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Abstract

Genome wide maps of nucleosome occupancy in yeast have recently been produced through deep sequencing of
nuclease-protected DNA. These maps have been obtained from both crosslinked and uncrosslinked chromatin in vivo, and
from chromatin assembled from genomic DNA and nucleosomes in vitro. Here, we analyze these maps in combination with
existing ChIP-chip data, and with new ChIP-qPCR experiments reported here. We show that the apparent nucleosome
density in crosslinked chromatin, when compared to uncrosslinked chromatin, is preferentially increased at transcription
factor (TF) binding sites, suggesting a strategy for mapping generic transcription factor binding sites that would not require
immunoprecipitation of a particular factor. We also confirm previous conclusions that the intrinsic, sequence dependent
binding of nucleosomes helps determine the localization of TF binding sites. However, we find that the association between
low nucleosome occupancy and TF binding is typically greater if occupancy at a site is averaged over a 600bp window,
rather than using the occupancy at the binding site itself. We have also incorporated intrinsic nucleosome binding
occupancies as weights in a computational model for TF binding, and by this measure as well we find better prediction if
the high resolution nucleosome occupancy data is averaged over 600bp. We suggest that the intrinsic DNA binding
specificity of nucleosomes plays a role in TF binding site selection not so much through the specification of precise
nucleosome positions that permit or occlude binding, but rather through the creation of low occupancy regions that can
accommodate competition from TFs through rearrangement of nucleosomes.
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Introduction

Genomic DNA is largely covered in proteins, mostly in the form

of nucleosomes. Much of the remainder consists of chromatin-

associated proteins, including enzymes that modify histones or

DNA, or catalyze the rearrangement of nucleosomes, and

sequence specific DNA binding proteins (transcription factors)

that mediate the activation or repression of genes. A deep

understanding of gene regulation requires an understanding of

how each of these cooperate and compete for access to genomic

DNA.

That nucleosomes and TFs do, in fact, compete on a genomic-

wide scale was substantiated several years ago by chromatin

immunoprecipitation microarray experiments (ChIP-chip), which

determined the distribution of histones along the yeast genome.

[1–3] These studies revealed an under-representation of nucleo-

somes in promoter regions, relative to transcribed regions. In

contrast, TFs are under-represented in transcribed regions and

enriched in promoter regions. Furthermore, nucleosome occu-

pancy differs among promoters and these differences correlate

with the probability of TF binding. [4]

Competition between nucleosomes and transcription factors is a

simple consequence of each having an inherent probability of

binding to the same site. Some transcription factors may be able to

bind DNA on the outside surface of a nucleosome, but steric

occlusion of sites on the inside and the sharp bending of DNA

around the nucleosome preclude most transcription factors from

binding to nucleosomal DNA. As a consequence of this competition,

nucleosomes can mediate interactions among transcription factors

(TFs) in an entirely passive way. For example, a binding motif that is

close to a second, TF-occupied, site will tend to have a lower

nucleosome occupancy than it would in the absence of the occupied

site because nucleosome configurations that span both the motif and

a nearby occupied site are disallowed. This lower nucleosome

occupancy translates into a higher effective binding affinity of the

site. In this scenario cooperative binding of factors is mediated not

by direct interactions between the factors but by the passive effects

of nucleosomes due to mutual competition. This effect has been

demonstrated experimentally. [5]

Passive mediation of TF-TF interactions is one way in which

nucleosomes affect the occupancy of TFs in the genome. A second is

through the intrinsic sequence specificity of nucleosomes them-

selves. Nucleosomes lack highly specific amino acid side chain-to-

base pair contacts that are characteristic of sequence-specific

transcription factors, but they do have sequence preferences that

are determined by the capacity of the DNA to be wrapped around
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the nucleosome. One manifestation of this preference is a subtle but

significant tendency towards a 10bp periodicity of certain

dinucleotide steps. [2,6–9] This periodicity reflects the helical

periodicity of DNA in nucleosomes and differences in the propensity

for structural perturbations among different basepair-basepair steps.

[10] More recently, attention has been drawn to longer A-rich

regions, which are inhibitory for nucleosome binding [9,11,12]. The

near-exclusion of these sequences from the central regions of

nucleosomes was first noted around the same time that dinucleotide

preferences were discovered [7] but it has become clear only

recently that these sequences contribute substantially to the ability

to predict nucleosome binding. [9,11,12]

Kaplan et al recently provided a simple and elegant demon-

stration that the intrinsic sequence specificity for nucleosome

binding is a partial determinant of nucleosome positioning in vivo.

[9] In their work, nucleosome positions were determined from

deep sequencing of nuclease-digested chromatin prepared from

yeast cells, and also from chromatin reconstituted in vitro from

chicken histones and yeast genomic DNA. Sequence features

associated with nucleosome occupancy were found to be similar in

real chromatin and in reconstituted chromatin. Furthermore,

genomic loci that are bound by transcription factors have, on

average, lower nucleosome occupancies than unbound sites even

when nucleosome occupancies are determined in vitro. This

suggests that intrinsic nucleosome binding preferences have some

effect on the selection of binding sites by transcription factors in

vivo. Kaplan et al further reported that there are no significant

differences in mapped nucleosome positions when chromatin was

crosslinked compared to the more conventional procedure of

mapping without crosslinking. [9] Mapping without crosslinking

assumes that sites occupied by nucleosomes in vivo remain bound

to those sites on the time scale of the assay. The reported similarity

of the data using the two procedures suggests that that is largely

the case.

Here, we revisit the data of Kaplan et al, analyzing it in the

context of existing ChIP-chip data [13] as well as new, more

quantitative ChIP-qPCR experiments reported here. We confirm

a role for intrinsic nucleosome binding preferences in the binding

of transcription factors, though our analyses suggest a rather low

bound on how much information may be provided. More

interestingly, we show that the role played by sequence specific

nucleosome binding lies not so much in the precise positioning of

nucleosomes as in the determination of the average nucleosome

density over a promoter-sized region. We also show that there is a

difference between crosslinked and uncrosslinked chromatin that is

at least as informative with regard to the binding of transcription

factors as either data set is alone.

Results

Low nucleosome occupancy at transcription factor
binding motifs can be discerned even at sites with low
transcription factor occupancy

The analyses in this paper make extensive use of the nucleosome

mapping data reported recently by Kaplan et al, so it was

important to first establish that we can replicate and extend an

analysis that they performed. To that end, we took Abf1 motifs in

the yeast genome and calculated a set of averaged profiles of

nucleosome sequence tags around those motifs (Figure 1A). The

most prominent of these nucleosome profiles, showing a very deep

minimum for occupancy at the Abf1 motifs, was calculated for

Abf1 motifs that are bound by the protein with high confidence

(ChIP-chip enrichment p-value#1e-3). This particular profile

likely corresponds to the single profile shown in Figure 4c of

Kaplan et al, [9] though it has been calculated here over a wider

genomic interval to show the enrichment of phased nucleosomes

up to three units away from the Abf1 motifs.

