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Abstract

The genetic dissection of the phenotypes associated with Williams-Beuren Syndrome (WBS) is advancing thanks to the
study of individuals carrying typical or atypical structural rearrangements, as well as in vitro and animal studies. However,
little is known about the global dysregulations caused by the WBS deletion. We profiled the transcriptomes of skin
fibroblasts from WBS patients and compared them to matched controls. We identified 868 differentially expressed genes
that were significantly enriched in extracellular matrix genes, major histocompatibility complex (MHC) genes, as well as
genes in which the products localize to the postsynaptic membrane. We then used public expression datasets from human
fibroblasts to establish transcription modules, sets of genes coexpressed in this cell type. We identified those sets in which
the average gene expression was altered in WBS samples. Dysregulated modules are often interconnected and share
multiple common genes, suggesting that intricate regulatory networks connected by a few central genes are disturbed in
WBS. This modular approach increases the power to identify pathways dysregulated in WBS patients, thus providing a
testable set of additional candidates for genes and their interactions that modulate the WBS phenotypes.
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Introduction

Williams-Beuren Syndrome (WBS; OMIM #194050) is a de

novo neurodevelopmental disorder occurring in approximately 1/

10’000 births. WBS is characterized by mental retardation, with a

unique cognitive and personality profile. Clinical features include

supravalvular aortic stenosis (SVAS), connective tissue anomalies,

distinctive facial features (elfin face), short stature, hypertension,

infantile hypercalcemia, dental, kidney and thyroid abnormalities,

premature ageing of the skin, elevated body fat percentage,

impaired glucose tolerance and silent diabetes. The cognitive

hallmark of the condition is a striking contrast between a relative

strength in auditory memory and language abilities, and a

profound impairment in visuospatial construction. WBS individ-

uals are hypersensitive to sound, with strong emotional responses

to music, either positive or negative, and some individuals display

unusual musical skills. In addition to this hyperacusis, which is

thought to be due to the absence of acoustic reflexes, WBS

individuals may suffer from sensorineural hearing loss as they age.

They are also very sociable, emphatic, loquacious and over-

friendly, with a complete lack of fear towards strangers. Many

present an attention deficit disorder with hyperactivity and anxiety

[1–9].

The WBS is associated with a microdeletion within the 7q11.23

chromosomal band, which encompasses 28 genes [10–13]. It is

flanked by specific low copy repeats that serve as substrate for non-

allelic homologous recombination leading to the deletion [14].

These rearrangements are facilitated by the paracentric inversion

of the region [14,15], as well as the presence of a specific copy

number variant [16]. The most common deletion, occurring in

approximately 95% of cases, involves a 1.5 megabase (Mb)

segment, while a larger 1.84 Mb deletion is observed in about 1 of

20 cases [14,17]. Larger and smaller atypical deletions have been

reported in sporadic cases [18–31].

While the primary cause of WBS is well-understood, we still

know little about the molecular basis of the phenotype. Only very

recently, strains of mice were engineered to carry complementary

half-deletions of the region syntenic to the WBS region, which

replicate several features of WBS, including abnormal social

interaction phenotypes [32]. Yet, so far the dissection of the

phenotype relies mainly on evidence from other mouse models —

e.g. single gene knock-out — and atypical deletions in humans.
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Findings from these studies suggest some correlations between

hemizygosity of certain genes and specific phenotypic features seen

in WBS individuals. For example, the SVAS phenotype was shown

to be unequivocally associated with haploinsufficiency of the

elastin gene [33–35]. Furthermore, mouse models hemizygote for

some of the orthologs of the WBS deletion most telomerically-

mapping genes suggested that these were linked to craniofacial

abnormalities (GTF2I and GTF2IRD1 genes) [36], tooth anomalies

and visuospatial deficit (GTF2I, GTF2IRD1 and GTF2IRD2 genes)

[22,37], as well as deficits in motor coordination (CLIP2) [38].

Likewise, the function of the carbohydrate response element-

binding protein (MLXIPL, a.k.a. ChREBP or WBSCR14) in the

regulation of the expression of enzymes involved in glucose and

lipid metabolism [39-43] suggests that its haploinsufficiency is

associated with the higher relative body fat, silent diabetes and/or

impaired glucose tolerance found in adult WBS individuals [2].

We showed in previous work that the vast majority of the genes

hemizygous due to the 7q11.23 deletion are underexpressed in

lymphoblastoid cell lines and fibroblasts derived from patients [44],

consistent with their possible role in some of the WBS phenotypes.

Some of the genes that map to the flank of the microdeletion might

also influence the WBS phenotype, as it was recently shown that

structural rearrangements affect the relative expression levels of

neighboring normal-copy genes ([44–48], reviewed in [49,50]). To

identify which downstream pathways are perturbed in WBS by these

two classes of human chromosome 7 (HSA7) genes, we generated

genome-wide transcription profiles for primary fibroblasts from eight

individuals with WBS and nine sex- and age-matched controls. We

first focus on differentially expressed genes and then on co-expressed

gene sets to elucidate the genes and pathways that are dysregulated

in WBS and how they may contribute to its clinical phenotypes.

Results

Classical single gene analysis and its limitations
Differentially expressed genes. To assess the effect of the

WBS microdeletion on genome-wide expression, we first profiled

the transcriptome of primary skin fibroblasts of eight WBS patients

and nine sex- and age-matched control individuals using

Affymetrix expression arrays (see Table S1 for the complete list

of samples). These data have been deposited in the NCBI Gene

Expression Omnibus under accession number GSE16715.

