages are displayed. The selected set of 56
monomers considered in [33] is also evaluated against the 168 proteins (fifth
and sixth columns). The number of top proteins corresponding to the x% of the
total number of proteins in the specified environment is given (second column).
doi:10.1371/journal.pcbi.1003369.t001

Protein-Protein Interactions in a Crowd
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Analysis on difficulty categories based on interface

predictions. When using JET+NIP scores, the partitioning of

the Mintseris dataset on Rigid, Medium and Difficult structures

leads to 0.60, 0.68 and 0.65 AUC values respectively (Table 1

and Table S9 in Text S1). Unexpectedly, Difficult and

Medium perform similarly, and better than Rigid. This suggests

that the interface prediction based on JET+NIP is robust to

conformational changes that could occur upon complex forma-

tion, probably due to the fact that 1. JET is based on sequence

information, and 2. JET is designed to predict surface residues that

are possibly highly buried [38], and that can pass from a buried to

an exposed state (and conversely) during the assembly.

The Rigid class shows the worst performance, possibly due to

the presence of Antibody-Antigen and Antigen-Bound Antibody in

Table 2. Partner prediction based on the exploration of the full conformational space.

Protein dataset Experimental interfaces Predicted interfaces

Subset type # proteins JET+NIP NIP JET

AUC Sen Spe AUC Sen Spe AUC AUC

Mintseris DB 168 0.84 52 92 0.61* 25* 89* 0.53* 0.59*

Enzyme-Inhibitor & Others 124 0.84 54 92 0.66* 34* 87* 0.56* 0.65*

Enzyme-Inhibitor 46 0.85 59 88 0.77 65 78 0.60 0.72

Antibody-Antigen 20 0.89 95 66 0.58 15 70 0.61 0.52

Antigen-Bound Antibody 24 0.91 79 80 0.56 38 74 0.63 0.53

Others 78 0.84 62 89 0.61* 25* 88* 0.52* 0.62*

Rigid 126 0.87 59 91 0.60* 29* 85* 0.53* 0.59*

Medium 26 0.85 73 81 0.68 58 80 0.53 0.67

Difficult 16 0.77 69 78 0.65 38 80 0.66 0.63

Monomeric (both partners) 86 0.87 66 89 0.63 36 85 0.55 0.63

Multimeric (at least one partner) 82 0.81 59 88 0.61* 32* 86* 0.51* 0.61*

The analysis is realized by assuming knowledge of either the experimental interfaces or the predicted interfaces. Performance of partner prediction is evaluated through
AUC values computed on the Mintseris dataset and its different subsets. Sensitivity (Sen) and specificity (Spe) are also given at a NII threshold cutoff of 0.5 for
predictions based on experimental interfaces, and at a NII threshold cutoff of 0.25 for predicted interfaces. Calculations based on JET and NIP predicted interfaces use
weights a~0:4, b~0:6 (see Methods). The * symbol refers to values computed on subsets that have been cleaned of the complex 1ML0 for which JET provided no
interaction site (leading to a FIR~0 because of no common residue between the small predicted interface and the docked one). The Mintseris dataset and the subsets
Enzyme-Inhibitor & Others, Others, Rigid and Multimeric contain 166, 122, 76, 124 and 80 proteins, respectively. See also Tables S8–S9 in Text S1 for other threshold
cutoffs and performance measures.
doi:10.1371/journal.pcbi.1003369.t002

Figure 2. NII matrices for functional classes of proteins. Enzyme-Inhibitors (EI; top left), Antibody-Antigen (AbAg; top right), Antigen-Bound
Antibody (AgAbB; bottom left), Others (O; bottom right). See legend of Figure 1 for matrix description and color scale. Protein structures are grouped
in functional classes. (See Figure S2 in Text S1 for the version of the figure reporting protein names on matrices columns and rows.)
doi:10.1371/journal.pcbi.1003369.g002

Protein-Protein Interactions in a Crowd
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this subset. The comparison of Rigid with the Enzyme-Inhibitors

& Others subset, displaying a similar size but an AUC of 0.66,

shows that the AUC is independent of the size of the evaluated

subset and suggests that the subset composition might play an

important role in the prediction reflecting the partners competition

occurring in the cell. This leads to ask whether the prediction of a

given complex is dependent on the proteins composing the

environment or whether it is dependent on intrinsic properties of

the complex itself. This idea is explored in the next section.

Native interactions and competing partners
We performed a series of tests to check whether the composition

of a set of competing partners for a given protein influences

partnership prediction. The analysis is performed on both

JET+NIP predictions and experimental interfaces (see Figures

S10–S16, S17–S23 and Table S1 in Text S1).

Are predictions dependent on environment com-

position?. We investigated the robustness of the prediction of

a given complex among different random sets of proteins, these

sets containing potential competitors for the proteins forming the

complex. To do so, we defined the interaction rank (IR) of a

complex within an environment to be the position of the NII value

of the complex in the ordered list of NII values associated to the

complexes involving at least one of the two partners. For each of

the 84 native complexes, we generated 100 protein sets containing

the desired complex and 19 other randomly chosen complexes (40

Figure 3. The protocol. The protocol is based on docking calculations and JET predictions and produces an interaction matrix for the proteins in a
database. Here, two protein structures, the receptor 1AY7 and the ligand 2MTA, are analyzed. The first step consists in cross-docking 1AY7 and 2MTA
respectively, against all structures in the database (see cyan box for 1AY7 and blue box for 2MTA). A structure will be crossed dock against another in
several conformations (from 100000 up to 450000, depending on the size of the proteins). In the schema, 1AY7 and 2MTA are also docked one
against the other (see intersection between blue and cyan boxes). As a result of the cross-docking, a NIP score is associated to each protein leading to
the prediction of an interaction site (color range from light blue to dark blue, corresponding to weak and strong signals respectively). In parallel, each
protein is analyzed with JET, a JET score is associated to it and leads to the prediction of an interaction site based on evolutionary information (color
range from yellow to red, corresponding to weak and strong signals respectively). JET and NIP scores are finally combined to obtain a JET+NIP score
for each protein structure (color range from light pink to deep purple, corresponding to weak and strong signals respectively). Then, for each docked
conformation, the JET+NIP score is combined to the corresponding energy value (to compute the FIR) to discriminate the best conformation of 1AY7
and 2MTA among all possible conformations computed by cross-docking (grey box, corresponding to the intersection of cyan and blue boxes -
notice that the orientation of 1AY7 is the same in all conformations represented in the box). For the full dataset, the FIR values of the best
conformation computed for each pair of proteins are recorded in the II matrix. Notice that the schema describing the computation for 1AY7 and
2MTA leads to one entry of the matrix. Finally, a normalization step produces the NII matrix used to discriminate potential partners.
doi:10.1371/journal.pcbi.1003369.g003

Protein-Protein Interactions in a Crowd
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proteins). Figure 4 illustrates the average and standard deviation of

the distribution of IRs for the native complexes, ordered by

increasing average rank. We can see that about the half of the

native complexes are predicted in the top 10 (41 complexes over

the 84), and 62% (52 over 84) are predicted on the top 15. This

finding strongly suggests that these well-behaved complexes

display some intrinsic properties leading to the correct prediction

whatever the associated random set of potential partners is.

In Figure 4, one can also observe an increase in the variability of

the IR (see the size of red bars) for those complexes whose average

IR is greater than 10, and a strong decrease for a few complexes

having a very large average IR value, that is complexes that are

hard to predict (see right of Figure 4). Receptor and ligand forming

these latter complexes may interact with many proteins in the cell

thus displaying some binding promiscuity. In particular, these bad-

behaved complexes are proteases, kinases, cell adhesion molecules

and MHC (major histocompatibility complex) class II molecules.