We extended this analysis by testing other Abf1 sites for which

the evidence for Abf1 binding is weaker. Remarkably, as the

stringency for defining Abf1 binding is relaxed, from the most

stringent (p#1e-3) to the least (p.0.5), both the depletion of

nucleosomes at the Abf1 motif and the enrichment of nucleosomes

at adjacent flanking positions decrease, but not to the point where

they disappear altogether (Figure 1A). This is reminiscent of the

analyses of Tanay, who provided evidence for TF binding at ChIP

enrichment p-values far worse than what would ordinarily be

considered a meaningful threshold for binding. [14]

To assess quantitatively the correlation between low nucleosome

occupancy and TF binding we asked how well nucleosome tag

counts correctly distinguish TF-bound sites from random sites

selected from yeast promoters. We use the area under the ROC

curve (ROC AUC: receiver operator characteristic area under the

curve) as a measure of this association. [15] As shown in Figure 1B,

for even the lowest confidence Abf1 binding sites (p.0.5), the

ROC AUC exceeds 0.5, the value that is expected by chance. This

analysis was extended to the 41 yeast TFs for which there are at

least 50 binding motifs bound according to the ChIP-chip data of

Harbison et al (p#1e-3) and the subsequent motif analysis of

MacIsaac et al. [13,16] Bootstrap analysis of ROC curve areas

shows a significant association between TF occupancy and

nucleosome depletion for most of the 41 TFs (Figure 1C).

TF binding sites tend to be associated with excess
nucleosome counts in crosslinked chromatin vs.
uncrosslinked

Kaplan et al used two different methods in their nucleosome

mapping experiments, one involving formaldehyde crosslinking

(two replicates) and the other a more traditional non-crosslinking

protocol (four replicates). [9] Crosslinking should be unnecessary if

nucleosomes are sufficiently stable that nucleosomal locations are

the same at the end of the assay as they are in vivo. Having

performed the experiment both ways, Kaplan et al deemed the

two data sets to be sufficiently similar that they averaged all six

replicates and used this single set of averaged tag counts for their

analyses. [9] However, they make available the two separate

datasets.

Author Summary

Genomic DNA is largely covered by proteins that compete
with one another for binding to regulatory sequences.
Most of these proteins are in the form of nucleosomes.
How nucleosomes come to occupy particular sites and
thereby compete with sequence specific transcription
factors is a central problem in developing a systems-level
understanding of gene regulation. Here, we performed a
series of computational analyses using high-resolution
nucleosome position data that has recently become
available in yeast, thanks to advances in DNA sequencing
technology. Analysis of these data, combined with data on
the location and occupancy of transcription factors
genome-wide, shows that the precise location of nucleo-
somes as determined by nucleosome sequence specificity
is often less important to transcription factor binding than
the broader, regional occupancy of nucleosomes that is
encoded in genomic DNA. This result has implications for
the evolution of DNA regulatory elements.

Regional and Local Effects of Nucleosome Binding
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For Figure 1 we used data from uncrosslinked chromatin only,

but we performed the analysis with data from crosslinked chromatin

as well. Our expectation was that nucleosome occupancies obtained

from crosslinked chromatin would show, if anything, a stronger

association with transcription factor binding than uncrosslinked

chromatin because crosslinking would prevent the movement of

nucleosomes into regions that are occupied by TFs in vivo but which

might rearrange in the time course of the experiment. Surprisingly,

we found that crosslinking generally weakened the association

between TF binding and nucleosome depletion at TF sites, rather

than strengthening it. (Figure S1)

To investigate this result further, we examined the crosslinked

tag count distribution around Abf1 sites, as was done for Figure 1A

using the data from uncrosslinked chromatin. Inspection of the tag

count distribution around bound Abf1 motifs reveals a remarkable

concordance between the two data sets in the enrichment of

nucleosome tag sequences flanking the binding site. These

correspond to a series of (averaged) phased nucleosomes adjacent

Figure 1. Nucleosomal DNA is depleted at transcription factor binding sites. (A) Nucleosomal tag counts in the vicinity of Abf1 motifs as a
function of p-value for ChIP enrichment of the site. Abf1 sequence motifs, and the sites bound at p#1e-3, were defined by MacIssac et al. [16] Abf1
motifs considered unbound by MacIssac et al (p.1e-3) were assigned the Harbison et al ChIP enrichment p-values of the genomic region spanning
the site. [13] Only ChIP-enrichment values obtained in YPD media were used. (B) Area under ROC curves (ROC AUC) for the prediction of Abf1 binding
based on low nucleosomal DNA tag counts. Abf1 bound sites were compared to randomly selected yeast promoter sites, using 15bp windows
centered on the Abf1 and random sites. Values above 0.5 are considered significant. (C) ROC AUC values as in panel B but for a total of 41
transcription factors. Bound sites were defined as for the Abf1 sites using p-value for enrichment of 1e-3 or better. All transcription factors that had at
least 50 bound sites are shown.
doi:10.1371/journal.pcbi.1000649.g001

Regional and Local Effects of Nucleosome Binding
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to Abf1 binding sites (Figure 2A). However, at the Abf1 site itself

there is a reduction in the amount of nucleosome depletion

inferred from the crosslinked chromatin. It is this slightly less

dramatic effect that reduces the predictive value of nucleosome

tags in predicting Abf1 binding sites when crosslinked data is used

rather than uncrosslinked.

The bottom panel in Figure 2A shows the difference between

the averaged tag counts in the crosslinked experiment and the

averaged (and normalized) tag counts in the uncrosslinked

experiment. A clear peak in excess tag counts can be seen at

Abf1 sites, suggesting that excess tag counts found in the

crosslinked experiment are associated with TF binding. To assess

this more broadly, we normalized and subtracted, genome wide,

the tag counts obtained with uncrosslinked chromatin from those

obtained with crosslinked chromatin to produce a ‘‘nucleosome

difference map’’. We then asked whether high tag counts in the

difference map could predict TF binding in a manner analogous to

how low tag counts in the raw nucleosome maps predict TF

binding. Remarkably, excess tags in the crosslinked chromatin are

as strongly correlated with TF binding as nucleosome depletion is

in the uncrosslinked sample (Figure 2B). This is reflected in the

strong correlation between the two sets of ROC AUC values

(R = 0.80) and in the slope of the line relating the values (,1.02). If

anything, the excess tags found in the crosslinked sample are more

strongly correlated with TF binding than is nucleosome depletion

in the uncrosslinked library alone. 26 out of 41 TFs have higher

ROC AUC values based on excess crosslinked tags, and the

absolute value of the differences for those 26 are about 50% higher

on average than for the remaining 15. We suspect this effect is due

to the crosslinking of nucleosomes that span the binding site.

Crosslinking will trap transiently bound nucleosomes, and will

likely do so more efficiently than for TFs because of the large

number of amines (lysines and arginines) that lie in close proximity

to DNA.