Comparison of the WBS individuals with controls using

moderated t-statistics revealed differentially expressed transcripts,

including some of the hemizygous genes, thus partially confirming

previous results [44] (see below). At a false discovery rate (FDR) of

0.05 we identified 1,114 probesets as differentially expressed,

corresponding to 868 genes, which are listed in Table S2. (At a

FDR of 0.01 we obtained 367 probesets, corresponding to 306

genes, see Table S2). All P-values shown were corrected for

multiple hypotheses testing using the Benjamini-Hochberg method

[51]. 56 HSA7 genes are differentially expressed, significantly

more than expected by chance (Fisher’s exact test, P = 0.032).

Eight out of 13 monitored hemizygous genes were differentially

expressed, again, more than expected by chance (Fisher’s exact

test, P = 661025). Furthermore, 3 other out of the 13 hemizygous

genes showed a trend towards downregulation, albeit not statis-

tically significant (Figure 1 and Table S3). These hemizygous

genes, as a gene set, are underexpressed (gene set enrichment

analysis, P = 0.0015). We note that, consistent with previous

results, in particular our own analyses [44], microarrays detect a

lower number of genes than quantitative PCR, due to their

narrower dynamic range.

Enrichment analysis of the differentially expressed

genes. We used these 868 differentially expressed genes (DEG)

to perform gene enrichment analyses. A hypergeometric test on

Gene Ontology (GO) categories uncovered a significant over-

representation of extracellular matrix genes (P = 3.5961025) and

class I major histocompatibility complex (MHC) genes, as well as

genes the products of which localize to the postsynaptic membrane

(all P,0.05, see Table 1 for details). Closer examination of genes

coding for extracellular compartment proteins revealed an

overrepresentation of biological adhesion and binding, as well as

structural molecules, while localization and transporter activity

were underrepresented functions (Figure S1).

Instead of considering the expression levels of single genes, a

more robust approach is to work with gene sets. One such method

is gene set enrichment analysis [52–54], in which the aggregated

expression level of a pre-defined group of genes is tested for

difference between two biological states. Yet, the scope of

enrichment analyses for genes in pre-defined functional categories

is limited for several reasons: first, even though more than 80% of

human genes have now been annotated in GO, the experimental

evidence for these annotations differs widely (with less than 30% of

the genes having at least one experimental annotation [55]).

Second, the categorization and annotation is obviously biased by

human interpretation and reflects research foci. Finally, co-

regulation of genes belonging to a functional category may not

be induced transcriptionally or if so, only partially. In order to

overcome these limitations, we sought to complement our

enrichment analysis with functional gene categories directly

derived, in an unbiased manner, from gene expression data. We

refer to such units of transcripts that exhibit coherent expression

across a subset of the experimental samples as transcription modules

(see below). This approach is based on the hypothesis that

transcripts belonging to the same module are likely to play a role in

the same pathway (or any biological process) and that their

average expression levels can be used as a proxy for the induction

or suppression of this pathway. An additional benefit of this

approach is that it can also highlight novel functional links for

genes that have no or fragmented annotation so far.

Author Summary

A fundamental question in current biomedical research is
to establish a link between genomic variation and
phenotypic differences, which encompasses both the
seemingly neutral diversity, as well as the pathological
variation that causes or predisposes to disease. Once the
primary genetic cause(s) of a disease or phenotype has
been identified, we need to understand the biochemical
consequences of such variants that eventually lead to
increased disease risk. Such phenotypic effects of genetic
differences are supposedly brought about by changes in
expression levels, either of the genes affected by the
genetic change or indirectly through position effects. Thus,
transcriptome analyses seem appropriate proxies to study
the consequences of structural variation, such as the
7q11.23 deletion present in individuals with Williams-
Beuren syndrome (WBS). Here, we present an approach
that takes experimental data into account instead of
relying solely on functional annotation, following the
rationale that coherently regulated genes are likely to play
a role in the same biological process. While our algorithm
can be applied to expression data from any source, our
study provides a resource for the identification of
additional candidate genes and pathways to explain the
WBS phenotype, as well as a basis for uncovering novel
functional interactions between sets of genes.

Transcription Modules
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Using modular analysis to explore the pathophysiology
of WBS

Identifying transcription modules from fibroblast

expression data. In our first modular study (to which we

refer as M1), we collected skin fibroblast microarray datasets,

unrelated to our study, and used them to identify sets of co-

expressed genes in fibroblasts (see Table S4 for a complete list of

included datasets, their descriptions and accession numbers).

Towards this end we used the Iterative Signature Algorithm (ISA)

[56], a powerful tool for the rapid identification of transcription

Figure 1. Differential expression of the WBS hemizygous and flanking genes. Genes are ordered according to their chromosomal position.
Shaded areas represent the LCRs flanking the deletion. Gene names are indicated at the bottom and corresponding differential expression P-values at
the top. For genes with multiple probesets the most significant P-value is considered. Red bars indicate significance (P,0.05). Genes without a P-
value were not detected on the array and thus not tested.
doi:10.1371/journal.pcbi.1001054.g001

Table 1. GO terms enriched in the set of differentially expressed genes.