The first two kinds of proteins are known to interact with many

partners, while the last two are normally located on cell surfaces

and display conserved interfaces, usually buried within the cell

wall. On the contrary, these conserved interfaces are exposed in

our experiments, possibly diverting the JET signal. Notice that the

observation remains true when using experimental interfaces,

showing that this behavior is not due to noise coming from the

prediction (see Figure S55 in Text S1).

For a given complex, we also plot the detailed values of AUC

and IR of the associated 100 random sets (see the three detailed

plots in Figure 4 and Figures S17–S23 in Text S1 for the complete

analysis of the 84 complexes). Intuitively, a high AUC value

corresponds to a random set of complexes for which the large

majority of the predictions is correct, while low AUC values

(v0:60) correspond to a majority of bad predictions. Two groups

of proteins with distinct behavior emerge. The first one is

constituted by complexes whose IR is independent on the random

set composition. They display a small variability of the IR and a

large variability of the corresponding AUC (see Figure 4, 1BVN).

This group is constituted by 24 complexes over 84 and it

corresponds to complexes possibly displaying intrinsic physico-

chemical properties always leading to the same IR (average IR

ƒ5), whatever the associated random set is. The second group

corresponds to complexes displaying a correlation between IR

and AUC values. It reveals that the composition of the different

random sets might influence the ranking of the reference

complex (see Figure 4, 1N2C) that might vary from set to set,

thus mimicking, to some extent, the competition that occurs in

the cell. With the exception of a few complexes, IRs range within

at most 10 positions reflecting some stability of the complex

ranks, whatever the subset is. Notice that when experimental

interfaces are known, these two behaviors hold true, supporting

the idea that they are not a consequence of a loss of interaction

signal due to unsuccessful predictions. See Figures S10–S23 in

Text S1.

Overall, many complexes display a very good average IR (Table

S1 in Text S1). Among the 84 complexes, 41 show an average IR

ƒ10 and 52 an average IR ƒ15. Here, the good performance of

Enzyme-Inhibitors observed before, is confirmed with 11 over 23

complexes showing an average IR ƒ5, and 19 an average IR

ƒ10. For Antibody-Antigen and Others, a bit more than a third

of the complexes show an average IR ƒ10, which is an

encouraging result taking into account the absence of any

experimental information. If we suppose to know experimental

interfaces, there are 15 complexes with average IR w10,

indicating a set of complexes for which coarse-grain docking does

not provide sufficient information to discriminate partnership.

These complexes mostly belong to Enzyme-Inhibitors and Others

(see Figures S10–S16 in Text S1).

A protein signature based on the variability of its

interaction ranks. The notion of average IR (computed over

Figure 4. Robustness of the native complex predictions with respect to the environment composition. Partner predictions are based on
predicted interfaces. Average Interaction Rank (IR) of the true partners is computed over 100 random sets made of 40 proteins each (with error bars in
red). The 84 complexes are ordered with respect to their increasing average IR value. For three of the 84 complexes (1BVN, 1BUH, 1N2C), detailed
plots show the IR of the complex within each of the 100 random sets and the corresponding AUC value (black dots); green dots correspond to the IR
of the complex computed over the Mintseris dataset; orange dots correspond to the IR of the complex computed over complexes in the same
functional class. Note that the absence of the green dot on the 1N2C plot corresponds to a too large IR (~79) of the complex. See Table S2 in Text S1
for the names of complexes ranked on the x-axis. See Figure S55 in Text S1 for robustness of predictions based on experimental interfaces.
doi:10.1371/journal.pcbi.1003369.g004
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a large number of random sets) can be used to measure the

strength of the interaction between two arbitrary proteins. Based

on it, we ask whether complexes involving wrong partners might

display the same average IR value and IR standard deviation of

native complexes. Given a protein P, we run our previous test

using each of the 168 proteins as a partner, and for each pair of

(possibly false) partners we compute average IR and average AUC

over 100 random sets of 40 proteins. By representing complexes

with these pairs of values, we aim to analyze the whole set of

complexes associated to P. See Figure 5 for the analysis of receptor

and ligand of complex 1BUH, where a few conformations formed

either by the receptor or the ligand are reported. See Figures S24–

S37 and S38–S51 in Text S1 for the analyses on the whole

Mintseris dataset.

As seen on the 1BUH complex, there is a strong variability of

the average IR values associated to the interactions of a protein

with different partners. One distinguishes three populations of

proteins in the environment that interact with P:

1. those that rank always on the top positions: they strongly

compete with the native complex by creating structures of

very low energy score and displaying the interaction on the

expected binding sites, these latter being either predicted or

experimentally validated. They are represented by black dots

and lie on the bottom of the plots in Figure 5B. Notice that

they are not the same for different P’s and do not belong to a

particular functional class (see Figures S56 and S57 in Text

S1).

2. those that rank always as the last: they never enter in

competition with the native complex, possibly due to their

physico-chemical characteristics. They are represented by

black dots and lie on the top of the plots in Figure 5B.

3. those that rank on the middle: they interact with different levels

of strength with P. They form the larger group and they can be

distinguished in subgroups with respect to the rank value and

its stability. They are represented by cyan, green and yellow

dots in Figure 5B (see legend). Green and yellow non-native

complexes display important IR variations appearing to be

dependent on subsets composition.

For each protein, partners belonging to these three populations

and level of strength of their interactions measured by the average

IR, are precisely computed and they form a signature for the

protein interaction with its environment.

Average IR of true partners. In many cases (41 complexes

over 84), true partners display an average IR ƒ10, and on a

predictive perspective, one of the major difficulties is to

discriminate the true partners from the wrong ones displaying

good average IR (black and cyan dots at the bottom of the plots in

Figure 5B). Also, the stability of the average IR gradually decreases

with the incrementation of the IR values until rank 20, and then

gradually increases (see variation of the colors from black to yellow

and from yellow to black in Figure 5B). This is a pattern observed

for all proteins and reveals that extreme IR values are very stable.

Based on this observation, some proteins could be eliminated from

the list of potential partners with a very high confidence.

Figure 5. Robustness of the IR for the true partners and the false ones for the 1BUH complex. A. Each partner of the 1BUH complex is
coupled with one of the 168 proteins (including the monomer itself) of the dataset forming either a false (167 cases) or the native complex. For each
complex, we computed the corresponding average IR and average AUC over 100 random sets of 40 proteins, obtained by using the experimental
interfaces and the full exploration of the conformational space. These values are reported as a point in a plot. Each plot contains 168 points. The red
circle in each plot corresponds to the values of the native complex. Dots are colored in a scale from black, blue, cyan to yellow. A color corresponds to
the value of the standard deviation s of the distribution of 100 IRs computed for a complex: black if sƒ1, blue if 1vsƒ2, cyan if 2vsƒ3 and yellow
otherwise (i.e. sw3). B. The analysis in A is realized here with 1BUH coupled with 166 proteins (here we have not considered the complex 1ML0 of the
Mintseris Benchmark 2.0 because JET made no predictions and this turned out to provide no FIR value), with predicted interfaces and the full
exploration of the conformational space. Dots are colored in a scale from black, cyan, green to yellow. A color corresponds to the value of the
standard deviation s of the distribution of 100 IRs computed for a complex: black if sƒ1, cyan if 1vsƒ2, green if 2vsƒ3 and yellow otherwise (i.e.
sw3). The structures of the native complex (red circle) and of four selected false complexes (orange circles) are shown to illustrate the conformations
corresponding to the best II value. Notice that the II value is always the same for the 100 random runs while the NII varies with respect to the dataset
of proteins used in a run. The receptor 1BUH_r is colored in light blue while the ligand 1BUH_l is colored in dark blue. The four other proteins are
colored in grey. All residues with a JET+NIP score §0:2 display interaction propensity and are colored in a color range going from light pink (weak
signal) to deep purple (strong signal) for the 6 structures. See Figures S24–S37 and S38–S51 in Text S1 for the same analysis on all complexes in the
Mintseris Benchmark 2.0.
doi:10.1371/journal.pcbi.1003369.g005
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For Enzyme-Inhibitors, Figure 6 shows that for each protein,

the number of potential partners (showing an average IR ƒ10
with the protein) is relatively limited. There are in average 12 such

partners among the 46 tested ones. The true partner is found, in

most cases (19 over 23), to have an average IR ƒ10 and this

suggests that, in a predictive perspective, a limited set of about 10
potential partners can be proposed to experimentalists with a good

associated sensitivity. (See also Figure S9 in Text S1.)