That crosslinking appears to be trapping nucleosomes over TF

binding sites is illustrated by the appearance of a very strong

nucleosome peak in the difference map that lies right on top of a

set of Gal4 sites in the GAL1–GAL10 promoter (Figure S2). The

nucleosome is present when crosslinked, and nearly absent when

not; a set of six neighboring nucleosome positions are scarcely

affected by crosslinking. The crosslinked nucleosome is much less

prominent when cells are grown in galactose, presumably because

Gal4 occupancy is higher under these conditions, resulting in less

opportunity for a nucleosome to be crosslinked at that location.

Regardless of the mechanism, the association between TF

bound sites and excess tag counts in crosslinked chromatin

suggests that difference maps based on crosslinked and uncros-

slinked chromatin might be used to identify non-histone DNA-

binding sites without ChIP enrichment for particular proteins.

How such sites would compare to DNase hypersensitive sites or

nucleosome poor regions defined by FAIRE [17] remains to be

seen.

Effect of intrinsic chromatin on TF occupancies as
determined by ChIP-qPCR of consensus binding sites

Kaplan et al. made the important observation that genomic loci

that are bound by TFs in vivo tend to be also depleted for

nucleosomes in reconstituted chromatin. [9] This shows that at

least some of the low nucleosome occupancy observed at TF sites

is intrinsic to the DNA binding specificity of nucleosomes and is

not simply a consequence of competition by TF binding. As a

prelude to our analysis of resolution-sensitivity, we validated the

observations made by Kaplan et al using the same TF binding

data but with a different analytical measure (ROC AUC vs.

average tag counts). We also obtained additional, higher accuracy

TF binding data using ChIP-qPCR at selected binding motifs in

order to establish more quantitatively the correlation between

binding and nucleosome occupancy.

ROC AUC values are generally similar whether nucleosome

occupancies are obtained in vivo or in vitro (Figure 3A). Not

surprisingly, the values are somewhat higher with in vivo

chromatin than with in vitro reconstituted chromatin for most

Figure 2. Crosslinking of chromatin preferentially protects
sites that are otherwise nuclease sensitive and correlated with
transcription factor binding. (A) (top): Tag counts of uncrosslinked
chromatin (orange) and crosslinked chromatin (gray) in the region of
bound Abf1 sites. Tag counts have been symmetrized around the Abf1
site. Tag counts for the crosslinked sample were normalized to the
uncrosslinked sample between 100–600bp from the Abf1 site to
highlight the concordance in the phased nucleosome locations and
occupancies. (bottom): Tag count difference map (green) in the vicinity
of bound Abf1 sites showing excess tags in crosslinked chromatin vs.
uncrosslinked. (B) Predictive value of nuclease-resistant tag counts for
binding of 41 TFs. ROC AUC values on the y-axis were calculated based
on the difference map (excess tag counts found in the crosslinked
sample compared to the uncrosslinked). ROC AUC values on the x-axis
were calculated as in Figure 1. The dashed line is for y = x. Binding of
most TFs is predicted by the difference map well as well as, or even
better than, by the under-representation of tags in the normal
chromatin preparation.
doi:10.1371/journal.pcbi.1000649.g002

Regional and Local Effects of Nucleosome Binding
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TFs (33/41, notably for Abf1 and Reb1). This indicates that some

of the nucleosome depletion at binding sites is a consequence of

TF binding and not really an effector of it. Nevertheless, the

correlation between in vivo and in vitro values is remarkably good

(R = 0.79; R = 0.90 if Abf1 and Reb1 are removed as outliers).

Neither the ROC AUC values nor the raw differences in tag

counts used by Kaplan et al lend themselves to a simple

interpretation in terms of the amount of TF binding information

that lies in the intrinsic binding specificity of nucleosomes. To

assess more directly how much of an effect on TF binding is

encoded by the intrinsic DNA binding specificity of nucleosomes,

we determined the apparent binding occupancies of 107 perfect

consensus binding sites in the genome using ChIP-qPCR (Table

S1). Between 16 and 33 consensus sites were assayed for each of

four TFs (Dig1, Bas1, Gcn4 and Nrg1). The four TFs are typical of

those evaluated in Figure 3A, lying close to the best fit through the

data, but have associations with nucleosome occupancy that are

skewed to lower-than-average values. This makes them particu-

larly stringent targets for independent evaluation.

Figure 3B shows that ChIP enrichment values are correlated

with nucleosome occupancy in the expected direction (i.e. higher

ChIP enrichment is correlated with lower nucleosome occupancy).

Correlation coefficients to the in vivo nucleosome data average

0.34 and range from 0.05 for Bas1 to 0.60 for Nrg1. All except

Bas1 are significantly different than 0 (i.e., show a significant

inverse correlation between ChIP enrichment values and nucle-

osome occupancy). ChIP-qPCR enrichment values appear to be

correlated with in vitro nucleosome data as well, but poorly.

(Figure 3B; right hand set of panels). For Gcn4, for example, only

,1.7% (R2 = 0.132) of the variance in ChIP enrichment values is

explained by intrinsic nucleosome binding, as defined by

reconstituted chromatin, while 16% (0.402) of the variance is

explained by nucleosome positions in vivo. Overall, for the four

TFs we assayed, we estimate that only about 5% of the variance

associated with nucleosome occupancy differences in vivo is due to

intrinsic nucleosome positioning; the rest is a consequence of other

effects that determine chromatin structure in vivo.

The fact that all four TFs show correlations in the expected

direction between ChIP-qPCR enrichment and nucleosome

occupancy attests to the sensitivity of this analysis because the

ChIP-chip based ROC AUC values for these same TFs are only

marginally different than the value expected by chance. It is

possible that the ROC AUC values are underestimated due to the

definition of unbound sites that we chose to use. We chose to use

random sites selected from promoter regions (600bp 59 to ORFs)

thinking they would be more appropriate controls for the TF-

bound sites, but the ROC AUC values obtained using this

background are lower than what is obtained when sites randomly

selected from throughout the genome are used instead (data not

shown). A systematic underestimation of the true ROC AUC

value would also explain why Nrg1 has an ROC AUC value below

0.5, implying a direct association between nucleosome occupancy

and binding, even though our ChIP-qPCR analysis unambigu-

ously shows the expected inverse correlation.

