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Abstract

Dendrite morphology, a neuron’s anatomical fingerprint, is a neuroscientist’s asset in unveiling organizational principles in
the brain. However, the genetic program encoding the morphological identity of a single dendrite remains a mystery. In
order to obtain a formal understanding of dendritic branching, we studied distributions of morphological parameters in a
group of four individually identifiable neurons of the fly visual system. We found that parameters relating to the branching
topology were similar throughout all cells. Only parameters relating to the area covered by the dendrite were cell type
specific. With these areas, artificial dendrites were grown based on optimization principles minimizing the amount of wiring
and maximizing synaptic democracy. Although the same branching rule was used for all cells, this yielded dendritic
structures virtually indistinguishable from their real counterparts. From these principles we derived a fully-automated
model-based neuron reconstruction procedure validating the artificial branching rule. In conclusion, we suggest that the
genetic program implementing neuronal branching could be constant in all cells whereas the one responsible for the
dendrite spanning field should be cell specific.
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Introduction

Dendrite morphology is the most prominent feature of nerve

cells, typically used by neuroanatomists to discriminate and classify

them [1]. These tree-like ramifications represent the input region

of the neurons and fulfil the role of a complex computational unit

[2–5]. Typically, dendritic arborizations are analyzed in a

descriptive way, e.g. by enumerating local and global branching

parameters [6–8]. Very little is known about the general rule

leading to their distinct appearance partly due to the wide variety

among different neurons. In insects, same neurons across

individuals are rather invariant in their anatomy and constant in

their function. Lobula plate tangential cells (LPTCs) of the fly

visual system [9] are uniquely identifiable and are therefore ideal

subjects for investigating the basic rule constraining dendrite

formation. They integrate local motion information over an array

of retinotopically arranged columnar elements [10]. Accordingly,

their planar dendritic trees cover the area corresponding to their

distinct primary receptive fields. In this paper we isolate potential

fundamental principles which may lead to the morphological

identity of individual LPTCs.

Results

We studied inter-individual constancy and variability in four

members of the LPTC group: the equatorial and the northern cell

of the horizontal system (HSE and HSN, Figure 1A), and two

members of the vertical system (VS2 and VS4, Figure 1B), each of

them represented by at least ten individuals from different flies.

Two-photon image stacks were acquired from cells filled with

fluorescent dye in the living blowfly, Calliphora vicina. Subsequently,

the anatomy of each neuron was manually traced and described by

a set of connected cylinders (see detailed explanation on the

reconstruction procedures in the Methods section). The idea was,

in concordance with previous publications [6–8], to use statistical

distributions over morphological parameters thereby isolating key

features of dendritic branching. Next to classical branching

parameters on the ‘‘topological points’’ (branching and termina-

tion points in the tree) such as branching order and path lengths to

the root, we parameterized the area covered by the dendritic tree,

the so-called ‘‘dendrite spanning field’’ [11]. We defined spanning

field by drawing a contour around the dendrite at a distance of

25 mm after orienting the reconstructed neuron along its axonal

axis (Figure 1C and 1D).

Regarding branching-specific statistics (Figure 1E–K), qualita-

tive distinction was possible only by detailed examination of

distributions of topological point density, path length to the root

and branch order. Ratios between direct and path distances of the

root (Figure 1F) followed a narrow distribution close to 1 in all

cases for all topological points. Path length histograms (Figure 1E)

therefore corresponded to the Sholl intersection diagram

(Figure 1L), a measure typically used to describe branching

topology. On the other hand, parameters relating to the spanning

field plainly reflected cell type specific differences: All four cells

could be readily discriminated by eye by their relative position and

the shape of their dendrite spanning fields (Figure 1C and 1D,

parameters see Figure 1M–R). Those differences were in

conformity with the respective primary receptive field locations

in the retinotopic arrangement. HS and VS spanning fields were

easily distinguished by either their convexity index (Figure 1O) or

the ratio of width against height (Figure 1P). Finer differentiation
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of HSE against HSN and VS2 against VS4 was provided directly

by their relative location to the axonal axis (Figure 1N), and

accordingly by their centre of mass (Figure 1Q and 1R). We

investigated the descriptive power of spanning field parameters

versus branching parameters in a quantitative way (Figure 2).