Average IR of small versus large proteins. We can

distinguish ligands from receptors with respect to the distribution

of their average IR values. In fact, ligands display a higher density

of good IR values (ƒ10) compared to receptors. This is probably

due to the smaller size of the ligand and its possibility to bind to a

larger number of partners. For instance, in Figure 5B, a large

fraction of the surface of the small partners 1BUH_l, 1PPE_l and

1BVN_l is prone to interact (see pink regions corresponding to a

high JET+NIP score) enabling multiple types of potential

interactions and rendering the interaction with the true partner

difficult to discriminate. At the contrary, large partners as 1N2C_r

display very localized interaction sites. This observation is

validated by the whole set of proteins as illustrated in Figures

S38–S51 in Text S1. It should be noticed that the same

observation does not hold anymore when experimental interfaces

are known. This means that specific interfaces in small proteins do

not glue everywhere, and therefore, that small proteins are not

more promiscuous than large ones but simply that their behavior is

harder to predict because of the several potential interaction sites

that they might display. See Figure S54 in Text S1 for a

comparative analysis of partners of small proteins when predic-

tions and experimental interfaces are considered.

Species representation in the Mintseris Benchmark

2.0. In the perspective of exploring the competition among

potential partners occurring in a crowded environment, we

analyzed the distribution of species within the Mintseris dataset.

For any pair of protein structures in the dataset, we checked

whether given one of the proteins, the other has an homolog at

100%, 80% or 60% of sequence identity coming from the same

species (see Methods). Such homologs are expected to display the

same structure and functional characteristics of the original

structure, and homologs up to 30{40% of sequence identity

have been shown to interact the same way [40,41]. When proteins

are asked to be 100% identical between species, Antibodies and

Others are well represented (see Figure S74 in Text S1). When

dropping the sequence identity down to 80% and 60%, the pairs of

proteins displaying homologs of the same species considerably

increase in number and cover most functional classes (see orange

dots in Figures S75, S76 in Text S1 and Figure 7). Notice that

most of the represented species are mammalian (112 over 168;

Tables S3–S6 in Text S1). This is not the case for Inhibitors which

belong to species that are especially under-represented in the

Mintseris dataset.

To go further in the analysis, we mapped this information on

the IR plots in Figures S38–S51 in Text S1 (see Figures S60–S73

in Text S1) in order to verify whether there was a particular

behavior of the proteins towards partners coming from the same

species. No tendency has been observed and the uniform

distribution of orange dots across the IR interval in Figures

S60–S73 in Text S1 supports our hypothesis of the existence of

three populations of proteins in cells (see ‘‘A protein signature

based on the variability of its interaction ranks’’). As an example,

the enzyme 1MAH_r, coming from Mus musculus, shows an

homogeneous repartition of the orange dots versus the blue ones

(Figure 7). This holds true for all mammalian proteins (see Tables

S3–S6 in Text S1) which are highly represented in the dataset.

Figure 6. Average IR for true Enzyme-Inhibitor complexes and number of false positives. For each protein, we plot as false positives (FPs,
black curve) the number of partners (excepted the true one) showing an average IR ƒ10, where the IR is computed over 100 random sets of 20
complexes selected from the set of 46 Enzyme-Inhibitor proteins. The cyan dots indicate the average IR of the true partner. A dot corresponds to a
complex. For five complexes, conformations associated to the best FIR are represented with different colors: 1AVX (green), 1BVN (blue), 2PCC
(orange), 1EWY (cyan), 1KKL (yellow). All residues with a JET+NIP score §0:2 display interaction propensity and are colored in a color range going
from light pink (weak signal) to deep purple (strong signal). 2PCC: the JET+NIP signal is distributed all around the receptor surface enabling different
possibilities for the ligand to bind. The predicted interacting site covers only the 5% of the true binding site of the receptor. 1AVX: the predicted
receptor binding site shares no residue with the real interaction site, leading to a bad prediction. 1BVN and 1KKL: despite the important size of the
receptors 1BVN (496 residues) and 1KKL (3 chains of 205 residues each), corresponding binding sites are well predicted and true partners are
identified with IR~1 and IR~3 respectively.
doi:10.1371/journal.pcbi.1003369.g006
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Notice that a number of proteins in the dataset are poorly

represented such as the inhibitor 1MAH_l in Figure 7, a toxin

protein coming from the venomous snake Dendroaspis angusticeps, for

which all partners in the dataset come from remote species (see

blue dots in Figure 7). In conclusion, despite the fact that the

Mintseris dataset does not represent an actual crowded environ-

ment, the large number of shared species between proteins in the

dataset and the conservation of the interaction modes between

close homologs [40,41] support the approach for exploring both

protein interactions within a real environment and functional

annotation.

Comparison with other docking large-scale studies
A few large-scale studies that wish to identify true interacting

partners among a set of potential ones, have been recently proposed.

They are computationally demanding and they remain, for this

reason, rare. All large-scale studies we compared to have been based

on shape complementarity to quickly scan through several thousand

ligands in a matter of seconds. These approaches do not include any

electrostatic component in their energy model, while electrostatic

forces are known to play an important role in PPI.

Notice that, given a protein P, no other docking studies besides

this one tries to quantify the effect of binding promiscuity of a large

and variate dataset of protein structures interacting with P.

Comparison with Wass et al. [33]. Docking by shape

complementarity between 56 monomers (carefully) chosen from

the Docking Benchmark 2.0 and a background of 922 potential

interactors (excluding all partners in the Mintseris dataset) has

been analyzed in [33]. A precise quantitative comparison of this

computational experiment with our has been impossible because

the set of protein partners of the Mintseris dataset considered in

[33] is smaller and constituted only by a selected subset of

receptors (with no ligand), ligands (with no receptor) and

complexes (receptor and ligand) extracted from the classes

Enzyme-Inhibitors and Others.