Figure 3. Some of the nucleosome position information
correlated with transcription factor binding is intrinsic to
genomic sequence. (A) ROC AUC values quantifying the predictive
value of low nucleosome occupancy based on chromatin in vivo (x-axis)
or chromatin reconstituted in vitro from genomic DNA and histones (y-
axis). The in vivo data are as shown in Figure 1; values based on the in
vitro reconstituted chromatin were calculated in the same manner. The
positions of four TFs that are used in panel B are indicated by colored
circles. The solid line is the best linear fit through the data (R = 0.90),
excluding outliers Abf1 and Reb1 (gray circles). That Abf1 and Reb1 are
truly outliers was established by assessing the deviation from a fit to all

the data: these two TFs deviate from that line by a distance that
exceeds the average distance by more than 2.5 standard deviations. The
dashed line, y = x, corresponds to the expected fit if in vitro and in vivo
nucleosome data were entirely equivalent. (B) Correlation between the
ChIP enrichment value at perfect consensus binding sites and tag
counts from nuclease-protected mono-nucleosome-sized DNA ob-
tained from in vivo chromatin (left panels) or in vitro reconstituted
chromatin (right panels). The best linear fits between log(ChIP-qPCR
enrichment value) and tag count are shown.
doi:10.1371/journal.pcbi.1000649.g003

Regional and Local Effects of Nucleosome Binding
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While absolute ROC AUC values should be interpreted with

caution, comparisons of ROC AUC values are valid because each

calculation was performed using the same set of unbound

sequences as background. Since there are 41 TFs for which we

have performed analyses using ChIP-chip data, we use those data

and the ROC AUC metric for all subsequent analyses, rather than

the correlation to ChIP-qPCR enrichment values, for which we

have data for only four of the 41 TFs.

Regional nucleosomal density is generally more relevant
to TF binding than precise nucleosome position

As discussed above, most of the 41 TFs are modestly associated

with nucleosome depletion in vivo (Figure 1C, Figure S3). This is

consistent with the conclusion we reached previously using much

lower resolution nucleosome occupancy data. [4] Those data were

obtained from histone ChIP-chip experiments using DNA

microarrays whose probes mostly corresponded to entire ORFs

or intergenic regions. [1] The TF-bound regions were also low-

resolution, having been obtained using the same microarray

probes. [13] In the current analysis we use the same low resolution

ChIP-chip data but the precise binding sites within those regions

have now been inferred from motif analysis, as described by

MacIsaac et al. [16] Thus, the TF binding data has effectively

been made higher resolution through bioinformatics methods. The

nucleosome occupancy data available now is truly higher

resolution.

If transcription factor binding depends sensitively on the

positioning of nucleosomes, we would expect high resolution data

to produce a stronger association between nucleosome depletion

and TF binding. To test this, we started with high-resolution data

and simulated the effects of lower resolution data by averaging the

high-resolution nucleosome occupancy data over windows of

various sizes. Figure 4 (panels A and B) shows the effect of

averaging these data on the association between nucleosome

occupancy in vivo and Abf1 binding. Up to this point, we have

used 15bp windows spanning TF binding sites (and randomly

selected promoter sites) to calculate ROC curves and their areas. If

a substantially larger window is used instead (150bp), the ROC

AUC is noticeably lower; as the window is expanded to 300bp, the

ROC AUC drops even more precipitously, and by 600bp, there

remains only a very small association between low nucleosome

occupancy and Abf1 binding sites. This dramatic drop in ROC

AUC scores is expected because there are high occupancy

nucleosomes flanking the Abf1 binding sites; a 300bp window

includes the peaks of these nucleosomes, while a 600bp window

includes all of those nucleosomes and a bit more of others.

Window sizes of 40bp or 75bp actually show somewhat higher

ROC AUC scores than the 15bp window, reflecting the fact that

the average bound Abf1 has a nucleosome-depleted window that is

about 50–75bp (Figure 4A).

We repeated this analysis for all 41 TFs, comparing the ROC

AUC values obtained with 600bp windows to those obtained with

15bp windows (Figure 4C; Figure S4). Abf1 and Reb1, the two

Figure 4. The effect of intrinsic sequence-dependent chromatin structure on TF binding is not dependent on exact nucleosome
positioning. (A) Windowing scheme to simulate lower resolution data. Nucleosome tag counts around genomic loci (TF binding sites or control loci)
were averaged over windows of 15, 40, 75, 150, 300 and 600bp as indicated by the lines at the bottom of the panel. Average tag counts around Abf1-
bound sites are shown as in Figure 1A, along with the locations of nucleosomes inferred from those data. (B) ROC AUC values for the prediction of
Abf1 binding sites based on low nucleosome occupancy, averaged over the indicated window sizes. The difference in ROC AUC in going from high
resolution data (15bp) to simulated low resolution data (600bp) is indicated by the arrow. This measure of the effect of data blurring was used in
panels C and D. (C) Effect of averaging in vivo nucleosome data on the correlation between nucleosome occupancy and TF binding for 41 TFs.
Coloring of the histogram bars is based on the standard deviation of the values for abs(D(ROC AUC)), as indicated in the legend. (D) Same as panel C
except that data from in vitro reconstituted chromatin was used rather than in vivo chromatin.
doi:10.1371/journal.pcbi.1000649.g004

Regional and Local Effects of Nucleosome Binding
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outliers in what is otherwise a good correlation between the effects

of vivo chromatin vs. in vitro chromatin (Figure 3A), are

exceptionally strongly affected by the averaging of nucleosome

position data. This is because they have such a strong effect on

local nucleosome density: displacement of nucleosomes at the

binding site results in high nucleosome occupancy immediately

adjacent to the site, and therefore there is a rapid regression to the

mean nucleosome occupancy as the window size is expanded.

Although there are exceptions, and the effect is less dramatic, this

is a trend that is seen for the set of TFs as a whole. Altogether, a

majority of TFs (,60%) show poorer association with nucleosome

occupancy when those occupancy values are averaged over 600bp.

In addition, of the TFs that are most dramatically affected by

averaging nucleosome occupancy over 600bp (i.e. those with

changes greater than two standard deviations larger than the

mean), all are adversely affected by the averaging of nucleosome

occupancy.

Remarkably, the opposite effect is observed when in vitro

reconstituted chromatin is used in the calculations rather than in

vivo chromatin. An improvement in the association between

binding and nucleosome occupancy is found for about three

quarters of the TFs when in vitro nucleosome occupancies are

averaged over 600bp. Among TFs that show the most dramatic

effects (i.e. those exceeding the mean by 2s), twice as many are

improved as are made worse. At a cutoff of 1s, three times as

many are improved as are made worse. The number of TFs that

are adversely affected by blurring of the in vivo data, and the

number of TFs that are positively affected by blurring of the in

vitro data, are each significantly different than the numbers

expected by chance (p,0.02).

The results with reconstituted chromatin are important because

it is those data that are most relevant to an understanding of

intrinsic nucleosome binding specificity and its effect on TF

binding. The analyses of in vivo nucleosome data serve as a kind of

computational control, showing that simulation of low resolution

data does indeed weaken the association with TF binding, as

would be expected if the precise nucleosome location, as defined

by high-resolution sequencing experiments, were relevant to TF

binding.