GO ID
BH-adjusted
P-value Direction

Odds
Ratio

Expected
Count Count

Category
Size Term

GO:0005576 2.64E-06 ind/sup 2.12 48.61 89 592 extracellular region

GO:0031226 2.29E-05 ind/sup 2.26 32.19 63 392 intrinsic to plasma membrane

GO:0031012 3.59E-05 ind/sup 3.25 11.58 31 141 extracellular matrix

GO:0005887 3.70E-05 ind/sup 2.2 31.78 61 387 integral to plasma membrane

GO:0005578 6.27E-05 ind/sup 3.21 10.92 29 133 proteinaceous extracellular matrix

GO:0044421 1.01E-04 ind/sup 2.32 23.73 48 289 extracellular region part

GO:0044459 3.60E-04 ind/sup 1.75 57.32 90 698 plasma membrane part

GO:0005886 1.59E-03 ind/sup 1.52 101.58 139 1237 plasma membrane

GO:0042612 2.17E-03 ind 11.28 1.15 7 14 MHC class I protein complex

GO:0005581 8.08E-03 ind/sup 6.45 1.81 8 22 collagen

GO:0042611 8.08E-03 ind 7.9 1.4 7 17 MHC protein complex

GO:0044420 1.27E-02 ind/sup 3.51 4.52 13 55 extracellular matrix part

GO:0032393 1.82E-02 ind 22.11 0.75 6 9 MHC class I receptor activity

GO:0005201 1.82E-02 ind/sup 5.55 2.76 11 33 extracellular matrix structural
constituent

GO:0045211 1.87E-02 ind/sup 4.62 2.55 9 31 postsynaptic membrane

GO:0002474 2.00E-02 ind 10.86 1.36 8 16 antigen processing and presentation
of peptide antigen via MHC class I

GO:0048002 2.00E-02 ind 10.86 1.36 8 16 antigen processing and presentation
of peptide antigen

GO:0004888 3.74E-02 ind/sup 2.16 17.64 34 211 transmembrane receptor activity

doi:10.1371/journal.pcbi.1001054.t001

Transcription Modules
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modules. Briefly, the ISA identifies, from a large set of expression

data, subsets of samples for which certain sets of genes are

coherently over- or underexpressed. We refer to these subsets as

modules, and each sample and gene receives scores indicating

their membership (if non-zero) and contribution to each module.

The algorithm found 1’094 modules of genes that are co-expressed

in specific subsets of samples. An interactive database of these

modules is accessible online at http://www.unil.ch/cbg/ISA/

Fibroblasts. They reflect the transcriptional responses to the given

perturbations, either natural or specific to the experiments that

were conducted on the fibroblast samples. 916 out of the 1’094

modules are functionally enriched, indicating that they correspond

to co-regulated genes involved in particular pathways that are

transcriptionally regulated.

To test whether some of the identified modules are differentially

expressed in WBS patients compared to controls we calculated the

weighted average expression of the genes of each module, using

the ISA gene scores as weights. This was done separately for each

WBS and control sample, after which the two groups were

compared using a t-test. We identified 72 modules with

significantly altered expression, by applying a 0.05 cutoff on the

Benjamini-Hochberg corrected P-values (Table S5). A permuta-

tion test was used to validate these results (see Materials and

Methods for details). The functional enrichments of these modules

are consistent with those in the single-gene differential expression

analysis. Indeed, many modules are enriched in genes annotated

for the extracellular compartment and immune response, but also

in DNA binding and transcription (a summary is given in Table 2,

see Tables S5 and S6 and Figure S1 for details).

Including the WBS data in the discovery of modules. Next,

we searched specifically for coherent perturbations in gene

expression driven by the WBS deletion. To this end, we

performed a second modular study (to which we refer as M2),

which included both the WBS samples and the data sets used

previously. The ISA algorithm found 1,035 modules, of which 868

are functionally enriched and 368 contain at least one sample from

our study. An interactive database of these modules is accessible

online at http://www.unil.ch/cbg/ISA/Fibroblasts. Out of the 368

modules including one of our samples, 290 contain at least ten genes

and were tested for differential expression. Specifically, a t-test, as

above, on the weighted mean expression of these module genes

identified 23 modules that were significantly dysregulated in the

WBS case samples (listed in Table S7). An example of such a

module is given in Figure 2. The remaining modules with

unchanged expression thus represent functions that are unaffected

in WBS. To check the significance of this result we randomly

permuted the WBS case/control labels 1,000 times. We observed

that none of these permutations yielded even a single dysregulated

module.

Hierarchy of the modules. Several smaller modules are

included completely in other larger ones, forming a hierarchical

structure. We organized the 72 and 23 dysregulated modules

identified in M1 and M2, respectively, into a directed graph based

on their subset relationships, i.e. two modules are connected by a

directed edge, if all the genes in the first module are included in the

second (see Figure 3 and http://www.unil.ch/cbg/ISA/

Fibroblasts). This graph has nine non-trivial components, with 3

to 19 modules each. Some of these modules can be readily linked

to the WBS phenotype based on their functional enrichment, e.g.

modules M1-349 and M1-257 (75 and 51 genes, respectively),

which display multiple functional enrichments, notably in

vasculature development and regulation, response to wounding,

as well as chemotaxis and immune response (see website for the full

lists and details). Interestingly, both modules contain the NR4A3

gene (M1-349 also contains SPRY2), which are genes involved in

the development of the inner ear. About one quarter of the gene

products of these two modules localize to the extracellular region

(19/75 and 14/51 genes, respectively).