A qualitative comparison with our predictions based on

JET+NIP scores could have been made on the set of 10 complexes

discussed in the SI of [33], but these results are not reproducible

with more recent versions of HEX [42] (see Figure S58 in Text

S1), the docking program used in [33]. Therefore, we decided to

realize a CC-D with a more recent version of HEX (v6.3) on the

Mintseris’ Enzyme-Inhibitors dataset and to analyze HEX

behavior either by assuming knowledge of the experimental

interfaces or by considering predicted binding sites based on

JET+NIP scores. In this latter case, NIP scores come from docking

calculations using HEX. The distribution of interaction ranks for

both our docking algorithm MAXDo (see Methods) and HEX are

shown in Table 3, where we report how many proteins among the

46 enzymes and inhibitors are identified by each method within

increasing sets of best partners, with respect to an environment of

46 proteins. From Table 3, MAXDo and HEX behave similarly

on experimental interfaces while on predicted binding sites,

Figure 7. Species represented in the Mintseris Benchmark 2.0. Right: matrix reporting whether (orange entries) or not (cyan entries) any two
protein structures of the Mintseris Benchmark 2.0 are represented by a common species at 60% sequence identity. Each line in the matrix represents
a protein and the matrix is not symmetric (see Methods). The proteins are ordered by functional classes: Others (O), Antibody (Ab), Bound Antibody
(AbB), Antigens (Ag), Inhibitors (I) and Enzymes (E). The y-axis follows the same order as the x-axis, from bottom to top. Compare with the matrices of
Figures S74 and S75 in Text S1, based on homology computed for 80% and 100% sequence identity respectively. The matrix labelled with protein
names is reported in Figure S76 in Text S1. Left: an example of IRs analysis where the species information reported in the matrix on the right is
plotted. Colors in the two lines of the matrix corresponding to the Enzyme-Inhibitor complex 1MAH are mapped on the dots of the plots for the
receptor 1MAH_r and the ligand 1MAH_l (see legend of Figure 5 for the plots description). The black contour line on some of the proteins identifies
bottom black dots in the IR analysis of Figures S38–S51 in Text S1. The red contour identifies the true interacting partner. 1MAH_r is a Mus musculus
protein structure and 1MAH_l a Dendroaspis angusticeps’ one, a highly venomous snake. The analysis of all proteins in the dataset is reported in
Figures S60–S73 in Text S1.
doi:10.1371/journal.pcbi.1003369.g007
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MAXDo performance is definitely superior to the one of HEX.

This shows that as the binding site prediction is not perfect, HEX

is less suitable for partner identification. HEX performance has

been further evaluated using ROC analysis and the AUC of the

associated curve. On experimental interfaces, HEX reached an

AUC of 0.81 against the AUC of 0.85 obtained with MAXDo. On

predicted interfaces, HEX reached AUC values of 0.60, 0.61 and

0.60 when combined with JET+NIP, NIP and JET scores

respectively, while MAXDo reached AUC values of 0.77, 0.60

and 0.72. The fact that the use of interface predictions (JET+NIP

vs NIP) does not improve the AUC when using HEX, pinpoints

that the conformational space of best energy solutions proposed by

HEX and MAXDo are not the same. This asked for a precise

analysis of the correlations between FIRs (computed on experi-

mental interfaces and thus reflecting the overlap with experimental

binding sites) and docking scores (that is, NII scores based on

JET+NIP) on native complexes. We considered the conforma-

tional space of MAXDo and of HEX, each made of 11500

(23|500) best energy conformations associated to the 23 native

complexes. In Figure 8, we show the distribution of conformations

for MAXDo and HEX. Two main observations can be made: first,

the total number of conformations with highest FIR (§0:4) is

much larger for MAXDo than for HEX, and second, among these

conformations, the number of those with highest rank (ƒ200) is

much larger for MAXDo than for HEX. This means that the

MAXDo conformational space of best energy conformations is

enriched with interfaces that are close to the experimental

interface, contrary to HEX.

This analysis shows that shape complementarity docking is not

yet ready for PPI identification, due to a currently insufficient

performance of binding sites prediction methods. In fact, perfect

predictions of interaction sites would strongly support the usage of

docking algorithms such as HEX (Table 3), because of their

computational efficiency. At the moment though, the usage of

coarse-grain docking algorithms such as MAXDo, based on

interaction energy scores including both Lennard-Jones and

electrostatic contributions, increases manifestly the accuracy of

binding partner identification compared to shape complementarity

docking.

The analysis points out two more general observations. First,

large environments of the order of a thousand proteins, as the one

of 922 proteins considered in [33], are not useful for protein

identification. To see this, we computed how many monomers

among the 56 were identified by our method within increasing sets

of best partners, with respect to an environment of 168 proteins.

Table 1 shows that by looking at 17 best partners out of 168, we

are able to identify the true partner for a fourth of the proteins in

the full Mintseris dataset and for a third in the 56 proteins dataset

Figure 8. Comparison of MAXDo and HEX on the Enzyme-Inhibitor dataset. The 500 best scored conformations, computed with MAXDo
and HEX, for each of the 46 native complexes in the Mintseris’ Enzyme-Inhibitor dataset are plotted with respect to FIRrec|FIRlig (computed on
experimental interfaces; y-axis) and score-based ranks (computed with JET+NIP; x-axis). The y-axis is defined with respect to three main intervals,
½0:4,0:6�, (0:6,0:8� and (0:8,1:0�, and the x-axis varies between 1 and 500. Each interval on the y-axis is associated to a distribution of ranks, where a
bin in the distribution corresponds to 5 consecutive ranks. Bins are represented as circles and their sizes vary from 1 to 20. Colors are redundant with
sizes.
doi:10.1371/journal.pcbi.1003369.g008

Table 3. Interaction ranks distribution for the Mintseris’
Enzyme-Inhibitors dataset.

MAXDo vs HEX - Enzyme-Inhibitors dataset

Top %
# top
proteins MAXDo HEX

exp pred exp pred

1 1 9 (20) 4 (9) 7 (15) 2 (4)

5 2 16 (35) 10 (22) 16 (35) 5 (11)

10 5 24 (52) 21 (46) 27 (59) 6 (13)

15 7 27 (59) 25 (54) 30 (65) 8 (17)

20 9 28 (61) 28 (61) 35 (76) 8 (17)

30 14 35 (76) 33 (72) 37 (80) 18 (39)

40 18 38 (83) 36 (78) 38 (83) 28 (61)

50 23 41 (89) 41 (89) 41 (89) 33 (72)

CC-D has been realized with MAXDo and HEX v6.3 docking algorithms.
Calculations based on predicted interfaces (fourth and sixth columns) are made
with NIP+JET scores obtained with weights 0.4 and 0.6 for NIP and JET
respectively. For each CC-D, over the 46 Enzyme-Inhibitors in the Mintseris
dataset, we report the number of proteins whose native complex is identified
within the top x% of complexes obtained by docking the protein with all 46
proteins in the environment. Cumulative counts and percentages (in
parenthesis) are displayed. See legend of Table 1.
doi:10.1371/journal.pcbi.1003369.t003
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of [33]. In contrast, in [33], it was highlighted that a third of the 56

proteins were identified by looking at 46 best partners out of 922.

In practice, these results suggest that it is feasible to work with

sufficiently small environments of a few hundred proteins (ƒ200)

to be able to propose to the biologist a reasonable (v20) subset of

proteins to test, but that large datasets, as the one considered in

[33], will not be useful for protein identification unless current

predictive methods improve at the point to identify most native

complexes within the 1% of top predictions. Possibilities for

improvement exist as shown by the results based on experimental

interfaces in Table 1. Notice that a perfect binding sites

identification allows for the detection of native complexes for 36

out of 56 proteins within the top 17 predictions. Notice that true

partners for 36 proteins are obtained in [33] by considering 184

best predictions out of 922, a set that is far too large to be

experimentally tested.

The second observation concerns the composition of the set of

proteins analyzed in [33]. Antibody-Antigens complexes are

absent from the CC-D experiment in [33], are intrinsically

difficult for interface prediction and they could constitute good test

cases where both methods might highlight their respective

weaknesses. Also, all 922 proteins (except 3) coming from the

Mintseris or the background dataset in [33] are monomeric with

two third of the background dataset having only one domain. The

use of monomeric structures (especially when they are constituted

by a single domain) renders the prediction easier as it is generally

associated with a decrease of the number of potential interactions.