The question then, is why is there an improvement in the

correlation between TF binding and nucleosome occupancy when

high-resolution data for the in vitro nucleosome date are averaged

so as to simulate lower resolution data? To investigate this question

further, we examined more closely the patterns of nucleosome

occupancy around TF binding sites in vivo and in vitro. To that

end, we clustered the 41 TFs into five groups based on their in vivo

and in vitro nucleosome profiles (Methods; Figure 5A), and

confirmed that members of these groups share similarities in their

sensitivity to data blurring in vivo and in vitro (Figure 5B). Most of

the TFs for which the blurring of in vitro nucleosome data

improves the association with binding have at least one of two

properties in their nucleosome occupancy profiles that can explain

this result: (i) the nucleosome poor region around the binding site

is broad, such that averaging around the binding site provides

greater contrast with random control sites or (ii) the binding site is

actually higher in nucleosome density than the surrounding

regions, so blurring the data encompasses flanking regions that are

lower in nucleosome density. This latter set, in particular, suggest

that the precise genomic position favored by nucleosomes is less

relevant to TF binding than is overall nucleosome density in the

region. This is perhaps the case because nucleosomes that occlude

binding sites can be displaced to nearby regions at little energetic

cost. In contrast, binding of Rap1/Fhl1 is correlated best with

local nucleosome occupancy, and is adversely affected by blurring

of the data. These TFs, unlike all others, tend to have well

occupied nucleosomes that immediately flank their binding sites in

vitro. As expected, TFs with similar patterns of nucleosome

occupancy around their binding sites are also affected in similar

ways by the averaging of nucleosome occupancy data (Figure S4).

The averaging of high-resolution nucleosome occupancy
data accentuates the effects of nucleosomes in a
computational model of TF binding

As a further test of the effect of blurring high resolution

nucleosome position data, we incorporated the data into a

computational model that predicts TF binding to genomic regions.

[18] The model uses position weight matrices (PWMs) to estimate

Kd values for all sequence windows in the genome, and from those

Kd values and an assumed protein concentration, it calculates the

probability the protein is bound to at least one location within a

genomic interval. Previously, we showed that low resolution

nucleosome occupancy data, obtained from histone ChIP-chip

experiments, could be used as weights in the calculation of Kd

values in this model, and that these weights improved the

prediction of binding as verified via a ChIP-chip experiment. [4]

Others have also shown the utility of incorporating nucleosome

occupancy data in this way. [19]

Here, we used the same weighting function and parameter

values developed previously, but instead of applying weights based

on large genomic regions, we used the base-pair resolution, in vitro

nucleosome position data of Kaplan et al. [9] The ChIP-chip data

of Harbison were used to evaluate the predictive efficacy of these

weights. [13] Specifically, we first scored yeast promoters for the

probability of binding based on our computational model and the

PWMs for transcription factors. [18] We then evaluated how well

this predicted binding identified genes whose promoters are bound

experimentally. The calculations were then repeated twice, once

using weights based on in vitro nucleosome occupancy data at

15bp resolution, the other using weights based on averaging this

nucleosome occupancy data over sliding 600bp windows.

Figure 6A illustrates the effect of these weighting schemes on

two genomic regions, each containing a perfect consensus binding

site for Gcn4.

For each TF, we obtained three ROC AUC values that express

how well binding is predicted: one based on the PWM alone; the

second based on the PWM, but with genomic position weights

determined by high resolution nucleosome position data; and the

third based on the PWM and weights determined by simulated low

resolution nucleosome position data (i.e. high resolution data

averaged over 600bp windows). For TFs whose binding is well

predicted by genomic sequence and the PWM alone, the inclusion

of weights based on nucleosome occupancy evidently adds noise to

the calculation, worsening the predictions. However, for TFs

whose binding is poorly predicted by sequence alone, the inclusion

of binding affinity weights can substantially improve the prediction

of binding (Figure 6B).

Strikingly, the effect of intrinsic nucleosome position data on

binding predictions is accentuated with the simulated low

resolution data. This is the opposite of what we would expect if

precise nucleosome positioning were typically of great relevance to

the binding of transcription factors, and it is the opposite of what

we observed in most cases with the in vivo data. Of course, the

improvement in binding predictions with blurred data is for the set

of bound promoters as a whole; within this set, some of the

promoters bound by the TF fall in rank even if, overall, weighting

improves the ROC AUC value (Figure S5). For example, even

though Yap5 is the most responsive TF to nucleosome averaging

overall, 22 of the 88 promoters bound by Yap5 drop in rank when
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Figure 5. Clustering of nucleosome occupancy profiles suggests more than one reason for the efficacy of in vitro nucleosome
occupancy blurring. (A) Heat map of the 1200bp nucleosome occupancy profiles surrounding TF binding sites. Each row represents the average
profile around binding sites for one of the 41 TFs. The left side is based on the in vivo nucleosome map; the right is based on the in vitro nucleosome
map. Tag counts were separately normalized to a mean of 0 for each of 1200bp in vitro and in vivo windows. Yellow represents low tag counts, and
blue high. The TFs have been placed into five groups based on k-means clustering (Methods) and are ranked, within the groups, based on the
improvement in association with TF binding when nucleosome occupancy is averaged over 600bp window rather than 15bp. Nucleosome-poorer
regions are typically broader in the in vitro maps, and some TFs show nucleosome enrichment over TF binding sites in the in vitro maps. (B) Changes
in ROC AUC values for the prediction of TF binding using blurred data (600bp vs 15bp). TFs are colored according to the clusters in which they fall
based on the in vivo and in vitro nucleosome occupancy profiles surrounding their binding sites (note color key in panel A). For each group of TFs,
the one with the greatest improvement using blurred in vitro nucleosome data is indicated by a square rather than a circle. (C) In vitro and in vivo
nucleosome tag counts in a 1200 bp window surrounding bound sites. The five TFs shown are representative of the five profile clusters and are
indicated by squares in panel B.
doi:10.1371/journal.pcbi.1000649.g005
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in vitro nucleosome data is averaged over a 600bp window.

Nevertheless, the overall effect of blurred nucleosome data on

binding predictions provides additional support for our contention

that it is the regional nucleosome occupancy that matters most in

the localization of TF binding sites, not the precise position of the

nucleosome.

Methods

Datasets
The yeast genome sequence (Aug 2008 build) and gene feature

files were obtained from the Saccharomyces Genome Database

(SGD). [20] Promoter sequences were defined as the 600bp 59 to

the start of transcription of protein coding gene. The genomic

positions of ChIP microarray probes and their ChIP enrichment

p-values using different epitope tagged transcription factors under

normal growth conditions (YPD media, 30uC) were obtained from

Harbison et al. [13] The nucleosome sequence tag maps of Kaplan

et al. [9] were obtained from GEO (accession number GSE13622).

Sequence coordinates for each data set were converted to match

the SGD Aug 2008 version of the genome based on a list of

coordinate differences maintained at SGD. Genomic loci deemed

to be potential transcription factor (TF) binding sites on the basis

of sequence analyses were obtained from MacIsaac et al. [16]. For

each potential TF binding site, the ChIP-chip probe spanning that

site was identified and the ChIP enrichment p-value for that that

probe was then assigned to the binding motif. Binding motifs with

p-values,0.001, were classified as being bound by their respective

TFs. 41 TFs had $50 bound motifs by this criterion and were used

for all subsequent analyses. For the analysis of Abf1 binding, Abf1

motifs were further binned into p-value intervals 0.001–0.01,

0.01–0.1, 0.1–0.5, .0.5.