Spanning field related parameters readily grouped individual cells

into their respective cell types as shown simply by plotting

convexity index values against the contextual relative location off

the axonal axis (Figure 2A). On the other hand, even a highly-

dimensional clustering analysis on the basis of parameterized

shape fits of the distributions in Figure 1E–K (see Figure S2) or

subsets of these did not allow the separation of the real cells into

their respective groups. Best clustering was obtained using path

length, density and branching order distributions which separated

HS from VS cells but not the members of the two families

(Figure 2B). In accordance to these findings we postulated that if

the spanning area best determines neuronal appearance, the

particularities in branching parameter distributions might be

merely a consequence of the neuronal target zone.

In order to identify the critical impact of spanning field shape on

branching parameters, artificial dendrites were constructed

covering the same region. Inside the contours of the original cells,

random points were distributed following their respective density

map. An iterative greedy algorithm was launched starting at the

coordinates of the real dendrite root. At each step, a connection

was added from the existing tree to one of the unconnected

random points according to a cost function which kept house of

both total amount of wiring and total path length from the root to

each point [12]. The number of random points was set to match

the resulting number of topological points with the original

dendrites. Improved appearance and overall path distance to the

root was achieved by a subsequent smoothing step along primary

branches (see Methods section). This resulted in artificial dendrites

confined to the same area as the corresponding in-vivo dendrite

reconstructions which were virtually indistinguishable from their

real counterpart (Figure 3A; see Figure S3 for a full overview and

Video S1 depicting the constructing process). Interestingly,

artificial dendrites also yielded quantitatively similar parameter

distributions in all cases (Figure 3B, compare with Figure 1E–L).

The exact same branching rule can therefore account for all

individual morphologies after constraining the spanning field

shape alone.

Consequently, one could consider that original raw fluorescent

images containing a labelled neuron would correspond to a

distribution of interconnected points within a spanning field.

Then, if our assumptions about the branching rule are correct, one

should be able to apply it to obtain the branching model directly

from the image material. We therefore applied the same greedy

algorithm describing our branching rule for artificial dendrites on

structural points extracted from the raw data via image

skeletonization. The results of such an attempt are shown at the

examples of an HSE dendrite (Figure 4A and 4B) and a full VS2

cell (Figure 4C and 4D). Faithful cylinder models of almost all

branches could be retrieved in a fully automatic way from the

image material after simply assigning manually a starting location

at the dendrite root (see detailed description of the procedure in

the Methods section).

Discussion

In summary, we claim that all cells analysed here follow the

same branching rule, and that their morphological identifier is the

shape of their dendrite spanning fields. This claim is supported by

the presented branching statistics, the previously proposed

branching rule [12] and its reapplication in a heuristic recon-

struction algorithm. Early approaches to describing and recon-

structing dendrite branching in general had failed to take into

account a major functional constraint governing dendrites: their

need to reach specific input locations. More recent attempts to

constructing dendrite morphology in relation to their function and

the location of their inputs had led to dendrite structures of low

complexity and accuracy in spite of high computational costs

[13,14]. However, circuitry and connectivity as well as simple wire

packing issues are known to be determinants of dendrite

morphology [15,16]. In addition, the specific organization and

architecture of many parts of the brain helps to reduce wiring costs

for the circuitry [17,18]. It is therefore not surprising that such

constraints can be used to describe dendrite branching in LPTCs

and other cells. Other planar space-filling cells, the cerebellar

Purkinje cells, certainly follow a similar rule [19]. However, the

suggested approach is not restricted to planar dendrites and future

analysis will cover all different neuron arborizations to clarify the

ubiquity of the suggested branching rule. At the example of

LPTCs, the usefulness of the approach presented here can be put

forward: LPTC electrophysiology was studied in great depth e.g.

[20] and precise models, so-called compartmental models,

including the detailed anatomical structure were designed and

are continuously being improved [21–24]. Understanding LPTC

branching, these constraints can be directly put in relation with the

optic flow processing occurring within their circuitry [20,23].

