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Abstract

A major analytical challenge in computational biology is the detection and description of clusters of specified site types,
such as polymorphic or substituted sites within DNA or protein sequences. Progress has been stymied by a lack of suitable
methods to detect clusters and to estimate the extent of clustering in discrete linear sequences, particularly when there is
no a priori specification of cluster size or cluster count. Here we derive and demonstrate a maximum likelihood method of
hierarchical clustering. Our method incorporates a tripartite divide-and-conquer strategy that models sequence
heterogeneity, delineates clusters, and yields a profile of the level of clustering associated with each site. The clustering
model may be evaluated via model selection using the Akaike Information Criterion, the corrected Akaike Information
Criterion, and the Bayesian Information Criterion. Furthermore, model averaging using weighted model likelihoods may be
applied to incorporate model uncertainty into the profile of heterogeneity across sites. We evaluated our method by
examining its performance on a number of simulated datasets as well as on empirical polymorphism data from diverse
natural alleles of the Drosophila alcohol dehydrogenase gene. Our method yielded greater power for the detection of
clustered sites across a breadth of parameter ranges, and achieved better accuracy and precision of estimation of clusters,
than did the existing empirical cumulative distribution function statistics.
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Introduction

Analysis of discrete linear sequences has played an increasingly

important role in biology. In particular, the detection of

heterogeneous regions among sequences can aid in understanding

the heterogeneous processes that act upon those regions [1,2].

Therefore, determining whether specified types or categories of

sites, such as polymorphic [3] or substituted sites [4] within DNA

or protein sequences, are concentrated in specific regions within

DNA or protein sequences has become a key component of these

analyses [5–8]. For instance, detecting regions that feature

heterogeneity in substitutions may provide valuable information

on the structure and function of DNAs or proteins [9–13].

Several parametric and nonparametric methods have been

proposed and historically applied to sequence data. Parametric

methods include applications of a Fisher’s exact test to tallies of site

types between regions, or of a likelihood ratio test to identify

heterogeneous regions [14,15]. Alternatively, several heuristic

methods may be applied for this clustering [16]. For example,

UPGMA (Unweighted Pair Grouping Method with Arithmetic-

mean) or NN (Nearest Neighbor), are hierarchical methods that at

each step combine the nearest 2 clusters into one new cluster.

Iteration of this step is continued until the number of clusters is

one. One of NN’s variants, K-NN (K-Nearest Neighbor), differs in

its termination condition, stopping the iteration until the K clusters

are identified, where K needs to be defined in advance. Another

heuristic approach, K-means, uses a partitioning algorithm to

break data into K clusters, and also requires the number of clusters

K as a prior knowledge. When regions of a sequence that are

expected to have heterogeneous frequencies of a site type may be

specified in advance or the number of clusters to be identified is

known a priori, these methods have high power to detect clustering

[17]. However, they require a priori assignment of partitions. When

no a priori expectation of cluster size or cluster number may be

specified, extant studies have usually relied on ‘‘sliding window’’

methods [18–23]. For example, Pesole et al. (1992) labeled

invariable site as ‘1’ and variable site as ‘0’, and applied a sliding

window to identify whether ‘1’s are significantly clustered [24].

Pesole et al. calculated a heuristic score based on the presence or

absence of site types within a window that processes serially across

the sequence of interest.

Advantages of sliding window methods include their intuitive

conceptual basis and their striking output: an autocorrelated plot

of the score that may be superimposed upon the sequence,

providing a visual appraisal of the level of clustering at every site.

However, sliding window methods have two related major

disadvantages [25]. First, they generally offer only crude non-

parametric means for statistical significance testing. The autocor-

relation of serial scores severely complicates attempts to develop

more insightful parametric approaches to sliding window signif-

icance testing, making parameter estimation with confidence

intervals either challenging or impossible. Second, the need to

specify a window size presents a user with a procedural ambiguity.