Mapping nucleosome sequence tag counts to
transcription factor binding motifs

The nucleosome sequence tag data provided by Kaplan et al

consists of a 59 end, determined by sequencing, and a 39 end

146bp away that is based on knowledge about the size of

nucleosomes and on the preparation in the experiment of ,150bp

sized DNA by nuclease treatment and size-selection. [9] For

simplicity, we refer throughout the paper to the inferred 146bp

sequence as a ‘nucleosome tag’, or simply a ‘tag’. The number of

tags spanning a particular genomic basepair can be enumerated

and is taken to be a measure of the nucleosome occupancy at that

basepair. For most analyses, tag counts were averaged over

windows that were centered on a binding motif or on randomly

selected basepairs from within promoters. We refer to the windows

as being of size 15, 40, 75, 150, 300 and 600 bp, though

technically some of the windows are 1bp longer depending on

whether the motif is of even length or odd.

ROC analysis
Receiver operating characteristic (ROC) curves and the area

under those curves (AUC) were used to quantify the ability of a

Figure 6. The blurring of intrinsic nucleosome occupancy data
accentuates the effects of nucleosomes in a computational
model of TF binding. (A) Illustration of how nucleosome occupan-
cies are used to weight the predicted binding affinities of sequence
motifs (top panel): Two 2.4kb genomic regions (CAN1/NPR2 and
YPL137C/ISU1) showing normalized nucleosome tag counts from in
vitro reconstituted chromatin, averaged over 15bp windows (gray line)
or 600bp windows (black line). Red dots indicate the location of a
perfect Gcn4 consensus site in each region. (middle panel): Same as
the top panel except the lines show the conversion of normalized tag
counts into weights that can be applied to Position Weight Matrix
based estimates of TF binding affinity. Note that the weights are
plotted on a log scale. Details of the weighting scheme are given in
Methods. (bottom panel): Predicted equilibrium binding constants for
the two sequence-identical Gcn4 sites (relative neighed Ka = 1; white
histogram bars). High-resolution nucleosome data (15bp window; gray
bars) increases the effective Ka of the two sites by about the same
amount because the local nucleosome occupancy for both sets is
about the same, and lower than average. Averaged over 600bp, the
CAN1/NPR2 site is in a much lower-than-average nucleosome
occupancy region while the YPL137C/ISU1 site is in a higher-than-
average region. As a result, the predicted effective binding affinities of
these two sites, subject to low resolution nucleosome occupancy
(black bars) are very different. (B) Effect of nucleosome-based

weighting on the prediction of TF bound promoters. Each dot is a
TF. The value along x-axis shows how well the PWM, used in a
computational model of TF binding, predicts which promoters are
bound. This is quantified as the area under an ROC curve (ROC AUC).
Plotted against this value is the change in ROC AUC that is obtained by
weighting genomic loci on the basis of high-resolution nucleosome
data (orange; 15bp window) or on the same data averaged over 600bp
windows.
doi:10.1371/journal.pcbi.1000649.g006
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predictor (nucleosome tag counts) to correctly classify sequences as

TF bound (defined by ChIP-chip) or unbound (randomly selected

from yeast gene promoters). Where error bars are shown for ROC

AUC values, these were estimated from 1000-fold bootstrap re-

sampling. ROC AUC values were also used to quantify the

predictive value of a TF binding prediction algorithm, with and

without weights based on nucleosome occupancies. In this case,

the predictor is the estimated TF binding occupancy and the

question is how well that value classifies promoters as TF bound or

unbound. Unbound sites were selected from 1000 randomly

picked yeast promoters, defined as the 600bp region 59 to the start

of a gene.

Clustering of nucleosome profiles
For each of the 41 TFs, and for each of the two nucleosome

datasets, we enumerated the number of nucleosomal sequences

spanning each basepair in a 1200bp window. The tag counts were

averaged across the center of the profiles, and normalized to the

mean value in that profile. These 1200bp normalized windows

were used to visualize the profiles for each TF (Figure 5).

Clustering was performed based on catenation of the values for the

central 600bp from the in vivo data and the central 600bp from

the in vitro data. Similarity in profiles was defined by the Pearson

correlation coefficient, and the clusters were identified by k-means

clustering. A value of k = 5 is shown based on subjective

assessment of the clusters for different values of k.

TF binding occupancy predictions and nucleosome
weighting

The computer program GOMER was used to calculate

predicted binding affinities in yeast promoters based on TF-

specific position weight matrices (PWM) and, optionally, affinity-

modifying weights that were applied to genomic regions based on

nucleosome tag counts. [18] Genes with bound promoters were

defined by Harbison et al based on binding to 59 intergenic regions

in normal (YPD) conditions.[13] PWMs were obtained from the

work of MacIsaac et al. [16] Of the 41 TFs we studied, PWMs

were available for 36 and were used for this analysis. For the

purpose of calculating and applying nucleosome occupancy

weights to genomic subsequences, we subdivided the genome into

non-overlapping 15bp segments. The local nucleosome occupancy

for each segment was defined by the average tag count within that

segment, and the regional nucleosome occupancy for the segment

was defined as the average tag count in the 300bp spanning the

segment. The effect of nucleosome occupancy on predicted TF

binding was defined essentially as described earlier for histone

ChIP-chip data. [4] Predicted Ka values were modified at each site

according to the nucleosome tag count in that region,

Ka,weighted~KaW{Q

where W is a weighting parameter and Q is the tag count

expressed as the number of standard deviations above zero. Zero

tags was used as the reference, rather than the mean hybridization

intensity used in our earlier work, so that regions that had no

mapped nucleosomes for technical reasons (e.g. non-unique

sequences in the genome) were given weights of 1. Note that

higher nucleosome occupancies result in exponentially lower

predicted affinities for the TF. A value of 4 was used for the

weighting factor, W, based on the parameterization of this value in

earlier work using low-resolution histone ChIP-chip data. We

chose to fix this value rather than fitting it to the new data.

Chromatin immunoprecipitation and quantitative PCR of
consensus binding sites

Yeast strains expressing TAP-tagged transcription factors BAS1,

DIG1, GCN4 and NRG1 were obtained from Open Biosystems.

For each TF, we identified a set of perfect consensus binding sites

that lay within genomic regions enriched in the ChIP-chip

experiments of Harbison et al. [13] PCR primers were designed

flanking each of these sites, generating amplicons of 100–150bp.