WBS hemizygous genes in the dysregulated modules. We

found that the dysregulated M1 modules include only two

hemizygous genes (i.e. WBSCR22B and LAT2 (a.k.a. WBSCR5)),

while five other hemizygous genes, namely EIF4H, BAZ1B, BCL7B,

Table 2. Summary of GO terms and KEGG pathways enriched in the dysregulated transcription modules, M1 modular analysis.

GO ID BH-adjusted p-value Count Category size Best module (size) GO term

GO:0005576 2.92E-07 44 445 958 (294) extracellular region

GO:0031012 5.20E-05 18 114 957 (323) extracellular matrix

GO:0045449 1.23E-04 90 1084 1012 (542) regulation of transcription

GO:0010468 1.23E-04 97 1213 1012 (542) regulation of gene expression

GO:0005125 1.25E-04 7 34 349 (75) cytokine activity

GO:0003677 1.25E-04 85 971 1012 (542) DNA binding

GO:0032501 1.29E-04 30 1167 349 (75) multicellular organismal process

GO:0009887 1.29E-04 14 224 349 (75) organ morphogenesis

GO:0002376 1.58E-04 16 327 349 (75) immune system process

GO:0042127 2.17E-04 15 291 349 (75) regulation of cell proliferation

GO:0005057 3.02E-04 8 88 753 (120) receptor signaling protein activity

GO:0009611 3.88E-04 11 156 349 (75) response to wounding

GO:0042612 4.51E-04 6 13 1037 (341) MHC class I protein complex

GO:0008283 5.55E-04 17 437 349 (75) cell proliferation

GO:0006954 6.16E-04 10 98 747 (151) inflammatory response

GO:0009605 6.69E-04 13 252 349 (75) response to external stimulus

GO:0007165 8.14E-04 30 1342 349 (75) signal transduction

doi:10.1371/journal.pcbi.1001054.t002

Transcription Modules
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ELN and TBL2, were integrated into a total of 10 dysregulated M2

modules. All these genes, except LAT2, show differential expression

between WBS case and control samples (see Figure 1 and Table

S3). Furthermore, among the 844 genes that compose the 23

dysregulated M2 modules, HSA7 genes are overrepresented,

appearing 1.37 times more frequently than expected by chance

(P = 0.048, Fisher’s exact test). Modules containing hemizygous

genes are enriched in membrane and extracellular proteins, as well

as genes involved in immune response and organ development (a

summary of the functional enrichment of M2 modules is given in

Table 3, see Tables S7 and S8 and Figure S1 for details).

Genes that appear frequently in dysregulated

modules. The severity of a phenotype correlates with the

connectivity and thus centrality of the associated gene within the

functional network [57,58]. Based on this observation, we

reasoned that the most frequent genes among our expression

modules — and hence with the most connections in our dataset

— are more likely to play a central role in the pathophysiology of

WBS. We therefore considered the genes that were found by both

the M1 and M2 modular studies and counted their occurrence in

dysregulated modules. The M1 dysregulated modules contain

1984 different genes, while 844 different genes appear in M2

modules. 392 genes are present both in M1 and M2 modules, the

most frequent ones being: UCP2, EGFL6, C10orf116, HSPB2,

PSMB9, SPON1, C4orf31, GABRE, ABHD14A and AGBL5 (see

Table S9 for a more complete list). The frequency of a gene in

both module sets does not correlate with its differential expression

for the first set of modules (M1, Pearson correlation 0.07), and it

correlates positively for the second set (M2, Pearson correlation

0.33). To verify the functional connectivity of these most frequent

genes we interrogated the STRING database that compiles

known and predicted protein-protein interactions (http://string-

db.org) [59]. We found that not only do these genes interact more

with each other than expected by chance, as measured by the

number of edges connecting them, but they also have more

connections to the whole than a random subset of gene products.

They also tend to have higher centrality scores and thus are closer

to the center of the protein interaction network (Figure 4A–D).

This correlation between frequency in the modules and degree of

connectivity or centrality holds true for all genes in all modules

regardless of their dysregulation in WBS (see Figure S2). To

understand better the organization of the network of frequent

genes, we fitted a hierarchical statistical model [60] to it. In this

context, hierarchy means that the genes are organized into

groups, within which they are connected with a higher pro-

bability. These groups are organized into even denser subgroups,

and so on. The statistical model infers such a structure from the

data. According to our results, however, the network of frequent

genes lacks a hierarchical structure (Figure 4E). GO and KEGG

enrichment calculation for the 392 common transcripts shows

significant enrichment for several categories consistent with those

identified in the single-gene differential expression analysis and

the modules (Table S10).

Interestingly, the function of some of these frequently occurring

genes may be relevant to the pathophysiology of some WBS

features, such as metabolic phenotypes (UCP2 [61]), dental

anomalies (SPON1 [62]), neurological features, cognition or brain

development (HSPB2, [63], ABHD14A [64] and GABRE [65]).

Also, the overrepresentation of genes related to the immune

response in the list of most frequent genes hints at a putative

immunological component of the syndrome, which has hitherto

not been suspected from the clinical phenotype alone.