Assuming generality of principles, even the function of cells, which

have not yet been reconstructed, can be inferred based on the

contours of their dendrites alone. Moreover, the fly is the model

animal in which the molecular components that determine neural

growth are currently being unveiled, mainly through genetic tools

[25,26]. Our framework therefore allows a quantitative study of

the impact of gene modifications far beyond basic statistics. In

particular, molecular principles guiding neuronal self-avoidance

during development [27] and others can now be put in relation

with the branching constraints presented here. Eventually,

studying molecular factors shaping dendritic spanning fields

separately from a specific branching rule within should elucidate

Author Summary

Neural computation has been shown to be heavily
dependent not only on the connectivity of single neurons
but also on their specific dendritic shape—often used as a
key feature for their classification. Still, very little is known
about the constraints determining a neuron’s morpholog-
ical identity. In particular, one would like to understand
what cells with the same or similar function share
anatomically, what renders them different from others,
and whether one can formalize this difference objectively.
A large number of approaches have been proposed, trying
to put dendritic morphology in a parametric frame. A
central problem lies in the wide variety and variability of
dendritic branching and function even within one narrow
cell class. We addressed this problem by investigating
functionally and anatomically highly conserved neurons in
the fly brain, where each neuron can easily be individually
identified in different animals. Our analysis shows that the
pattern of dendritic branching is not unique in any
particular cell, only the features of the area that the
dendrites cover allow a clear classification. This leads to the
conclusion that all fly dendrites share the same growth
program but a neuron’s dendritic field shape, its ‘‘anatom-
ical receptive field’’, is key to its specific identity.

The Morphological Identity of Insect Dendrites
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a fundamental organizational element in the brain, i.e. the

neuron’s branching structure.

Methods

Reconstructions
Female blowflies (C. vicina) were dissected as described in [28].

In each subject either one or two different HS or VS cells were

filled with a fluorescent dye (Alexa 488). Flies were viewed under a

custom built two-photon microscope [29], orienting the planar

cells as orthogonal as possible in respect to the laser beam to

minimize the amount of images in the Z-direction. In order to

capture the entire expansion of the cells, 6 to 15 adjacent stacks

(210 mm6210 mm area in XY x ,30 in 2 mm Z-steps) were taken

from different XYZ positions with an overlap of about 10 percent

(Figure S1A). The image stacks were then transferred to Matlab

(Mathworks, Natick, MA) and all further analysis was performed

there in custom written software. Manual fine tuning of the

original coordinates from the individual stacks was usually

necessary to obtain a precise alignment in three dimensions.

Maps of maximum intensity and corresponding depth were

computed along the Z-axis. This reduction from 3D-data to two

2D images was sensible as there were no or very few 3D crossings

of branches and all cells were planar. Based on these images

cylinder models of the branching structure were obtained in a

semi-automated way: interactive software allowed switched

viewing of either Z-projection or an individual slice of an image

stack (Figure S1B). The widths of 2D rectangles connecting the

end points were fitted by gauss functions to suggest a diameter for

the cylinders (Figure S1D). Z-values were attributed to each

cylinder directly from the depth-map according to their 2D

location. Quick tracing results (30 min) were achievable working

Figure 1. Dendrite morphological statistics. (A,B), Sketches showing HSE and HSN (A) and VS2 and VS4 (B) in the context of the lobula plate
(gray). (C,D), Superimposed full anatomies of all individual cells sorted according to their respective cell type. Cells were aligned along their axonal
axis (red lines). To the right, the corresponding dendrite spanning fields are outlined. (E–K) Statistics specifically related to dendrite branching.
Statistics are represented as superimposed distribution histograms, filled squares show mean values and error bars correspond to standard deviation
between individual dendrites: (E) path length to root values for all topological points; (F) ratios between direct and path distances from each
topological point to the dendrite root; (G) topological point branching order values, a measure for the topological distance from the dendrite root;
(H) length values of branch pieces between topological points; (I) branching angle values at all branching points between the two direct daughter
branches within the plane in which they lay; (K) surface area values assigned to each topological point after Voronoi segmentation indicating
topological point density and distribution homogeneity. (L) Sholl intersection plots: number of intersections of each tree with circles with increasing
diameter. (M–R) Statistics describing the dendrite spanning field: (M) total surface value of spanning field; (N) percentage of the spanning field below
the axonal axis; (O) convexity index of the spanning field; (P) ratio of width against height of the spanning field; (Q and R) horizontal and vertical
coordinates of centre of mass of the dendrite spanning field.
doi:10.1371/journal.pcbi.1000251.g001
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with maximum Z-projections alone, although slight movements of