Chromatin immunoprecipitation was carried out essentially as

described. [4] Briefly, yeast cells were grown to late log phase,

fixed with 1% formaldehyde for 15 minutes at 30uC and then

quenched with a final concentration of 125mM glycine. Cells were

disrupted with glass beads in lysis buffer (50 mM HEPES-KOH

pH 7.5, 300 nM NaCl, 1 mM EDTA, 1.0% Triton X-100, 0.1%

sodium deoxycholate) and the extract sonicated to an average size

of ,500bp. Immunopurification was carried out with Sepharose-6

Fast Flow IgG beads as described by the manufacturer (GE

Healthcare). Input DNA and immunoprecipitated DNA were

treated with RNaseA and ProteinaseK, and purified by phenol-

chloroform extraction. DNA was quantified by qPCR, using two

control sequences that lack similarity to the binding motifs of any

of the TFs studied. Three or more biological replicates were

performed for each transcription factor and multiple technical

replicates were performed for most sites and for most biological

replicates. The enrichment values we report for a binding site are

based on the arithmetic mean of the DDCt values using input

DNA and the average of the two control sites for comparison. Not

all sites were bound in our assays despite being consensus sites

selected from genomic regions reported to be bound in ChIP-chip

experiments. For purposes of Figure 3, sites with nominal

enrichment values of less than 1 were changed to 1. Also, four

sites that lie in regions of exceptionally high nucleosome tag counts

(..600) were plotted as having values of 600.

Data and software availability
A list of the sites assayed by ChIP-qPCR and their enrichment

values is available as supplementary material. The GOMER

program has been described previously and is made freely

available from the authors on request. [18]

Discussion

We have confirmed the conclusion of Kaplan et al [9] that

sequence-specific binding of nucleosomes plays a role in the

selection of binding sites by TFs, although most TFs are more

strongly associated with in vivo nucleosome positions than in vitro.

This reflects the fact that TF binding itself is one of the causes of

the differential nucleosome occupancy in vivo that is correlated

with TF binding. The stronger association with in vivo nucleosome

data was even more evident in the experiments we performed

using ChIP-qPCR enrichment at consensus binding sites. The

relatively weaker association with nucleosome binding in vitro

perhaps lies in the different standards being applied in the two

analyses. In the ChIP-chip analyses we asked how well nucleosome

occupancy could classify bound vs. unbound sites but in the ChIP-

qPCR experiments, we assessed quantitatively the correlation

between nucleosome occupancy and TF ChIP enrichment.

Perhaps it is too much to expect strong correlations between

ChIP enrichment values and nucleosome occupancies as there are

many factors that contribute to ChIP enrichment. Indeed, it is not

even clear how strong the correlation is between TF occupancy

and ChIP enrichment.

The difference in TF binding associations for the in vivo and in

vitro nucleosome data is most striking for the outliers Abf1 and
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Reb1. These two TFs are thought to play key roles in chromatin

remodeling and the formation of nucleosome free regions (NFRs)

in yeast promoters [21]. The association between binding and

nucleosome depletion in vivo is so strong for these factors that we

find clear evidence of Abf1-mediated depletion even in genomic

regions for which the ChIP-chip enrichment p-value is far worse

than what can be considered significant. This is not unexpected

because binding is not a discrete phenomenon that lends itself to

absolute cutoffs, and it has been shown that authentic and

biologically relevant binding occurs even for sequences whose

ChIP enrichment p-values are extremely poor. [14] We provide

further evidence for this conclusion by showing that low

nucleosomal occupancies are predictive of Abf1 binding, even

when the statistical confidence in binding is extraordinarily low.

The most important question we have addressed in this paper is

the following: how much does the preferred location of

nucleosomes matter to the selection and occupancy of binding

sites by transcription factors. The way we sought to answer this is

to ask whether data resolution is important to the conclusion that

TF binding is associated with low nucleosome occupancy regions.

Lower resolution data was simulated by averaging the high

resolution data over increasingly larger windows. If the precise

location and occupancy of nucleosomes is of great importance for

the binding of TFs, then lower resolution data ought to do a worse

job of showing the relationship between nucleosome occupancy

and TF binding. We find that this is generally true for the in vivo

data, which is determined in part by TF binding. However, just

the opposite is true for the in vitro nucleosome data: simulating

low resolution data by averaging over 600bp windows generally

improves the predictions. This could not have been the result if

mapped nucleosome positions were both accurate and strongly

preferred over alternative positions.

For three reasons, we believe the resolution to this observation lies

not in questioning the accuracy of the nucleosome occupancy maps,

but in the assumption that the precision of intrinsic nucleosome

binding matters a great deal to where transcription factors bind.

First, the methodology for mapping nucleosomes was the same in

vivo and in vitro. The in vivo maps show the expected trend,

wherein a blurring of the data weakens the correlations, and we

know of no reason to expect or believe that the accuracy of

nucleosome mapping is different in the two different chromatin

preparations. Second, the energetic differences between a preferred

nucleosome configuration and an alternative are not expected to be

large, in general. [22,23] This is especially true if the overall

nucleosome occupancy is low because then there are many

alternatives that accommodate transcription factor binding, increas-

ing the configurational entropy of the binding-tolerant alternative(s).

Lower nucleosome density also allows each nucleosome to find local

positions that are closer to the optimal. Third, the data itself suggests

that most preferred nucleosome occupancies are only slightly more

favorable than alternatives because the tag count densities under

well-occupied nucleosomes are typically only a few fold higher than

they are in the adjacent spacer regions. This suggests a free energy

difference between preferred position and the spacer region on the

order of 1 kcal/mol or less. The high tag count in spacer regions

might reflect limitations in the experimental method, but it is also

consistent with our expectations based on the energetics of

nucleosome binding. [22,23] We conclude that intrinsic nucleosome

binding specificity plays a role in determining the selection and

occupancy of transcription factor binding sites with which

nucleosomes compete. However, the role is not so much in

occluding binding sites based on precise nucleosome positioning,

but more in defining broad regions of lower or higher nucleosome

density that accommodate TF binding with differing degrees of ease.

There are several exceptions to the rule that the blurring of in

vitro nucleosome data improves the association between nucleo-

some occupancy and binding. These exceptions tend to be TFs

like Fhl1 and Rap1 that have relatively high nucleosome density

flanking their binding sites. There is also a modest tendency for

these TFs to be bound less frequently at TATA+ promoters

(1566% vs 2769%; Figure S6). However, it is not clear whether

there is a mechanistic connection between these two facts.

The second important observation we report is the difference

between nucleosome maps constructed in the conventional way,

from uncrosslinked chromatin, and those constructed from

formaldehyde-crosslinked chromatin. This difference is not only

well correlated with TF binding but is, if anything, better

correlated than nucleosome occupancy in the uncrosslinked

sample.

The origin of this effect is uncertain. Conceivably it is a

consequence of differences in higher order chromatin around TF

binding sites, or it may be that the crosslinked TF itself provides

protection against nuclease digestion. However, both explanations

would require that at least some of the protected DNA survive size

selection for mononucleosome-sized DNA. Another problem with

the TF-protection explanation is that we would expect higher TF

concentrations to increase the difference between crosslinking and

non-crosslinking at binding sites, whereas the opposite is true, at

least for Gal4 binding at the GAL1–GAL10 promoter (Figure S2).