Without a unified statistical framework, there is no strong
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justification for selection of one window size over another. In such

a situation, it may even be tempting to invert the procedure of

statistical inference and select a window size that produces an

autocorrelated score plot consistent with a particular scientific

hypothesis, as opposed to the valid procedure of selecting a

window size by an objective statistical optimality criterion.

Because of these disadvantages of the sliding window methods,

several nonparametric statistical methods that do not assume prior

knowledge have been suggested or implemented to detect clustering

in discrete linear sequences. These methods include runs tests [26–

28] and empirical cumulative distribution function (ECDF) statistics

[29,30]. Runs tests use the ‘‘longest unbroken run’’ between sites of

interest as a test statistic for clustering, where a run is defined as

consecutive length between events [26]. This test statistic provides

very weak power, because it uses very little of the relevant

information about the phenomenon of interest, ignoring all runs

other than the longest. Statistics based on the longest two runs,

longest three runs, or even on a summary of the full distribution of

run lengths have been discussed, but remain weak tests. For

instance, the variance in distance between site types of interest may

be calculated and used as a test statistic for the detection of clusters

of sites, where a high variance is indicative of clustering [29]. This

test statistic incorporates information about the length of all the

runs, but does not capture all of the relevant information: it discards

all information about the relative position of runs of different

lengths. A sequence with all of its shorter runs in one region would

be more clustered than one with short runs distributed evenly.

Currently, the most powerful nonparametric method is the

ECDF. It features the cumulative difference between the observed

and expected proportion of variant sites to identify regions that

differ from other regions in number of substitutions. Under a null

model that assumes no heterogeneous region(s) within sequences,

this difference remains close to zero. Its significant departure from

zero is an indicator for rejecting the null model [29,30]. Although

ECDF has been used to detect heterogeneity in several studies

[31–35], its power can be affected by the location of the

heterogeneous region [30]. Moreover, a parametric method may

perform even better across a wide range of datasets.

Most extant methods that have been proposed to detect

heterogeneous clusters among sequences suffer from poor power

to detect clustering when it is present. The problem is made

especially challenging by a tradeoff wherein increasing power to

detect clustering also increases overparameterization or false

positive rates. Methods that have high power are prone to identify

clustering even in random sequences, because even in short

sequences, there are so many potential patterns of clustering to

evaluate. In this paper, we propose a hierarchical clustering

method, model averaged clustering by maximum likelihood

(MACML), requiring no priori knowledge of cluster size or cluster

count, that provides greater statistical power in detecting

heterogeneous regions. MACML adopts a divide-and-conquer

approach to hierarchically detect heterogeneous regions and

repeat similar analysis for each identified region, unlike most

hierarchical methods that do not revisit clusters once they are

constructed [17,36,37]. To address issues of overparameterization,

MACML employs model selection and model averaging tech-

niques that lead to intuitively appealing profiles of sequence

heterogeneity and that facilitate description of clustered sites in

discrete linear sequences. We describe MACML in detail and

provide comparative results in the form of an in-depth evaluation

of simulated datasets and an empirical sequence data set on

polymorphisms in the Drosophila alcohol dehydrogenase gene.

Materials and Methods

Algorithm
To apply MACML to locate regional clusters with different

specified site types requires a general input sequence X with N

sites, denoted as

X~ x0x1x2 . . . . . . xN{1f g,

where xi[ 0,1f g, i~0, 1, 2 . . . N{1:
ð1Þ

For example, to examine heterogeneity of substitution, an aligned

set of homologous sequences is converted into X, in which each site

is scored entries xi of 0 representing identity, and 1 representing a

variant or variable site [30]. Similarly, a sequence to be analyzed

for detection of GC heterogeneity can be converted by setting G/

C = 1 and A/T = 0. Notations used to describe our algorithm are

summarized in Table 1.

Null model. In a sequence with N sites, we denote the

number of variant sites as n~
PN{1

i~0

xi. Under a null model, rates of

appearance of variants across all sites are the same, equaling n
N

.