the living fly compromised the accuracy of the projection image

(Figure S1C). In order to achieve a higher accuracy, some manual

corrections based on individual slices were necessary in all

reconstruction steps. Taking advantage of the planar cell

morphology allowed quicker reconstructions compared to other

approaches [30]: detailed cell models with about 700 to 1600

compartments were obtained typically within around 2 hours.

Jumps in the Z-axis were smoothed by use of linear interpolation.

Internally and externally, the models were stored in the SWC

format [31]. The reconstructions can be downloaded at: (http://

www.neuro.mpg.de/english/rd/scn/research/ModelFly_Project/

downloads/)

Dendrite Statistics
For simplification, the resulting generic directed graphs were

transformed into strict binary trees by substituting multifurcations

with several bifurcations after minimally shifting the branches on

their parent cylinder. Region indices [32] (soma (1), axon (2) or

dendrite (3)) were manually attributed written to the SWC file.

The somata in all cells consisted of a clearly separated bag-like

structure that branched from the axon or dendrite. The last

branch point (very short branches were ignored) before the soma

was chosen to be the end of the dendrite and the beginning of the

axon. The dendrite root was set to the primary branching point.

Axonal parameters showed no trend to classify the cells (data not

shown). There was no obvious correlation between axonal and

dendrite length measures. Hence, size normalization of the cells

was discarded. Dendrite flattening was performed as a morpho-

metric transform [33] (Figure S1E). A distance isoline to any point

on the dendrite was drawn at a 25 mm threshold to determine the

dendrite spanning fields (Figure S1F). This corresponds to

performing a morphological dilation on the same points with a

25 mm radius disc. For most statistics, only the branching and

termination points ( = topological points) were selected as the

carrier points for the topological complexity. A Voronoi

segmentation was performed on these points in order to express

space-filling density distribution (Figure S1G, used in Figures 1K

and 3B). The density value therefore describes the area in vicinity

of a specific branching or termination point. All LPTC

reconstructions were rotated in order for both the dendrite root

and the furthest axon terminal tip to lie on the horizontal line

building the axonal axis. In order to obtain a measure for the

convexity of dendrites, the convex hull was drawn around all

dendrite nodes. The surface ratio between the dendrite spanning

field (see above) and this convex hull was chosen as a characteristic

spanning field parameter, the convexity index (Figure 1O). Centre

of mass was calculated by taking the mean horizontal and vertical

values of the line surrounding the dendrite spanning field

(Figure 1Q and 1R).

Cluster Analysis
Clustering (Figure 2) was done on the three parameters which

enabled a by eye discrimination of VS and HS cells in Figure 1:

the branching order, the path length and the density. Their

histograms were collapsed to three values (mean, standard

deviation and shape parameter) by fitting them to a generalized

extreme value distribution (Figure S2). After normalizing to weigh

parameters equally, Euclidean distances between the different

dendrites in the resulting 9 dimensional parameter space were

clustered hierarchically using the single linkage algorithm and

displayed as dendrograms. As an alternative, the principal

components of the matrix containing the normalized scalar

parameters for each tree were obtained and the trees observed

in the corresponding reduced dimensionality plot: no better

grouping was possible with this method (data not shown).

Figure 2. Cluster analysis. (A) Dendrite spanning fields are readily
separable into the individual cell types at the example here of two
parameters only: the convexity and the relative location to the axonal
axis (B) Cluster analysis using three parameters of a generalized extreme
value distribution fits for branching properties from Figure 1E, 1G, and
1K.
doi:10.1371/journal.pcbi.1000251.g002
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Artificial Dendrites
Boundary-corrected density maps of dendrite topological points

were derived from real cell dendrites (Figure S1H–L). Random

points were distributed according to the obtained density maps

(Figure S1M). An extended greedy minimum spanning tree

algorithm [12] was applied on these points starting at the root

point of the original dendrite (Figure S1N). The number of

random points was increased until the resulting number of

topological points in the artificial dendrites matched the original

dendrites. XY-coordinates of points on longer branches were

smoothed by Spline interpolation to result in realistic dendrites

(Figure S1O). Similar conclusions would arise if artificial dendrites

were constructed on random points distributed entirely homoge-

neously (data not shown).