Comparison with lymphoblastoid cell lines from WBS and
control individuals

Gene expression in fibroblasts can only provide a partial picture

of the gene dysregulation that gives rise to the WBS clinical

Figure 2. Example of a WBS dysregulated module (#770 from
the M2 module set). This module contains 149 genes (one per line)
and 9 samples (columns). Seven samples are from WBS patients
(denoted with ‘‘W’’), C-5290 is a control sample from our dataset, while
HPGS-9 belongs to a publicly available dataset. Gene scores are plotted
on the left and sample scores at the top. The 59 genes with positive
gene scores (bottom lines) are downregulated (green) in the seven WBS
samples and upregulated (red) in the other two. The remaining 90
genes show the opposite pattern: they are upregulated in the WBS
samples and downregulated in the remaining two samples. Hemizy-
gous gene names are emphasized in red and the names of genes
mapping to HSA7 in boldface. Red asterisks indicate genes belonging
to the GO category ‘‘extracellular region’’ while black asterisks denote
genes from the ‘‘intrinsic to membrane’’ category.
doi:10.1371/journal.pcbi.1001054.g002

Transcription Modules

PLoS Computational Biology | www.ploscompbiol.org 5 January 2011 | Volume 7 | Issue 1 | e1001054



phenotypes. Thus, data from other cell types or tissues may

provide additional clues as to dysregulated pathways, as well as

confirm some of our findings in fibroblasts. Indeed, comparison

with the recently published transcriptome of lymphoblastoid, i.e.

EBV-transformed, cell lines from WBS patients [66] revealed a

few commonly dysregulated genes. The expression of 11 common

genes was altered with the same sign in both cell types, while for 29

others we observe opposite expression (Table S11). Eight of the

11 genes with consistently altered expression were part of 28

dysregulated M1 or M2 modules (Table S11).

Figure 3. Hierarchical diagram of the transcription modules dysregulated in WBS identified in the M1 (left) and M2 (right) modular
studies. Directed edges indicate direct subset relationships, and they always point upwards. The number of genes in a module is shown at the top
left corner of the module box. Modules annotated with a red star on their top right corner contain at least one hemizygous (or flanking) gene; the
ones with green stars on their bottom right corner were replicated in lymphoblastoid cell lines; blue stars on the bottom left corner indicate modules
that show significant enrichment for extracellular region genes. An interactive version of this figure is available in the online supporting material at
http://www.unil.ch/cbg/ISA/Fibroblasts, which allows to further query the gene content and functional enrichment of the modules.
doi:10.1371/journal.pcbi.1001054.g003

Table 3. Summary of GO terms and KEGG pathways enriched in the dysregulated transcription modules, M2 modular analysis.

ID BH-adjusted p-value Count Category size Best module (size) Term/name

GO:0005576 1.78E-12 73 700 991 (373) extracellular region

GO:0006955 1.62E-06 17 295 503 (73) immune response

GO:0031224 2.09E-05 89 2051 806 (239) intrinsic to membrane

GO:0009605 2.78E-05 17 370 503 (73) response to external stimulus

GO:0005102 1.02E-04 16 408 503 (73) receptor binding

GO:0007165 3.95E-04 35 1800 503 (73) signal transduction

GO:0042824 4.27E-04 4 6 702 (163) MHC class I peptide loading complex

GO:0007154 7.32E-04 36 1947 503 (73) cell communication

GO:0008083 8.75E-04 8 94 503 (73) growth factor activity

GO:0042330 2.88E-03 7 69 503 (73) taxis

GO:0009887 2.88E-03 13 312 503 (73) organ morphogenesis

GO:0007626 2.98E-03 8 101 503 (73) locomotory behavior

GO:0005578 3.21E-03 18 156 991 (373) proteinaceous extracellular matrix

GO:0001525 3.47E-03 8 104 503 (73) Angiogenesis

KEGG: 4060 7.51E-04 10 122 503 (73) Cytokine-cytokine interaction

doi:10.1371/journal.pcbi.1001054.t003

Transcription Modules
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Out of the 72 M1 modules the average gene expression of which

is altered in WBS fibroblasts, seven are also changed in the

lymphoblastoid cell lines; four modules are altered in the same

direction, three modules are opposite in the two studies. Moreover,

19 of the 23 dysregulated M2 modules are also perturbed in the

lymphoblastoid samples, 18 in the same direction (Table S11),

suggesting that the pathways identified in the fibroblasts are

disrupted in multiple tissues. Furthermore, we can surmise that

modules consistently regulated in both cell types may represent

central pathways influenced by the WBS deletion, while the

remaining modules may reflect cell-type specific alterations, which

in turn might be important for tissue-specific phenotypes.

Discussion

We have profiled the transcriptomes of skin fibroblasts from eight

WBS patients and nine sex- and age-matched control individuals,

and identified a number of transcription modules dysregulated in

WBS patient cells. One caveat of this study lies in the use of isolated

cells in vitro that may not reflect all the different tissue-dependent

transcriptional changes in vivo that give rise to the complex WBS

phenotypes, such as cognitive features or connective tissue

anomalies. Moreover, the samples we consider only allow us to

observe the downstream global effects of the primary cause, as

opposed to the immediate effect on early development. However,

these cell types are the most readily available samples, and the

replication of a subset of the fibroblast dysregulations in

lymphoblastoids supports the hypothesis that at least some of these

changes appear in multiple cell types as a direct result of the 7q11.23

deletion and thus provide clues about pathways that may generally

be perturbed in WBS. Our results reveal a transcriptional network

which may contribute to the pathophysiology of WBS. We propose

that many of the WBS phenotypes arise due to the dysregulation of

a few key gene products, which influence (possibly in concert)

‘‘regulatory subnetworks’’, leading to specific traits. Also, distur-

bances in a process due to one group of genes may trigger

compensatory mechanisms in another set, either directly in the cell,

or indirectly through intercellular or more systemic effects.