Consequently, the likelihood of the null model is

H0 : L0~
n

N

� �n

1{
n

N

� �N{n

: ð2Þ

Clustering model. To derive a model incorporating

heterogeneity (regional clustering of sites with different variant

rates in each region), the entire sequence may first be partitioned

into three regions. A central region is bounded by regional

endpoints cs and ce (0#cs,ce#N-1) (see Figure 1). We may then

count the number of variant sites in the starting (ns), central (nc),

and ending (ne) regions, respectively. Assuming for the moment

that any differential substitution heterogeneity resides in sequence

from cs to ce, then a likelihood for the clustering model may be

formulated as

Author Summary

The invention and application of high-throughput tech-
nologies for DNA sequencing have resulted in an
increasing abundance of biological sequence data. DNA
or protein sequence data are naturally arranged as discrete
linear sequences, and one of the fundamental challenges
of analysis of sequence data is the description of how
those sequences are arranged. Individual sites may be very
sequentially heterogeneous or highly clustered into more
homogeneous regions. However, progress in addressing
this challenge has been hampered by a lack of suitable
methods to accurately identify clustering of similar sites
when there is no a priori specification of anticipated
cluster size or count. Here, we present an algorithm that
addresses this challenge, demonstrate its effectiveness
with simulated data, and apply it to an example of genetic
polymorphism data. Our algorithm requires no a priori
knowledge and exhibits greater power than any other
unsupervised algorithms. Furthermore, we apply model
averaging methodology to overcome the natural and
extensive uncertainty in cluster borders, facilitating esti-
mation of a realistic profile of sequence heterogeneity and
clustering. These profiles are of broad utility for compu-
tational analyses or visualizations of heterogeneity in
discrete linear sequences, an enterprise of rapidly increas-
ing importance given the diminishing costs of nucleic acid
sequencing.

Profiling Sequence Heterogeneity
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H : Lc~p0
ns 1{p0ð Þcs{ns|

pc
nc 1{pcð Þce{csz1{nc|p0

ne 1{p0ð ÞN{1{ce{ne ,
ð3Þ

where ns~
Pcs{1

i~0

xi, nc~
Pce

i~cs

xi, ne~
PN{1

i~cez1

xi, p0~
nszne

N{ ce{csz1ð Þ,

and pc~
nc

ce{csz1
.

Based on these determinate measures associated with the model,

we define

N p0,pc: The central region (cs, ce) is a hot spot, indicating a

higher probability of variant sites relative to regions flanking it.

N p0.pc: The central region (cs, ce) is a cold spot, suggesting a

lower probability of variant sites relative to regions flanking it.

Note that if cs = 0, or if ce = N–1, then there are only two putative

regions. The formulation nevertheless applies unchanged.

Model selection. Different regional endpoints cs and ce lead

to a set of diverse, divergently parameterized candidate models

(Equation 3) with a range of likelihood values. To decide which

model best fits the data and to examine whether a cluster deviates

significantly from neighboring sequence, we incorporate several

model selection criteria [38]:

N Akaike Information Criterion (AIC) [39]. AIC quantifies the

information lost by approximating the true model. AIC

incorporates both the maximized likelihood value (L) and the

number of parameters (k). Namely, AIC~{2 ln Lð Þz2k.

The smaller the AIC, the better the fitness (as in the AICc and

BIC below). If the clustering model better fits the data than the

null model, then the difference between the cluster model

(AICH) and the null model (AICH0
) will be large and negative:

DAIC~AICH{AICH0
: ð4Þ

N Akaike Information Criterion (corrected) (AICc) [40]. A

modification of AIC, AICc accounts not only for L and k,

but also for sample size (l). AICc~AICz
2k kz1ð Þ
l{k{1

. We

compare the AICc under the clustering model (AICcH) to

the AICc under the null model (AICcH0
). When DAICcv0,

this difference indicates rejection of the null model:

DAICc~AICcH{AICcH0
: ð5Þ

N Bayesian Information Criterion (BIC) [41]. As in the AICc,

BIC is a function of L, k and l, but with a different functional

form, where BIC~{2 ln Lð Þzkln lð Þ. Thus, we test whether

the BIC under the clustering model (BICH) is smaller than that

under the null model (BICH0
), signifying that the clustering

model is better than the null model:

DBIC~BICH{BICH0
: ð6Þ

Model averaging. Parameter estimation based on model

selection depends upon a single ‘‘best’’ model selected from a set of

candidate models [42]. However, because sites may not be variant

even when their probability of heterogeneity is high, regional

endpoints will rarely be exactly correct. Ideally, the inferred

probability of heterogeneity of a site would be influenced in a

weighted manner by suboptimal models. To allow all models to

contribute to estimation, we make use of model averaging, which

accounts for model uncertainty [43–45]. To average over models,

Table 1. Notation.

Parameter Description

N Length of aligned sequences

X(x0x1…xN-1) Sequence, where xi[ 0,1f g,0ƒiƒN{1

N
Number of variant sites, n~

XN{1

i~0

xi

cs Start position of cluster

ce End position of cluster

ns Number of variant sites within the starting region

nc Number of variant sites within the cluster region

ne Number of variant sites within the ending region

Q Percentage of variant sites within the cluster,
q~ nc

n
|100%

p0 Variant rate outside of cluster

pc Variant rate inside of cluster

R Ratio of variant rates within cluster to outside of cluster,

r~
pc

p0

L0 Maximized likelihood value under the null model

Lc Maximized likelihood value under the clustering model

L Maximized likelihood value

K Number of parameters

L Sample size

DAIC Difference of AIC between the clustering model (AICH)
and the null model (AICH0

), DAIC~AICH{AICH0

DAICc Difference of AICc between the clustering model
(AICcH) and the null model (AICcH0

),
DAICc~AICcH{AICcH0

DBIC Difference of BIC between the clustering model (BICH)
and the null model (BICH0

), DBIC~BICH{BICH0

doi:10.1371/journal.pcbi.1000421.t001

Figure 1. Illustration of parameters for clustering in a sequence. Variables cs and ce are the start position and end position of cluster,
respectively. Empirical parameters ns, nc, and ne are the number of variant sites in the beginning, central, and ending regions, respectively, such that
n = ns+nc+ne.
doi:10.1371/journal.pcbi.1000421.g001
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we assign a weight to each model, and then infer measures of

interest across all weighted models. For instance, within the AIC

framework, we compute the Akaike weight (wi, i = 1, 2…m) for

each model,

wi~
exp { 1

2
AICi{min AICð Þ

� �
Pm
j~1

exp { 1
2

AICj{min AIC
� �� � , ð7Þ

where m is the number of models, and minAIC is the smallest AIC

value among all models. Measures may then be calculated as the

weighted average across all models. Thus, a model-averaged

measure of the rate of appearance of a variant at site i, p(i), may be

calculated by

p ið Þ~
Xm

j~1

wj|p i jjð Þ, ð8Þ

where p(i|j) is p(i) given model j. Ninety-five percent confidence

intervals (C.I.) for the measurement across models may be

calculated by sorting all m models by their estimated p(i|j), and

sequentially summing the weighted likelihoods of each model from

the lowest to the highest values, or from the highest to the lowest

values, until the value 0.025 is reached. The p(i|j) for the last

summed model is then the lower or upper C.I., respectively.

Implementation. MACML applies a divide-and-conquer

approach to hierarchically detect clusters within sequences. After

determining the likelihood of all possible models, MACML locates

the first cluster, partitions sequences into the three most likely

segments, and then repeats a similar analysis for these three

segments. The process is iterated on each segment, until all

segments and sub-segments of the sequence have failed to

demonstrate clustering (see Figure 2).

Availability. MACML is written in standard C++
programming language, and its software package, including

compiled executables on Linux/Mac/Windows, example data,

documentation, and source codes, is freely available for academic

use only at http://www.yale.edu/townsend/software.html.

Simulations
To test the performance of MACML and compare it to the

most powerful extant method, ECDF, we simulated sequences for

analysis for which the rates of variant sites were known a priori.