Notice that our experiment is run on the full Mintseris database for

which about a half of the complexes (41 over 84) involve a

multimeric structure (spanning from 2 up to 4 chains), hence

enhancing the difficulty of the prediction. We observe an

AUC~86 for monomeric complex predictions based on exper-

imental interfaces, that decreases to 81 for multimeric complexes,

as detailed in Table 2 and in Table S8 in Text S1. This

performance on multimeric complexes is affected even more when

interface predictions are considered, since sensitivity and precision

of interface predictions decrease for multimeric proteins as shown

in Table S11 in Text S1.

Comparison with Yoshikawa et al. [32]. We compared

our predictions with those obtained in [32], who also studied

interactions within the complete Docking Benchmark 2.0. This

method, called Affinity Evaluation and Prediction (AEP), is based

on shape complementarity. Contrary to our approach, (i) it

indirectly uses information coming from the experimental

complex, that is the bound protein structure which is expected

to improve predictions, and (ii) it does not perform CC-D

calculations but it only crosses the 84 receptors against the 84

ligands, by reducing in a non naive manner by the half the number

of competing partners for a given protein. The complexity of the

problem is, then, reduced because of the splitting between

receptors and ligands that is usually not obvious to make. Even

though they consider 7056 bound protein pairs while we deal with

28224 unbound ones, we obtain an AUC of 0.61 while they reach

an AUC of 0.58.

Restriction of the conformational space based on
evolutionary information

The docking technique we used is computationally expensive

(see ‘‘Computational implementation and data analysis’’ in

Methods). To reduce the conformation space to be explored, we

predicted the location where the interaction takes place and

confined the docking to this region. This is done by predicting

binding sites for the receptor protein by using JET [38] and by

defining an appropriate cone around the predicted interface (see

Methods and Figures S5, S6 in Text S1). When restricting the

docking conformational space with JET, we observe a slight

decrease of the AUC. By using experimental data, the AUC goes

from 0.84 to 0.80 while using predictions, it goes from 0.61 to 0.59

(Table 4), revealing a reduced loss in precision. This shows that

using evolutionary information from sequences is a very promising

approach to reduce docking computational time.

To evaluate the impact of our restriction on MAXDo execution

time, we computed how many docked conformations between

protein pairs were dropped. When the 168 proteins are considered

together, the average portion of the conformational space that is

explored after reduction is 35% of the original space. This value

should be understood at the light of protein sizes, as illustrated in

Figure S59 in Text S1. In fact, small proteins require to explore

about 60% of their original conformational space, while for large

ones, the space is reduced to 20% of the initial one. This is because

small proteins are rather conserved and JET predicts large patches

as their interaction sites, covering a large portion of their protein

surface. Notice that this calculation takes into account a reduced

number of conformations for the receptor, independently on

whether the conformational space of the ligand is completely

explored or not. Clearly, the actual computational time depends

on the number of conformations that are tested, and if both the

conformational spaces of the receptor and of the ligand are

Table 4. Partner prediction based on a restricted
conformational space.

Protein dataset
Experimental
interfaces

Predicted
interfaces

Subset type # proteins AUC Sen Spe AUC Sen Spe

Mintseris DB 162* 0.80 35 95 0.59 17 90

Enzyme-Inhibitor
& Others

118* 0.81 53 92 0.65 29 88

Enzyme-Inhibitor 44* 0.83 59 86 0.74 77 67

Antibody-
Antigen

20 0.91 95 77 0.54 35 68

Antigen-Bound
Antibody

24 0.83 50 88 0.65 12 73

Others 74* 0.79 55 90 0.59 34 84

Rigid 120* 0.81 28 96 0.54 26 82

Medium 26 0.83 73 82 0.50 19 84

Difficult 16 0.77 69 81 0.61 19 79

Monomeric
(both partners)

82* 0.84 59 90 0.64 32 86

Multimeric
(at least one
partner)

80* 0.79 38 92 0.58 30 88

The analysis is realized by assuming knowledge of either the experimental
interfaces or the predicted interfaces. In both cases, we report the results
obtained on the restricted (by evolutionary information) conformational space.
On three complexes (1ML0, 1GCQ, 1DFJ), JET provided too small interaction
sites (leading to a FIR~0 because of no common residue between the small
predicted interface and the docked one); hence, we cleaned the original
Mintseris dataset of these three complexes and marked the affected subsets
with the * symbol. Performance of protein prediction is evaluated through AUC
values computed on the Mintseris dataset and its different subsets. Sensitivity
(Sen) and specificity (Spe) are also given at a threshold cutoff of 0.5 for
predictions based on experimental interfaces, and at a threshold cutoff of 0.25
for predicted interfaces. Calculations based on JET predicted interfaces use
weights a~0:4, b~0:6 (see Methods), with the exception of the analysis run for
Antibody-Antigen and Antigen-Bound Antibody where a~0:6, b~0:4.
doi:10.1371/journal.pcbi.1003369.t004
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reduced, the effect will be quadratic. The small difference in AUC

obtained by exploring the reduced space of the receptor compared

to the whole (with a fully explored surface of the ligand), is due to

the high specificity of JET and to the definition of the cone (see

Methods) that takes into account JET’s lower PPV.

Discussion

We have addressed the problem of predicting protein interac-

tions using high-throughput CC-D calculations on a dataset of 168

proteins. We have shown that a simple docking algorithm

combined with evolutionary information, can be used to

discriminate interacting from non-interacting proteins. The

purpose of the method is the in silico large-scale screening of

protein structures to find a small set of potential protein partners

that could be tested experimentally. The approach reminds the

one of drug design aiming to screen large sets of small molecules in

order to identify a small set of potential drugs that becomes

experimentally testable. These approaches do not pretend to

exactly identify a unique solution but rather a set of reasonable

candidates, and reduce, in this manner, the amount of experi-

mental time and costs. This means that we are not focused on the

correct docking of experimentally known partners, which can be

achieved via other more effective but much more computationally

demanding methods [43]. However, one can envisage to use such

more sophisticated methods on the small set of candidates that our

coarse method identifies to propose more precise models of the

potential complexes.

We have realized a large-scale PPI analysis by assuming to know

the residues forming the experimental interface of the native

complexes (no associated experimental conformation is consid-

ered) and by using predictions of binding sites. Experimental

binding sites can be seen as perfect predictions, and the analysis

based on them is realized for two reasons: 1. to understand how

much evolutionary information can contribute to PPI reconstruc-

tion when coupled with a coarse-grain docking algorithm using an

energy function, and 2. to decouple true PPI signal from noise and

identify PPI properties that are not consequences of accumulated

errors due to predictive algorithms. This second reason allowed us

to be confident, for instance, on the promiscuity observed in

Figure 5B (bottom black dots) by ensuring that it is not generated

by noise in predictions (see Figure 5A).

A few large-scale analyses, that are similar in spirit, have been

performed [32,33]. A comparison of our results with [33], based

on the ten protein complexes discussed in detail in [33], reveals a

similar performance of the two methods. However, a full

comparison with [33] is impossible since they treat only a subset

of the Mintseris dataset, use a large background set and do not

provide a detailed measure of the performance of their method.

On the contrary, our method is tested on all complexes of the

Mintseris dataset, a good testing platform for methods dedicated to

protein partner prediction due to its numerous structural

differences. The global analysis of the two methods (over the

subset of 56 proteins; see Table 1 and [33]) highlights that we can

reasonably search for protein partners within sets of a few hundred

monomers. We demonstrated that improving current predictive

methods is possible through a better prediction of binding sites,

and we precisely estimated the effect of such predictions.