Alternatively, and more simply, the excess sequence tags may be

due to transient nucleosomes sitting on TF binding sites.

Crosslinking might be expected to have the greatest effect on

nucleosomes that are ‘volatile’ relative to other nucleosomes in the

genome: nucleosomes with slow association/dissociation kinetics

(slow relative to nuclease treatment) should be relatively unaffected

by crosslinking, while nucleosomes with fast kinetics should have

their apparent occupancies increased because of the ease with

which nucleosomes can be crosslinked to DNA. Competition with

TFs can be expected to alter the apparent kinetics of nucleosomes

by competing with them for reassociation, and histone turnover

measurements have indeed shown faster exchange kinetics at yeast

promoters [24] and at presumptive regulatory elements in

Drosophila. [25] It may also be that the nucleosomes at binding

sites contain histone variants that render their binding inherently

more labile.[26] However, we were unable to establish an

association between the nucleosome difference map (effect of

crosslinking) and the replication-independent exchange rate of

nucleosomes mapped at 265bp resolution (data not shown). [24]

Whatever the mechanisms, it seems clear that there is an

association between regions of regulatory protein binding and

higher nucleosome lability. The crosslink-noncrosslink difference

map, which seems to be identifying labile nucleosomes, might

therefore be used to discover non-histone protein binding sites in

the genome.

The interactions among nucleosomes, transcription factors, and

the enzymes that act on DNA and chromatin are complicated, but

central to a deep understanding of gene regulation. Nucleosomes

are a dominant factor in these interactions because they cover

roughly 80% of the genome. Together with their intrinsic DNA

sequence specificity, this adds further complexity to the problem.

Our analyses suggest a simplifying principle to this complexity,

namely that the precise position defined by nucleosome sequence

specificity is not (on average, and for most TFs) of critical

importance. Instead, the genome has evolved to define regions of

lower and higher intrinsic nucleosome occupancy and these broad

regions typically matter more than the precise most-favored

configuration. Having said that, we expect there will be many

exceptions in which precise positions are proven to be important.
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The technology now exists to explore these phenomena in greater

detail and to begin to examine the kinetics of remodeling from one

chromatin state to another. As data accumulates, we are confident

that the incorporation of DNA-encoded nucleosome position

information into computational models of TF binding will

continue to improve the predictive quality of these models.

Supporting Information

Table S1 Tab-delimited ChIP-qPCR data used in Figure 3.

Found at: doi:10.1371/journal.pcbi.1000649.s001 (0.01 MB

TXT)

Figure S1 Crosslinking of chromatin generally weakens the

association between low nucleosome density and TF binding.

ROC AUC values for 41 TFs are generally lower when crosslinked

chromatin data is used rather than uncrosslinked.

Found at: doi:10.1371/journal.pcbi.1000649.s002 (0.73 MB EPS)

Figure S2 Genome browser tracks showing nucleosome tag

counts in the GAL1–GAL10 regions for cells grown in YPD or in

galactose-containing media. All data are from Kaplan et al (ref 9).

Profiles are shown for crosslinked chromatin, uncrosslinked

chromatin, and the difference between the two. A prominent

peak in the difference map is apparent in YPD conditions, but is

less prominent in galactose, presumably because Gal4 binding

reduces the occupancy of the occluding nucleosome. The existence

of the difference peak in YPD implies the existence of an unusually

labile nucleosome over the Gal4 binding sites. Gal4 is known to

have some occupancy of its GAL1–GAL10 promoter sites even in

glucose, so the apparent lability of this nucleosome probably

reflects modest competition from Gal4.

Found at: doi:10.1371/journal.pcbi.1000649.s003 (2.02 MB EPS)

Figure S3 Nucleosome occupancy profiles around TF binding

sites for all 41 TFs with at least 50 bound sites, and for the

randomly selected promoter sites used as controls. Nucleosome

profiles in black are from the in vivo data; profiles in red are from

the in vitro data (ref 9). In vivo and in vitro data were each

normalized genome-wide to a mean value of 1, and symmetrized

around the center of the binding sites. The TFs are organized into

color-coded blocks based on the k-means clusters of Figure 5.

Within the blocks, the TFs are arranged in ascending order based

on DROCAUC (in vivo) - DROCAUC (in vitro). The slight dip in

the profiles for the random promoter sites (bottom panel) reflects

the fact that promotes tend to have lower nucleosome occupancy

than transcribed regions.

Found at: doi:10.1371/journal.pcbi.1000649.s004 (4.46 MB EPS)

Figure S4 Window-size dependency of nucleosome-TF binding

correlations and the relationship to nucleosome occupancy

profiles. (A) The difference in ROC AUC values at different

window sizes was used to cluster TFs by k-means clustering. k = 5

was chosen to mirror the clustering of TFs by nucleosome

occupancy profiles (Figure 5). The identities of the TFs in each

cluster are shown at the right, along with a color-coded

identification of the cluster to which the TF belongs based on

nucleosome occupancy profiles. (B) Nucleosome occupancy

profiles. This panel is identical to the one shown in Figure 5,

but is reproduced here to facilitate comparisons. As described in

the text, there is a rough congruence to the clustering, which

reflects the fact that window-size effects are a consequence of the

distribution of nucleosome occupancy around the binding sites.

Found at: doi:10.1371/journal.pcbi.1000649.s005 (5.02 MB EPS)

Figure S5 Not all binding sites or promoters are affected in the

same way by data blurring. (A) Gst1 is the TF that shows the

strongest positive effect of data blurring of the in vitro transcription

data (fig. 4). Each Gst1 binding site is ranked relative to all the

other Gst1 sites, along with the 1000 random promoters site

controls, and the normalized rank (1: best, 0:worst) is plotted using

a 600bp window vs. a 15bp window. Most, but not all, sites

improve in rank with data blurring. Normalized ranks are used

rather than absolute ranks in this case because absolute ranks

depend on the number of control sites used, which is arbitrary. (B)

Similar analysis to B, but based on the effect of nucleosome-based

weighting on the prediction of TF binding. Yap5 is the TF most

improved by averaging nucleosome occupancy prior to applying

those values to the genomic sequences as a way of weighting

binding sites (fig. 6). Most, but not all, promoters improve in rank

when nucleosome occupancy is averaged over 600bp rather than

using the local occupancy. Note that ranks are plotted on a log

scale.

Found at: doi:10.1371/journal.pcbi.1000649.s006 (0.79 MB EPS)

Figure S6 For the minority of TFs whose association between

binding and nucleosome-poor regions is worsened by blurring of

the nucleosome occupancy data (circles lying below the diagnonal),

there is a slight tendency for those TFs to also be bound less

frequently to TATA-containing promoters (lighter color). Howev-

er, the effect is small and it is likely that any connection between

the two properties is indirect.

Found at: doi:10.1371/journal.pcbi.1000649.s007 (0.43 MB EPS)
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