For each simulated sequence, we randomly generated the start and

end positions of the cluster, positions of variant sites within the

cluster region, and positions of variant sites within the non-cluster

region (see Figure 1). To avoid stochastic errors, we repeated

Figure 2. Flowchart for detection of heterogeneous clusters, using the divide-and-conquer approach. *Note that i and j represent the
start position and end position of the sequence or sub-sequence that is currently to be analyzed.
doi:10.1371/journal.pcbi.1000421.g002
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simulations M = 10000 times for each parameter combination.

Thus, each performance measure was determined from M

replicates.

Power analysis. For each replicate, the expected start

position and end position of cluster were denoted as cs and ce,

respectively. Denoting the corresponding estimated values as cs
�

and ce
�, we defined the power to detect clusters within sequences

as the proportion of all replicates that satisfies cs
�
§cs,ce

�
ƒce and

ce
�{cs

�
§ 1{að Þ ce{csð Þ, where the permissive zone parameter

a~0:05. The permissive zone allows each algorithm to just slightly

misidentify the start and end of the cluster, improving the scope of

the results of our simulations. Without a permissive zone, any

algorithm misidentifies the start and end sites of the cluster with

such a high frequency that computation becomes burdensome.

Accuracy & precision. An alternative assessment criterion,

the Kullback-Leibler (KL) divergence [46], requires no permissive

zone and provides a more technically satisfactory assessment of the

accuracy and precision of the method. The KL divergence

calculates how divergent two probability distributions are; in this

case, it is used to compare the probabilities of variant sites

determined from MACML to probabilities that are known

because they were simulated. M replicates with N sites were

simulated for each parameter combination, so that replicates may

be indexed by j[ 1,M½ � and sites may be indexed by i[ 1,N½ �. We

denote pj(i) and p̂pj ið Þ as the expected and estimated values of

variant rate at site i of replicate j, respectively. The KL divergence

measures the difference between the two distributions p̂pj ið Þ and

pj(i), and is defined as

D pj p̂pj

��� �
~
XN

i~1

pj ið Þlog2

pj ið Þ
p̂pj ið Þ: ð8Þ

With M replicates for each parameter combination, the accuracy

may be characterized by the average KL divergence over M

replicates,

D~
1

M

XM
j~1

D pj p̂pj

��� �
: ð9Þ

Accordingly, the precision may be calculated as

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
j~1

D pj p̂pj

��� �
{D

h i2

vuut : ð10Þ

Simulation parameters. The power to detect

heterogeneous clusters is a function of the number of variant

sites (n), the sequence length (N), the percentage of variant sites

within the cluster (q), the ratio (r = pc/p0) of variant rates within

cluster (pc) to outside of cluster region (p0), and the number of

clusters. We systematically varied parameters of the simulations to

obtain a thorough description of algorithm performance.

(1) Effects of n and q. We varied n across four values (10, 50, 100

and 200), and q from 10% to 90% (and separately q = 0% or

q = 100%, see below), using r values 5:1 for a hot spot and 1:5

for a cold spot, respectively (consistent with analyses in

previous studies [30]). We generated 10000 sequences with

N = 1000 sites for each parameter combination.

(2) Effect of r. We set q = 60%, N = 1000 and n = 100. Simulated

sequences were generated by varying r from 2 to 10 for hot

spots, and from 0.1 to 0.9 for cold spots, respectively (10000

replicates for each case). We also examined r = 1:1, implying

equal variant rates across the whole sequence. Likewise,

q = 0% or 100% would indicate that zero or all substitution(s)

occur within the central cluster. These extremes represent

sequences with entirely randomly located substitutions under

the null model. In the context of AIC, AICc or BIC, the

power for these sequences represents the error of over-

parameterization. In the context of ECDF, the power

represents the error of the false positive rate. For this reason,

sequences under this null model were simulated by using

N = 1000 and n = 10, 50, 100 and 200.