We could only partially compare to [32] since they do not

perform a CC-D of the Mintseris dataset but only cross the 84

receptors against the 84 ligands, that is a fourth of the interactions

explored in our analysis. Performances of our method and the one

reported in [32] are comparable on the common subset, but notice

that contrary to [32], we use unbound structures and we make no

use of the non-naive split of the dataset (that is, receptors versus

ligands).

The predictive performance of the method is encouraging for

the whole Mintseris Benchmark 2.0 and very satisfactory for the

enzyme-inhibitor subset (Table 2). For this latter, the AUC reaches

a very high value of 77% while the AUC for the whole Mintseris

dataset is 61%. Notice that the way we computed the AUC is very

strict, since we asked the true partner to be ranked first over the

tested dataset. A more relaxed evaluation is reported in Table 1

where we show that a fourth of the 168 proteins in the Mintseris

dataset are recognized by looking at the top 17 predictions over

the 168 tested partners. If the binding site of the proteins is

correctly predicted, the half of the proteins in the dataset are

recognized by looking at the top 8 predictions, and two third by

looking at the top 17. This is a very encouraging result with respect

to the potential applicability of this in silico predictive approach to

the reconstruction of PPI networks. In fact, proposing to a biologist

a set of less than 20 interactions to test is very reasonable.

The analysis on the average IR for the enzyme-inhibitor subset

highlights that an average IR threshold ƒ10 allows the method to

propose about 12 partners, a reasonable number of proteins to be

selected for experimental tests. In 38 cases over 46 (Figure 6), the

true partner is present in the retained subset showing a very high

sensitivity. For the whole Mintseris benchmark, for roughly the

half of the dataset (82 proteins), the true partner is retrieved with

an average IR ƒ10. Notice that when considering the experi-

mental binding site of each partner, 138 proteins over 168 display

an average IR ƒ10. This means that a precise binding site

prediction method will lead to a successful partners discrimination,

a problem that could be considered as being much more ambitious

than the binding site prediction problem. Again, these results

support the feasibility of the approach to identify potential partners

but, most of all, they highlight the interest of testing a protein

within a large environment, by randomly choosing many small

subsets of proteins in the environment, and by selecting as

potential partners to be experimentally tested, those proteins that

present a stable average IR ƒ10 (black dots, Figure 5) with the

protein under study. The selection of 10 potential partners instead

of 17 (as suggested by the direct evaluation of the NII matrix in

Figure 1 and Table 1) might be crucial for experimental

validation. This observation opens a way to new computational

schema for partner predictions.

The analysis highlights an important point on the behavior of all

proteins with respect to their partners. For each protein, there is a

small set of partners that displays a systematic (black points in the

bottom of Figure 5AB) very low average IR that lead to ask

whether these partners might physically interact and not be false

positives. Three reasonable explanations for this set of highly

potential partners can be given: (i) partners can interact on a

merely physical base but never meet in the cell due to different

cellular compartments localization, (ii) partners can interact for

functional purposes, possibly not described until now (several

different partners are expected to interact with a protein), (iii)

partners can interact in the cell not for functional purposes but

generating a competition with the functional partner, possibly

participating to the regulation of the protein interactions in the

cell. Taking into account these possibilities, this set of highly

potential partners becomes interesting for further studies. For

instance, these interactions would deserve to be experimentally

tested to see how strongly they interact, and whether they form a

structurally well-defined complex. Also, for a given protein and a

set of highly potential partners, one could ask whether general

structural (geometrical or physico-chemical) features of the

interface exist and in the positive case, classify these interfaces.

Protein-Protein Interactions in a Crowd
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These further studies could contribute to give important insights

into protein partnership discrimination.

For each protein P, we defined a signature representing the

strength of interaction of P with all other proteins. As mentioned

above, signatures found for all P’s in the Mintseris dataset

demonstrate the existence of strong interactions with some proteins,

but also the absence of interactions with other proteins, and so on.

The spectrum of strengths of interactions suggests the notion of PPI

to be revisited so to include the larger panel of potential complex

formations between a protein and its potential partners. Several

questions could then be asked on proteins presenting similar

signatures [44], but they go beyond the aim of this work.

We have shown that evolutionary information can also be used

to restrict the conformational space of the docking exploration

without an important loss in sensitivity. This result is very

important in view of reducing the computational cost of highly

time demanding docking calculations (all atom description and

precise energy functions) and the perspective of enlarging the

dataset size for future CC-D calculations.

To conclude, we are the first to perform a CC-D of a pool of

proteins covering a large spectrum of functions and interaction

modes, performing it on unbound structures and providing energy

values (even though simplified) taking into account electrostatic

forces. Our approach is the first combining evolutionary

information with CC-D simulations. The evaluation of the

performance of these two contributions to the problem of partner

identification, suggests that there is still room for improvement in

the solution. In particular, we have shown that a precise

identification of protein binding sites allows for very satisfactory

predictions. Data coming from the CC-D calculations and the

evolutionary analysis are provided and they will help the

community to evaluate further CC-D studies and methodological

developments. In particular, the decoy set constitutes a unique

dataset of ‘‘negative’’ partners. For them, we provide about 2000

conformations and an associated coarse-grain energy score. It

might be extremely useful to suitably parametrize docking scoring

functions, more refined than our coarse-grain scoring function, to

discriminate partners. In the context of this study, a subset of these

decoy structures filtered by our coarse-grain scoring function could

be re-scored for a better partnership evaluation by using a more

refined score function better discriminating the interaction signals.

Methods

The protein dataset
The Docking Benchmark 2.0 [25] is constituted by 168 proteins

belonging to 84 known complexes. We used the unbound

conformations of the proteins with the exception of 12 antibodies

for which the unbound structure is unavailable. For those, the

bound structure is used instead. Any reference to the proteins uses

either their name or the Protein Data Bank (PDB) code [45] of the

experimental complex they belong to with the r or l extension

denoting a receptor or a ligand protein respectively. For example,

1AY7_r and 1AY7_l refer to barnase (receptor) and barstar

(ligand) in the barnase-barstar complex 1AY7. The coordinates for

the bound and unbound structures of both receptor and ligand

proteins are available in the PDB and can be found at http://zlab.

bu.edu/zdock/benchmark.shtml.

The docking algorithm
Molecular docking is performed with the MAXDo (Molecular

Association via Cross Docking) algorithm, developed for complete

cross-docking (CC-D) studies [12]. Since CC-D involves a much

larger number of calculations than simple docking, we chose a

rigid-body docking approach using a reduced protein model in

order to make rapid conformational searches.

A reduced protein representation. We used a coarse-grain

protein model developed in [46], where each amino acid is

represented by one pseudo-atom located at the Ca position, and

either one or two pseudo-atoms representing the side-chain (with

the exception of Gly). Ala, Ser, Thr, Val, Leu, Ile, Asn, Asp, and

Cys have a single pseudo-atom located at the geometrical center of

the side-chain heavy atoms. For the remaining amino acids, a first

pseudo-atom is located midway between the Cb and Cc atoms,

while the second is placed at the geometrical center of the

remaining side-chain heavy atoms. This description, which allows

different amino acids to be distinguished from one another, has

already proved useful in protein-protein docking [46–48] and

protein mechanics studies [49,50]. Interactions between the

pseudo-atoms of the Zacharias representation are treated using a

soft LJ-type potential with appropriately adjusted parameters for

each type of side-chain, see Table 1 in [46]. In the case of charged

side-chains, electrostatic interactions between net point charges

located on the second side chain pseudo-atom were calculated by

using a distance-dependent dielectric constant E~15r, leading to

the following equation for the interaction energy of the pseudo-

atom pair i,j at distance rij :

Eij~
Bij

r8
ij

{
Cij

r6
ij

 !
z

qiqj

15r2
ij

ð2Þ

where Bij and Cij are the repulsive and attractive LJ-type

parameters respectively, and qi and qj are the charges of the

pseudo-atoms i and j.
Systematic docking simulations. Our docking algorithm

(see Figure S52 in Text S1) was derived from the ATTRACT

protocol [46] and uses a multiple energy minimization scheme.