Figure 4. The network of the most frequent genes in the modules, as a subset of the STRING protein interaction database. Only
genes that appear at least ten times in the dysregulated modules are considered. (A) Most frequent module genes that have at least one connection
in the STRING database. Edges with evidence score higher than 0.3 are shown; their colors indicate different kinds of interaction evidence (key
bottom right). (B) Most frequent module genes form a network that is denser than a random subnetwork of the same size in STRING. We generated
10,000 random subnetworks and calculated the sum of the evidence for all edges. Only five out of all random subnetworks show a higher total
evidence value than the most frequent module genes indicated by a red asterisk (sum of total evidence = 69,033). (C) Distribution of the number of
connections (node degree) per protein in the complete STRING network (black, filled circles), and the subnetwork of most frequent module genes
(red, open squares). The subnetwork has significantly less low-degree nodes and more high-degree nodes (Wilcoxon-test P = 1.61261025). (D)
Distribution of PageRank centrality scores in the complete STRING network and the subnetwork of most frequent module genes. The subnetwork has
fewer non-central nodes and more central nodes (Wilcoxon-test P = 2.62861025). (E) We fitted hierarchical models [60] to the subnetwork of the most
frequent module genes, and also to 1,000 randomized networks. The network of frequent module genes (red asterisk) shows no hierarchical structure
compared to the randomized networks.
doi:10.1371/journal.pcbi.1001054.g004
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Both our single-gene and modular analyses provide a resource

to enable a deeper exploration of the pathophysiology of WBS,

which may lead to the discovery of potential novel functional

interactions between their products. Our study further exemplifies

how integration of transcription data unrelated to the studied

condition can be used to complement annotation-dependent

analyses. Indeed, the modular approach reduces the complexity of

the expression data, allowing a more targeted assignment of

functional categories to specific sets of co-regulated genes.

Consistently, Turcan et al. recently used a similar methodology

to identify groups of genes coherently regulated during cochlear

development, which allowed them to pinpoint candidate genes for

further study [67]. It is important to underline that further

investigations and more data are needed to distinguish between

biologically relevant associations of differentially regulated mod-

ules and spurious co-expression signals. Nevertheless, we think that

the information generated by our study (and made available at

http://www.unil.ch/cbg/ISA/Fibroblasts) provides a testable set

of candidate pathways dysregulated in WBS and possibly involved

in mediating the wide range of associated phenotypes.

Materials and Methods

Ethics statement
We have obtained the approval of the ethics committees of the

University of Lausanne (reference number Protocol 123/06) and

of the ‘‘Hospices Civils de Lyon’’ for this project. All patients

provided written informed consent for the collection of samples

and subsequent analysis.

Sample population
Skin fibroblasts of 8 classical WBS and 9 control Caucasian

female individuals aged between 3 and 8 years (see Table S1 for

details) and similar numbers of passages were obtained from the

cell culture collections of the Centre de Biotechnologie Cellulaire,

CBC Biotec, CRB-Hospices Civils de Lyon, Lyon, France. The

respective presence and absence, as well as the extent of the

deletion were ascertained by SybrGreen real-time quantitative

PCR as previously described [26].

Cell culture, RNA extraction and microarrays
Human skin fibroblasts were grown in HAM F-10, supplement-

ed with 10% fetal bovine serum and 1% antibiotics (all Invitrogen).

Total RNA was prepared using TriZOL Reagent (Invitrogen) and

RNeasy Mini Columns (Qiagen) according to the manufacturers’

instructions. The quality of all RNAs was assessed using an Agilent

2100 Bioanalyzer (Agilent Technologies) and used as a template for

complementary DNA (cDNA) synthesis and biotinylated antisense

cRNA preparation. The synthesis of cDNA and cRNA, labeling,

hybridization and scanning of the samples were performed as

described by Affymetrix (www.affymetrix.com). The cRNA

samples were hybridized to GeneChip Human Genome U133

Plus 2.0 arrays (Affymetrix). The chips were washed, stained and

scanned, according to the manufacturer’s protocol.

Accession number
The data of the 17 expression arrays produced for this report

have been deposited in NCBIs Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/) and are accessible through

GEO Series accession number GSE16715.

Single gene expression data analysis
Expression data analyses were performed using GNU R (version

2.9.2) [68] and the Bioconductor package (version 2.4) [69]. All R

package versions are listed in Table S12. Low-level analysis and

normalization were done using GCRMA. For differential

expression analysis we filtered the probesets and kept only those

present in at least six samples, according to the Affymetrix

Present/Absent calls calculated with the affy R package. To

reduce noise, we also removed probesets that do not map to an

Entrez gene. 18,429 probesets, mapping to 10,570 genes were

tested for differential expression, using the moderated t-statistics,

as implemented in the limma R package. In addition to the

significant p-value, we required a minimum of 50% change for

declaring a gene differentially expressed. 1,114 probesets,

corresponding to 868 genes were found differentially expressed

at the 5% FDR level, 367 probesets, mapping to 306 genes at the

1% FDR level. The FDR was controlled using the Benjamini-

Hochberg correction [51]. Gene set enrichment analysis of the

WBS hemizygous genes was performed by comparing the mean t-

statistics of these genes, for the WBS patients and the control

individuals; the reference distribution for this was established by

permuting the phenotype labels 10,000 times [70]. Gene Ontology

and KEGG Pathway enrichment was calculated via a hypergeo-

metric test, using the eisa and GOstats Bioconductor packages.

The enrichment P-values were corrected using the Benjamini-

Hochberg method for the number of categories tested.