(3) Effect of N. We fixed q = 60% and n = 30. Setting r = 5:1 and

1:5 for hot spots and cold spots, respectively, we generated

simulated sequences using values of N ranging from 100 to

1000 (10000 replicates for each case).

(4) Effect of the number of clusters. To examine the power of

detecting multiple clusters among sequences, we took an

approach based on that of Tang and Lewontin [30]. One hot

spot was set with width 40% of the entire sequence length,

then divided into two or more smaller hot spots with equal

length, with a cold spot of equal length intervening. We

randomly generated not only the start and end positions for

the hot spot, but also positions of variant sites for each divided

hot spot (this part of our procedure differs moderately from

Tang and Lewontin [30], providing a more robust exploration

of the power of the methods). Employing four n values (10, 50,

100 and 200), we simulated sequences with 1000 sites, with

10000 replicates for each parameter combination.

Empirical data
We retrieved the Drosophila alcohol dehydrogenase (Adh) gene

within five species of Drosophila melanogaster species subgroup (D.

melanogaster, D. sechellia, D. simulans, D. yakuba and D. erecta) from

FlyBase [47]. The aligned sequences of Drosophila Adh gene can be

available at http://www.yale.edu/townsend/datasets.html.

Results

Effects of the number of variant sites and the percentage
of variant sites within the cluster

The powers of MACML and ECDF were plotted against the

percentage of variant sites within the cluster (q) under different

numbers of variant sites (n) in Figure 3 and the corresponding

accuracy and precision were plotted in Figure 4. Evaluating the

methods based on their power to detect clusters within sequences

with different q and n, MACML outperformed ECDF for nearly

all the parameter combinations tested (Figure 3). When n was very

small, both methods exhibited extremely low power for detecting

hot spots (n = 10 in Figure 3A). At intermediate values of n,

MACML and ECDF exhibited increasing power with q (Figure 3B

and 2C). While ECDF approached the power of MACML when q

was large, MACML remained more powerful across the full range

of q (Figure 3B to 2D).

The power of MACML and ECDF to detect cold spots was also

low when n was small (n = 10 in Figure 3E). When n increased to

50, the power of MACML and ECDF peaked at intermediate

values of q (Figure 3F). At higher levels of n = 100 (Figure 3G) and

n = 200 (Figure 3H), ECDF continued to peak at intermediate

values of q, whereas the power of MACML continued to rise with

q. Across the parameter ranges examined, MACML consistently

exhibited greater power than ECDF.

Profiling Sequence Heterogeneity
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The accuracy and precision of MACML and ECDF were

estimated by the Kullback-Leibler (KL) divergence, which is a

measure of the difference between the expected and estimated

distributions of variant rates. In assessing the accuracy based on

the KL divergence, therefore, there are three potential scenarios: a

good match between the estimated and expected variant rates

when a KL divergence is near zero, an underestimation of variant

rates when KL divergence is positive, and an overestimation of

variant rates when KL divergence is negative. The precision based

on the KL divergence is also better when it is closer to zero. Unlike

the accuracy, precision based on the KL divergence cannot be

negative (Equation 12).

Evaluating the accuracy and precision based on the KL

divergence, MACML performed better than ECDF for most of

the cases examined (Figure 4). The accuracy and precision of

MACML and ECDF for detecting hot spots were very good (near

zero) when n was small (Figure 4A). When n became large,

MACML exhibited good accuracy and precision, whereas the

accuracy and precision of ECDF diverged positively from zero

with increasing q (Figure 4B to 3D). This divergence was

augmented when n was extremely large (Figure 4D).

When n is small (n = 10 in Figure 4E), both MACML and ECDF

also exhibited good accuracy and precision for the detection of

cold spots. At large values of n (Figure 4F to 3H), ECDF exhibited

good accuracy and precision only when q was smaller (10%) or

larger (90%). At intermediate values of q, the accuracy of ECDF

diverged from the ideal negatively. The precision of ECDF

diverged from the ideal as well. This divergence was augmented

when n was extremely large (n = 200 in Figure 4H). In summary,

MACML exhibited good accuracy and precision for nearly all

tested cases.