For each pair of proteins, the first molecule (called the receptor)

was fixed in space, while the second (termed the ligand) was used

as a probe and placed at multiple positions on the surface of the

receptor. The initial distance of the probe from the receptor was

chosen so that no pair of probe-receptor pseudo-atoms came closer

than 6 Å. Starting probe positions were randomly created around

the receptor surface with a density of one position per 10 Å2, and

for each starting position, 210 different ligand orientations were

generated, resulting in a total number of start configurations

ranging from roughly 100,000 to 450,000 depending on the size of

the receptor. During each energy minimization, the ligand protein

was kept at a given location over the surface of the receptor

protein, using a harmonic restraint to maintain its center of mass

on a vector passing through the center of mass of the receptor

protein. The direction of this vector was defined by two Euler

angles h and w, (where h~w~00 was chosen to pass through the

center of the binding interface of the receptor protein) as shown in

Figure S52 in Text S1. By using a Korobov grid [51] and varying

the Euler angles from 00?3600 and 00?1800 respectively, it was

possible to uniformly sample interactions over the complete

surface of the receptor and to represent its binding potential using

2D energy maps (each point corresponding to the best ligand

orientation for the chosen h=w pair). These maps where developed

for validating the docking algorithm [12].

Computational implementation and data analysis. Each

energy minimization for a pair of interacting proteins typically

takes 15 s on a single 2 GHz processor. As noted above,

approximately 100,000 to 450,000 minimizations are needed to

probe all possible interaction conformations, as a function of the

size of the interacting proteins. Therefore, a CC-D search on the
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benchmark, namely 168|168~28,224 receptor/ligand pairs,

would require several thousand years of computation on a single

processor. However, since each minimization is independent of the

others, this problem belongs to the ‘‘embarrassingly parallel’’

category and is well adapted to multiprocessor machines, and

particularly to grid-computing systems. Our calculations have

been carried out in 2007 by the public World Community Grid

(WCG, www.worldcommunitygrid.org), with the help of thou-

sands of internautes donating their computer time to the project. It

took approximately seven months to perform CC-D calculations

on the complete dataset of 168 proteins. More technical details

regarding the execution of the program on WCG can be found in

[52]. The data analysis was partly realized on Grid’5000 (https://

www.grid5000.fr).

Definition of surface and interface residues
Surface residues are residues with at least 5% of accessible

surface. Accessibility is calculated with NACCESS 2.1.1 [53] with

a probe size of = 1.4 Å. Interface residues are residues with a

change of at least 10% decrease in accessible surface area

compared to the unbound protein.

Protein interaction index and its normalization
In order to improve the quality of the predictions of protein

interaction partners, in our earlier study we developed a

normalized interaction index (NII) that takes into account whether

a protein-protein interface involves amino acids belonging to a

known interaction site [12]. This information can potentially be

obtained using predictive tools (see below), but here we use the

experimentally determined interfaces of the 84 binary complexes

in the Docking Benchmark. We however recall that all our

docking trials involve unbound protein conformations. For each

protein partner in a given complex P1P2, we determine which

fraction of the docked interface residues (abbreviated as FIR) are

found in the experimental interface for P1 (FIRP1
) and P2

(FIRP2
). Thus defining an overall fraction for the complex as

FIRP1P2
~FIRP1

|FIRP2
. It is important to notice that the FIR

formula can be computed from either experimental interfaces (as

defined above) or predicted interfaces (where prediction could be

realized, for instance, with evolutionary information; see para-

graph below). The notion of ‘‘FIR’’ proposes a new concept for

docking evaluation that can be used as an alternative to the usual

docking metrics Fnat [54] originally designed to evaluate the

accuracy of pairwise protein docking models. While the Fnat

measure denotes the coverage of the experimental interface, that is

the sensitivity of the predicted interface, the FIR denotes the PPV

of the predicted interface. Also, for the Fnat measure, contacts are

defined with respect to a 5 Å cutoff on the RMSD of heavy atoms,

while for FIR, contacts are defined from a change of solvent

accessibility.

For every protein pair P1P2, we calculate an energy-weighted

optimal interaction index (II) defined in Eq. (1).

To allow comparison among different partners we defined a

normalized index NIIP1,P2
by taking into account all of the four

lines/columns that feature either P1 or P2 in the II matrix as

follows:

min(II0P1,P2
,II0P2,P1

)4

minP(II0P1,P)minP(II0P,P2
)minP(II0P,P1

)minP(II0P2,P)
ð3Þ

where II0P1,P2
is a symmetrized version of the interaction index

IIP1,P2
and it is defined as:

II0P1,P2
: ~

IIP1,P2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MP1

:MP2

p , MPi
: ~

1

2DPD

X
Pj[P

IIPi ,Pj
zIIPj ,Pi

ð4Þ

where P are the 168 proteins of our dataset. NII values vary

between 0 and 1. Values close to zero imply that two proteins

cannot form an interface involving a significant fraction of the

experimentally identified residues, or that interfaces involving

these residues have poor interaction energies. Values close to one

indicate predicted interfaces with good energies and composed of

experimentally identified residues.

For each protein P1, we define as predicted partner of P1, the

protein Pi that leads to NIIP1,Pi
~1.

Partner prediction evaluation
We consider as true positives (TP) all the predicted pairs that

belong to the Docking Benchmark 2.0 and as true negatives (TN )

all the pairs that are correctly predicted as non interacting. We

define a False Positive Rate (FPR) and the True Positive Rate

(TPR) to be FPR~
FP

FPzTN
and TPR~

TP

TPzFN
, where FP is

the set of False Positives (partners incorrectly predicted as

interacting) and FN is the set of False Negatives (partners

incorrectly predicted as non interacting). The computation of FPR
and TPR for various thresholds enables the Receiver Operating

Characteristics (ROC) curve to be drawn. The performance of the

prediction is given by the resulting AUC (Area Under the Curve)

value. Values of AUC~0:5 and ~1 correspond to random and

perfect predictions respectively. AUC calculations were performed

with the R package [55]. Also, given a threshold on the NII values,

we use five standard measures of performance: sensitivity

Sen~TP=(TPzFN), specificity Spe~TN=(TNzFP),
precision or positive predictive value Prec~TP=(TPzFP),

balanced F -score F1~2:
Prec:Sen

Prec:Sen
and Matthews correlation

coefficient MCC~(TP:TN{FP:FN)=K where

K~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP)(TPzFN)(TNzFP)(TNzFN)

p
.