Modular analysis
A transcription module comprises a subset of genes that are co-

expressed in a subset of conditions [56]. The Iterative Signature

Algorithm (ISA) [71] is an unsupervised method to identify such

modules. It starts from many random initial sets of genes (seeds) that

typically converge to a set of potentially overlapping transcription

modules. The ISA assigns a signed score to every gene of the module

and every sample of the module (zero scores imply that the gene or

sample is not included in the module). The further the gene/sample

score is from zero, the stronger the association between the gene/

sample and the rest of the module. Co-expressed genes of a module

have the same sign, whereas opposite signs signal opposite

expression. The scores of the samples are exactly the same as the

weighted averages of the expression of the module genes, the

weights being the scores of the genes. Sample scores can be

extended to the samples that are not included in the module, by

calculating the same weighted average of the module genes for

them. These samples have (in absolute value) lower scores than the

module samples, by definition. The extended sample scores can be

used to test whether the genes of a module are differentially

regulated in some samples. The aim is to identify dysregulated

transcription modules containing genes that are differentially

expressed in the cases compared to the control samples.

Discovering transcription modules in data sets unrelated
to WBS (M1)

In the first ISA run, we used skin fibroblast samples from seven

experiments from public repositories, as well as collaborators of the

AnEUploidy consortium (the latter can be obtained by contacting

the consortium at http://www.aneuploidy.eu/) (Table S4). For

each dataset we downloaded the raw data and normalized them

separately with the GCRMA method. The non-common probesets

were omitted and the normalized expression data were merged; the

data set included 22,277 probesets and 96 samples. To reduce noise

we removed probesets that were called ‘‘Present’’ in less than ten

samples, using the standard Affymetrix Present/Absent calls. We

also removed probesets that were not associated with any Entrez

gene. In order to avoid a bias towards genes with multiple probesets

we only kept the single probeset with the highest variance for those

genes. The final dataset included 9,329 probesets.

Transcription Modules
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We applied the ComBat batch correction algorithm [72] to

minimize non-biological variation; we used the ‘‘disease status’’ of

the samples as an additional covariate for the correction (column

‘‘disease status’’ in Table S4). The additional covariate ensures

that we do not remove the signal associated with the different

syndromes in the data sets, only the systematic experimental

variation. We ran ISA as implemented in the eisa R package [73],

with gene thresholds 2, 2.2, …, 4 and sample thresholds 1, 1.2, …,

2. The ISA identified 1,094 transcription modules.

For the identification of the dysregulated modules, we used the

GCRMA normalized WBS data set. Probesets that were called

‘‘Present’’ in less than six samples were omitted from the analysis.

We only considered the 7,447 probesets that were included both in

this filtered WBS data set and the modular study.

732 modules that contained at least ten genes were tested for

dysregulation. For the dysregulation test we standardized the WBS

expression data for every gene separately. Standardization is an

important step, since the test for dysregulation involves the average

expression of the module genes. Specifically, to test a module, we

calculated the weighted average expression of its genes, separately

for each WBS sample. The weights were defined by the gene

scores of the module. Then a t-test with unequal variance was

performed for the WBS cases against controls. The t-test P-values

were corrected with the Benjamini-Hochberg method. At the 5%

FDR level 72 dysregulated modules were found.

To check the significance of finding 72 dysregulated modules,

we permuted the WBS case/control labels 1,000 times and tested

for dysregulation as before. These permutations serve as a null-

model to estimate how many dysregulated modules could have

resulted by chance. Only 14 permutations yielded at least one

dysregulated module. Within these 14 cases, the mean number of

dysregulated modules was 12.1, the median 1.5. The highest

number of dysregulated modules found for a permutation was 58.

We note that the three permutations that yielded multiple (false

positive) WBS dysregulated modules had almost correct WBS

case/control labels: only one pair was swapped.

Hypergeometric tests were used to calculate the functional

enrichment of the 72 dysregulated modules, with Benjamini-

Hochberg correction for the number of categories and the number

of modules tested. The significance threshold was chosen as 0.05.

Including the WBS data in the discovery of modules
The second modular study (M2) was performed almost

identically, but this time the WBS samples were also included in

the data set. The ISA was run on 9,460 probesets and 113

samples, using gene thresholds 2, 2.2, …, 4 and sample thresholds

1, 1.2, …, 2. The ISA found 1,035 modules, of which 290 contain

at least ten genes and one sample from our study. These were

tested for dysregulation using t-tests for the sample scores of the

WBS cases vs. controls, identifying 23 modules that are

differentially expressed. As an additional validation, we permu-

tated the labels of the WBS samples 1,000 times; no permutation

showed any dysregulated modules. Enrichment calculation for the

dysregulated modules was done the same way as for the M1

modules, using Benjamini-Hochberg multiple testing correction

for the number of categories and the number of modules tested,

and a significance threshold of 0.05.

The network of genes that frequently appear in
dysregulated modules

We used version 8.3 of the STRING database to interrogate the

genes that frequently appear in the dysregulated modules. All

network measures were calculated using the igraph R package

[74]. We fitted hierarchical models [60] to the subnetwork of

frequent module genes, and also to 1,000 randomized networks.

For fitting the hierarchical models, we only considered the largest

connected component of the network, consisting of 90 proteins

and 203 connections among them. The randomized networks had

the same degree sequence as the original network, and they were

produced using Monte-Carlo methods [75].