Automatic Reconstruction
3D image stacks from one HSE dendrite and a full VS2 cell

were submitted to 2D anisotropic filtering, morphological closure

and subsequent brightness level thresholding. After 3D skeletoni-

zation and sparsening the carrier points, the remaining points were

submitted to the same greedy algorithm (started at a user defined

dendrite root location) as used for obtaining artificial dendrites

Quadratic diameter decay was mapped on the resulting trees [12]

(see Figure S1P).

Supporting Information

Figure S1 Sketches describing the manual cell reconstruction

process and the subsequent handling of dendrite morphology. (A)

Assembled maximum Z-Projection of an HSN with ten overlap-

ping image stacks. (B) Example of a reconstructed sub-tree of an

HSN cell superimposed on a single slice from one image stack. (C)

Compromising effects of the maximum Z-Projection (right)

compared to the original slice (left, arrows show loss of branches).

(D) Examples of automatic diameter approximations. Normalized

positions 0.25, 0.5 and 0.75 on the midline and 40 half pixels in

orthogonal direction were used to construct a sampling grid that

covers a branch’s thickness (first panel). The average over the

resulting sampling matrix was convolved with the first derivative of

a Gaussian distribution (little box) to emphasize brightness

changes. The diameter was obtained by the distance from the

centre of the maximum plateau in the mean signal to the null in

the derivative of the convolved signal. (E) Planar dendrites were

mapped entirely to two dimensional space (black original, red

flattened dendrite). (F) The dendrite spanning fields were

determined by drawing a region at 25 mm away from any point

on the dendrite. (G) Topological point density distribution was

obtained by Voronoi segmentation (green borders) with a dendrite

spanning field boundary. Shaded gray scale indicates surface area

of Voronoi pieces. Overlaid dendrite in red. (H–P) Steps in the

Figure 3. Artificial dendrites grown in real dendrite spanning fields. (A) Artificial dendrites: two examples of each cell type. Upper row: real
dendrites. Lower row, marked by preceding ‘‘m’’: artificial dendrites corresponding to each of the spanning field. (B) Artificial dendrite parameter
distributions as in Figure 1E–K showing the similarity to their real counterparts.
doi:10.1371/journal.pcbi.1000251.g003
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creation of artificial dendrites: (H) dendrite topological points were

morphologically closed (dilation followed by erosion) with a 25 mm

radius disc and the resulting binary image smoothened with a

Gaussian filter of 25 mm variance; (I) This was then cut out by the

boundaries of the closed image, representing for each location in

the dendrite spanning field the error made when smoothly

averaging the density; (K) density estimation of topological points

by Gaussian filtering with a 25 mm variance. (L) the density map in

(K) was normalized by the estimation error obtained in (I); (M)

random points (green) were distributed according to the corrected

density distribution with sharp boundaries; (N) preliminary

artificial dendrite following the iterative greedy algorithm

presented previously [12] on green points in (M); (O) Artificial

dendrite after smoothing along heavier branches; (P) quadratic

diameter decay was mapped on the resulting dendritic structure

according to an optimization of synaptic democracy [12]. The

resulting artificial dendrite shows similarity with the original tree in

(F). In (H–L) the flattened original dendrite from (F) was overlaid

on top of the respective gray-scale maps.

Found at: doi:10.1371/journal.pcbi.1000251.s001 (4.55 MB TIF)

Figure S2 Supplementary information on cluster analysis. (A)

Generalized extreme value fits for the distributions shown in

Figure 1E–K. This approach allowed obtaining three parameters

for each distribution. These were used for the cluster analysis in

Figure 2B and here. (B) Full cluster analysis for all models

presented in the article. The method applied corresponds to

Figure 2B of the article. Dendrites of individual cells were tagged

by index numbers. Additionally, artificial dendrites from Figure 3

marked with a preceding ‘‘m’’ and lighter colours were included.