Prediction of partners based on docking and
evolutionary information

To predict protein partners without using any experimental

information, we define a new FIR measure by combining docking

and evolutionary information. From FIR values, NII matrices are

computed as above.
Residue scoring based on docking. In order to see whether

CC-D simulations could give us information on protein interaction

sites, we developed an energy-weighted interaction propensity (IP)

index which estimates the probability for residue i of protein P1 to

belong to an interaction site (without hypothesis on the

corresponding partner). For doing this, similarly to [24], we

counted the number of docking hits for each exposed residue in

P1, that is the number of times that a residue is seen in interaction

with all the docked partners within a range of best energy

conformations. Namely, for each arbitrary partner P2, all energies

between P1P2 conformations are first normalized according to a

Boltzmann weight that favors conformations with the most

negative interaction energies:

exp({
E(j){E0

RT
) ð5Þ

where E(j) is the interaction energy in conformation j, E0 is the

lowest interaction energy obtained for the P1P2 complex, T is the
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temperature (300 K), and R is the gas constant. These normalized

values, named Boltzmann normalized energies, range from 0 to 1. All

conformations with Boltzmann normalized energy above 0:01 (this

value corresponds to an energy difference from the best one of

2:7kcal=mol) have been retained for the pair P1P2. Finally, each

surface residue i in P1 is scored by the total number of times it

appears in the interface of the retained conformations involving all

partners P2, normalized by the total number of retained

conformations:

IPP1
(i)~

Nint,P1
(i)

Npos,P1

ð6Þ

where Npos,P1
is the number of retained conformations of P1 and

Nint,P1
(i) is the number of these conformations where residue i

belongs to the binding interface.

To allow comparison between residues belonging to the same

protein P1, the index IP can be normalized as

NIPP1
(i)~

IPP1
(i){SIPP1

(j)T
j[P1

max(IPP1
(j))

j[P1
{SIPP1

(j)T
j[P1

ð7Þ

where SIPP1
(j)T is the average computed over all residues j at the

surface of P1, and max(IPP1
(j))j[P1

is the maximum IP value

obtained at the surface of P1. NIP can be positive, indicating that

residue i is favored to occur at P1 potential binding sites, or

negative, indicating that it is disfavored. We used NIP as a

parameter for the prediction of protein binding sites, dividing the

residues into two groups: NIP§0 predicted as belonging to the

binding interface; NIPv0 predicted as not belonging to the

binding interface.

Residue scoring based on evolutionary informa-

tion. Protein interfaces are predicted with the Joint Evolutionary

Trees (JET) method [38]. JET is a large-scale method designed to

detect very different types of interactions. It predicts interface

patches for protein families by combining residue conservation

with physico-chemical properties expected at the protein interfac-

es. Conserved patches are then extended by using heuristics

leading to alternative interaction sites for different JET runs. For

each protein P, 10 runs of JET were launched and we defined a

score JETP(i) for each surface residue i to be the number of

occurrences of the residue in extended patches divided by 10. This

score reveals the likelihood of the residue to belong to the

interface.

Predictions by combining docking and evolutionary

information. For each residue i in protein P, we define a

score JETzNIP(i)~aNIPP(i)zbJETP(i), where JET(i),
NIP(i),a,b range between 0 and 1. Different combinations of

a,b have been tested and our final results are obtained with

a~0:4,b~0:6. Since Antibody-Antigens evolve more rapidly than

other interface surfaces, the conservation signal is less sharp and

predictions are intrinsically difficult. For this, we lowered the

weight of JET contribution by fixing a~0:6,b~0:4. Evaluation of

the performance of the score ‘‘JET½0:6�zNIP½0:4�’’ for partner

prediction compared to the performance of NIP alone or JET

alone on the Mintseris dataset and its subsets is illustrated in Figure

S77 and Table S10 in Text S1.

Based on the JETzNIP score, we can associate a FIR value to

a docked interfaces J between P1 and P2. As above, we select

those conformations of P1P2 with Boltzmann normalized energy

§0:01 and compute their FIRP1P2
(J) as:

DfJETzNIP(i) : JETzNIP(i)§0:5 and i[JgD
DJ D

ð8Þ

where DJ D is the number of residues in the interface J . Namely, we

count the number of residues i whose score JETzNIP is w0:5,

that is the residues that display either a very good score obtained

with one of the two methods (based on docking or on evolutionary

information) or relatively good scores with both. These residues

are likely to belong to an interaction site.

Like previously, in all protein pairs P1 and P2, we can compute

a IIP1P2
and a NIIP1P2

. The NII matrices are evaluated by

computing their AUC.

The interaction rank
The interaction rank of a protein pair P1,P2 is defined to be the

best rank of the pair P1,P2 among all the pairs that have either P1 or

P2 as receptor. This means that given a NII matrix, we look at the

rank of the pair (P1,P2) with respect to the NII values (P1,Pi), that

is the line indexed by P1, and at the rank of the pair (P2,P1) with

respect to the NII values (P2,Pi), that is the line indexed by P2. The

best rank computed for each line is retained for the pair P1,P2.

Cone definition for the conformational space restriction
To restraint the conformational space of the docking algorithm,

we combine JET interface predictions with MAXDo, in such a

way that only surface regions containing residues predicted by JET

will be analyzed by MAXDo. To do so, for each docked

orientation, we computed the center of mass of the ligand and

defined the axis linking it to the center of mass of the receptor. We

remind that the position of the receptor is fixed. Along this axis, we

define an imaginary tube of radius r = 2.9 Å. For each ligand

orientation, we check whether the interface of the resulting ligand-

receptor complex involves residues predicted by JET or not

(Figure S53 in Text S1). Each residue is approximated to a point

whose coordinates represent the average of the atom’s coordinates.

The distance of this point from the axis of the tube, allows to

establish whether the residue falls inside the tube or not, and

therefore, whether the ligand orientation should be retained or

not. Strictly speaking, one should also use the scalar product

between the vectors going from the receptor center of mass to the

residue and to the ligand center of mass (this product decides

whether the residue lies on the side of the ligand-receptor

interface). We ask for just one single residue in the orientation

interface to be within the tube to retain this latter.

HEX docking
CC-D of the Mintseris’ Enzyme-Inhibitors dataset was per-

formed with HEX v6.3 using the shape complementarity based-

only score [42]. Docked conformations were clustered using a 3 Å

cutoff and the best-scored conformations of the 500 first clusters

were retained for the analysis. A protocol similar to that described

for MAXDo was applied to evaluate partner prediction based on

HEX results, (i) by assuming knowledge of the experimental

interfaces and (ii) by crossing docking scores with evolutionary

information. All 500 conformations were considered for residue

scoring based on docking and for protein interaction index

calculation. Parameter values are reported in Table S7 in Text S1.

Analysis of the origins for the proteins in the Mintseris
dataset

Given a protein P1, we searched in the Mintseris dataset for

those proteins P2 that have a homolog coming from the same
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species as P1. Namely, for each P2, we searched with Blast (E-

value threshold at 10e{4, alignment coverage 70%) for the set of

sequences that are at least 100%, or 80% or 60% identical to the

P2 original sequence. This provides a set of species that we say to

be representing P2. We then checked that the species of P1 is

included in the set of the species representing P2. Notice that the

protocol does not necessarily provide the same answer when it is

applied to the protein pairs P1,P2 or P2,P1 due to the non-

symmetrical Blast result.

Data release
We release the first large decoy database comprising not only

structures of true complexes but also structures of non-functional

complexes potentially forming in the cell. For the 28224 possible

protein pairs (involving the 168 proteins) of the Mintseris

Benchmark 2.0, we considered about 2000 best ligand orientations

(represented on w and h angles as described above) for each

receptor. We provide the associated decoys together with the

corresponding energy values. A program to reconstruct the PDB

structure of the conformation given w and h angles is also

provided. For each protein in the Mintseris dataset, we also furnish

the evolutionary analysis for the detection of the binding sites. The

download site is http://www.lgm.upmc.fr/CCDMintseris/

Supporting Information

Text S1 Supplementary Figures S1–S77 and Tables S1–S11.

(PDF)
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