Enrichment calculations for the extracellular region
genes

The enrichment calculations for the extracellular region genes

(Figure S1) were done using hypergeometric tests and the eisa and

GOstats R packages. Only the second level terms in the ‘‘Biological

process’’ and ‘‘Molecular function’’ ontologies were tested.

Comparison of WBS lymphoblastoid cell lines and
primary skin fibroblasts, transformed and non-
transformed cells, respectively

To identify genes commonly dysregulated in cells from WBS

patients identified in this study and in [66], which uses two-color

arrays (GEO accession number GSE18188), we tested the

lymphoblastoid samples for differentially expressed genes. We used

the moderated t-statistics and a fold-change threshold of 1.5 and

applied the Benjamini-Hochberg multiple testing correction

method to identify 574 differentially expressed genes. Forty of these

are common with the 868 differentially expressed genes we found in

the fibroblast samples. To test the dysregulation of the fibroblast

dysregulated modules in the lymphoblastoid samples, we calculated

the weighted mean log fold change of the module genes for each

lymphoblastoid array, where the gene scores of the modules were

used as weights. Then we used a t-test to check whether the mean

log fold change is significantly above or below zero, followed by the

Benjamini-Hochberg multiple testing correction method.

Online supporting material
The modules and related details are available at http://www.

unil.ch/cbg/ISA/Fibroblasts. These web pages contain the

summary of all M1 and M2 transcription modules and their

GO/KEGG enrichment statistics. An interactive version of

Figure 3 is also included; this allows the exploration and

annotation of the dysregulated modules, using various criteria. It

is also possible to query the modules that contain a specific gene,

or a list of genes. See the help page of the supplementary material

for details. Additionally, the modules can be visualized interac-

tively with the online version of ExpressionView [76].

Annotation data and databases
The expression array annotation data were taken from the

hgu133a2.db (version 2.2.11) and hgu133plus2.db (version 2.2.11)

Bioconductor packages. The GO.db package (version 2.2.11) was

used for the Gene Ontology and the KEGG.db package (version

2.2.11) for the KEGG pathway data.

Software packages are listed in Table S12.

Supporting Information

Figure S1 Over- and under-representation of GO biological

process and molecular function terms among ‘‘extracellular

compartment’’ annotated genes of the DEG list and each set of

dysregulated modules. Dark coloured bars denote significant

enrichment/depletion. P-values (p) and odds ratios (o) are

indicated. Terms marked in boldface display consistent direction

of change in all sets and with significance in at least one set.

Found at: doi:10.1371/journal.pcbi.1001054.s001 (2.61 MB EPS)
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Figure S2 (A) Relationship between the number of times genes

appear in transcription modules (M1, M2, or their union) and

their number of connections in the STRING database. First row:

genes were binned according to their frequency in modules, and

the mean STRING degree of each bin is plotted. The line is the fit

from the linear regression of STRING degree on frequency, the

slope is always significant with a p-value less than 1029. Second

row: the mean (black) and median (blue) degree is plotted for the

genes that appear at least a given number of times in the modules.

In other words, the first point is the mean/median degree of all

genes, the second data point is the mean/median degree of all

genes that appear at least once in a module, etc. There is a clear

correlation between the frequency in the modules and STRING

degree. (B) Relationship between the number of times genes

appear in modules and their PageRank centrality in the STRING

network. The plots are essentially the same as in (A), but the

PageRank centrality is plotted instead of degree. There is a clear

correlation between the frequency in the modules and the

centrality of the genes in the STRING network.

Found at: doi:10.1371/journal.pcbi.1001054.s002 (1.14 MB EPS)

Table S1 Cell line information.

Found at: doi:10.1371/journal.pcbi.1001054.s003 (0.02 MB XLS)

Table S2 Differentially expressed genes in WBS samples

compared to controls.

Found at: doi:10.1371/journal.pcbi.1001054.s004 (0.23 MB XLS)

Table S3 Differential expression of the WBS hemizygous and

flanking genes.

Found at: doi:10.1371/journal.pcbi.1001054.s005 (0.02 MB XLS)

Table S4 Datasets used for modular analysis.

Found at: doi:10.1371/journal.pcbi.1001054.s006 (0.02 MB XLS)

Table S5 Dysregulated modules, M1.

Found at: doi:10.1371/journal.pcbi.1001054.s007 (0.04 MB XLS)

Table S6 GO/KEGG term enrichment in dysregulated M1

modules.

Found at: doi:10.1371/journal.pcbi.1001054.s008 (0.07 MB XLS)

Table S7 Dysregulated modules, M2.

Found at: doi:10.1371/journal.pcbi.1001054.s009 (0.03 MB XLS)

Table S8 GO/KEGG term enrichment in dysregulated M2

modules.

Found at: doi:10.1371/journal.pcbi.1001054.s010 (0.05 MB XLS)

Table S9 Most frequently occurring genes among dysregulated

M1 and M2 modules.

Found at: doi:10.1371/journal.pcbi.1001054.s011 (0.08 MB XLS)

Table S10 GO/KEGG term enrichment among genes common

to both sets of dysregulated modules.

Found at: doi:10.1371/journal.pcbi.1001054.s012 (0.04 MB XLS)

Table S11 Dysregulated single genes and modules common to

fibroblasts and lymphoblastoid cell lines.

Found at: doi:10.1371/journal.pcbi.1001054.s013 (0.03 MB XLS)

Table S12 Software packages used for the analysis.

Found at: doi:10.1371/journal.pcbi.1001054.s014 (0.03 MB XLS)
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