Artificial dendrites mingled with their corresponding real coun-

terparts indicating that they were similar to real cells in respect to

their branching rule. Automatically reconstructed dendrites from

Figure 4 were included marked by a preceding ‘‘--------r’’. (C)

Spanning field parameters as in Figure 2A but including the

automatically reconstructed VS2 and HSN cells marked by a star.

Line connects the automatically reconstructed dendrites with the

corresponding manual reconstructions.

Found at: doi:10.1371/journal.pcbi.1000251.s002 (1.20 MB TIF)

Figure S3 Overview of all 45 reconstructed LPTC dendrites and

their artificial correlates. (A) Real manual dendrite reconstruc-

tions. (B) All constructed artificial LPTC dendrites. The model

dendrites were grown in the spanning fields displayed in (A) in the

same order. Diameter tapering was mapped here onto the

branching structures for visual aesthetic purposes [12]. The

artificial dendrites are hard to distinguish from their biological

counterparts. (C, D) Overview of all dendrograms: comparison

between reconstructed and artificial dendrites same colours as

used in the main article. Dendrograms were sorted to put heavier

trees (with larger sub-trees) on the left side. Although, taken one by

one, dendrograms of artificial dendrites would not perfectly

reproduce the corresponding partner (since they originated from

random distributions of points), a trend of similarity is evident.

This particularly illustrates how the differences in branching

between HS and VS cells relates to the spanning fields of their

dendrites since all artificial dendrites originate from the same

branching rule. This is strongly in favour of a common branching

rule for all cells. And this common rule is most likely very similar

to the one applied to obtain the artificial dendrites.

Found at: doi:10.1371/journal.pcbi.1000251.s003 (2.02 MB TIF)

Video S1 Demonstration of the artificial growth process. Dark

red axonal arborizations are randomly distributed and correspond

to target points. Iteratively, unconnected points are added to the

tree (green). At each time step, for visual purposes, diameter

tapering was mapped onto the tree as in Figure S1P and the

existing tree was smoothed. These two steps were really performed

after the entire growth in the artificial dendrites used in this paper.

Figure 4. Model-based reconstruction of neuronal branching from 3D two-photon image stacks. Depicted at the example of an HSE
dendrite (A,B) and of a VS2 cell (C,D). Left, maximum intensity projections of the image stacks containing fluorescent cells. Right, overlaid
reconstructed branching in red.
doi:10.1371/journal.pcbi.1000251.g004
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The artificial dendrite shown here is based on the HSN cell of

Figure S1.

Found at: doi:10.1371/journal.pcbi.1000251.s004 (2.77 MB AVI)
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1. Stuart G, Spruston N, Häusser M (2008) Dendrites. Oxford, UK: Oxford

University Press.

2. Euler T, Denk W (2001) Dendritic processing. Curr Opin Neurobiol 11:

415–422.

3. Koch C, Segev I (2000) The role of single neurons in information processing.

Nat Neurosci 3 (Suppl): 1171–1177.

4. Yuste R, Tank DW (1996) Dendritic integration in mammalian neurons, a

century after Cajal. Neuron 16: 701–716.

5. Miller JP, Jacobs GA (1984) Relationships between neuronal structure and

function. J Exp Biol 112: 129–145.

6. Hillman DE (1979) Neuronal shape parameters and substructures as a basis of

neuronal form. In: The Neurosciences, Fourth Study Program. Schmitt F, ed.

Cambridge, MA: MIT Press. pp 477–498.

7. van Pelt J, Uylings HB (1999) Natural variability in the geometry of dendritic

branching patterns. In: Modeling in the Neurosciences—From Ionic Channels

to Neural Networks. Poznanski RR, ed. Amsterdam: Harwood Academic

Publishers. pp 79–108.

8. Uylings HB, van PJ (2002) Measures for quantifying dendritic arborizations.

Network 13: 397–414.

9. Hausen K. The neural architecture of the lobula plate of the blowfly, Calliphora

erythrocephala. Unpublished work.

10. Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp

Physiol A 188: 419–437.

11. Hausen K (1982) Motion sensitive interneurons in the optomotor system of the

fly. Biol Cybern 45: 143–156.

12. Cuntz H, Borst A, Segev I (2007) Optimization principles of dendritic structure.

Theor Biol Med Model 4: 21.

13. Stiefel KM, Sejnowski TJ (2007) Mapping function onto neuronal morphology.

J Neurophysiol 98: 513–526.

14. Sugimura K, Shimono K, Uemura T, Mochizuki A (2007) Self-organizing

mechanism for development of space-filling neuronal dendrites. PLoS Comput

Biol 3: e212. doi:10.1371/journal.pcbi.0030212.

15. Chklovskii DB (2004) Synaptic connectivity and neuronal morphology: two sides

of the same coin. Neuron 43: 609–617.

16. Shepherd GM, Stepanyants A, Bureau I, Chklovskii D, Svoboda K (2005)

Geometric and functional organization of cortical circuits. Nat Neurosci 8:

782–790.

17. Klyachko VA, Stevens CF (2003) Connectivity optimization and the positioning

of cortical areas. Proc Natl Acad Sci U S A 100: 7937–7941.

18. Chklovskii DB, Koulakov AA (2004) Maps in the brain: what can we learn from
them? Annu Rev Neurosci 27: 369–392.

19. Wen Q, Chklovskii DB (2008) A cost-benefit analysis of neuronal morphology.

J Neurophysiol 99: 2320–2328.
20. Haag J, Borst A (2002) Dendro-dendritic interactions between motion-sensitive

large-field neurons in the fly. J Neurosci 22: 3227–3233.
21. Borst A, Haag J (1996) The intrinsic electrophysiological characteristics of fly

lobula plate tangential cells: I. Passive membrane properties. J Comput Neurosci

3: 313–336.
22. Haag J, Theunissen F, Borst A (1997) The intrinsic electrophysiological

characteristics of fly lobula plate tangential cells: II. Active membrane properties.
J Comput Neurosci 4: 349–369.

23. Cuntz H, Haag J, Borst A (2003) Neural image processing by dendritic networks.
Proc Natl Acad Sci U S A 100: 11082–11085.

24. Cuntz H, Haag J, Forstner F, Segev I, Borst A (2007) Robust coding of flow-field

parameters by axo-axonal gap junctions between fly visual interneurons. Proc
Natl Acad Sci U S A 104: 10229–10233.

25. Schmucker D (2007) Molecular diversity of Dscam: recognition of molecular
identity in neuronal wiring. Nat Rev Neurosci 8: 915–920.

26. Parrish JZ, Emoto K, Kim MD, Jan YN (2007) Mechanisms that regulate

establishment, maintenance, and remodeling of dendritic fields. Annu Rev
Neurosci 30: 399–423.

27. Hughes ME, Bortnick R, Tsubouchi A, Baumer P, Kondo M, Uemura T,
Schmucker D (2007) Homophilic Dscam interactions control complex dendrite

morphogenesis. Neuron 54: 417–427.

28. Haag J, Borst A (2004) Neural mechanism underlying complex receptive field
properties of motion-sensitive interneurons. Nat Neurosci 7: 628–634.

29. Haag J, Wertz A, Borst A (2007) Integration of lobula plate output signals by
DNOVS1, an identified premotor descending neuron. J Neurosci 27:

1992–2000.
30. Schmitt S, Evers JF, Duch C, Scholz M, Obermayer K (2004) New methods for

the computer-assisted 3-D reconstruction of neurons from confocal image stacks.

Neuroimage 23: 1283–1298.
31. Ascoli GA, Krichmar JL, Scorcioni R, Nasuto SJ, Senft SL (2001) Computer

generation and quantitative morphometric analysis of virtual neurons. Anat
Embryol (Berl) 204: 283–301.

32. Cannon RC, Turner DA, Pyapali GK, Wheal HV (1998) An on-line archive of

reconstructed hippocampal neurons. J Neurosci Methods 84: 49–54.
33. Zador AM, Agmon-Snir H, Segev I (1995) The morphoelectrotonic transform: a

graphical approach to dendritic function. J Neurosci 15: 1669–1682.

The Morphological Identity of Insect Dendrites

PLoS Computational Biology | www.ploscompbiol.org 7 December 2008 | Volume 4 | Issue 12 | e1000251