Effect of the ratio of variant rates within cluster to
outside of cluster

The powers of MACML and ECDF were plotted against the

ratio of variant rates within cluster to outside of cluster in Figure 5,

and the corresponding accuracy and precision were plotted in

Figure 6. The difference in power between MACML and ECDF

was least remarkable for the detection of cold spots (Figure 5A). At

values of the ratio of variant rates within cluster to outside of

cluster ranging from 0.3 to 0.9, differences in power between both

methods were relatively small, whereas at values of the ratio ,0.3,

MACML showed much greater power to detect cold spots than

did ECDF (Figure 5A). The power of MACML to detect hot spots

consistently increased with increasing ratio (Figure 5B). Although

the power of ECDF increased with the ratio as well, its power was

much lower than the power of MACML across the examined

ranges of values of the ratio (Figure 5B).

MACML provided good accuracy and precision (near zero) for

detecting cold spots, whereas the accuracy of ECDF diverged

negatively and the precision of ECDF diverged from the ideal as

well (Figure 6A). This divergence was more notable at values of the

ratio ,0.7 (Figure 6A). With regard to hot spots, the accuracy and

precision of ECDF diverged positively across values of the ratio

from 2 to 10 (Figure 6B). As the ratio was increased, this

divergence became more remarkable. In contrast, MACML

exhibited better accuracy and precision for most of the examined

cases (Figure 6B).

According to their definitions, the ratio of variant rates within

cluster to outside of cluster = 1:1, q = 0%, or q = 100% represent

sequences with entirely randomly located substitutions under the

null model. Therefore, we compared three criteria adopted by

MACML and examined their errors of overparameterizing the

Figure 3. Comparison of the power to detect heterogeneous clusters, evaluating a range of percentages of variant sites within the
cluster (q). The ratio (r) of variant rates within the cluster to outside of the cluster was set to 5:1 (panels A to D) and 1:5 (panels E to H), representing
hot spots (red) and cold spots (blue), respectively. Four values of n were used: 10 in panels A and E, 50 in panels B and F, 100 in panels C and G, and
200 in panels D and H. Each point represents the average of 10000 replicate simulated sequences, with each sequence composed of 1000 sites. The
results shown were generated implementing the AIC for model selection. Similar results were obtained implementing the other criteria and
incorporating model averaging (see Table S1).
doi:10.1371/journal.pcbi.1000421.g003
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clustering model when no clustering was imposed during the

sequence generation. MACML and ECDF demonstrated high

overparameterization and false positive rates, respectively

(Table 2). The overparameterization rate of MACML markedly

exceeded the false positive rate of ECDF for n = 10, n = 100 and

n = 200. Implementing the AIC and AICc did little to moderate

overparameterization, whereas implementing BIC significantly

moderated overparameterization. Implementing the BIC did not

bring overparameterization down to the false positive rate of

ECDF for n = 10, 100, and 200, but did limit the overparameter-

ization rate to approximately the false positive rate of ECDF for

sequences with n = 50.

Figure 4. Comparison of accuracy and precision based on the Kullback-Leibler (KL) divergence, evaluating a range of percentages
of variant sites within the cluster (q). The KL divergence was used as a metric of the distance between the estimated distribution and the
expected known distribution. A measure of the KL divergence approaching zero, indicates the two distributions are approaching identity. The ratio (r)
of variant rates within the cluster to outside of the cluster was set to 5:1 (panels A to D) and 1:5 (panels E to H), representing hot spots and cold spots,
respectively. Four values of n were used: 10 in panels A and E, 50 in panels B and F, 100 in panels C and G, and 200 in panels D and H. Each point
represents the average of 10000 replicate simulated sequences, with each sequence composed of 1000 sites. The results shown were generated
implementing the AIC for model selection.
doi:10.1371/journal.pcbi.1000421.g004

Figure 5. Comparison of the power to detect heterogeneous clusters, evaluating a range of ratios of variant rates within the cluster
to outside of the cluster. Cold spots (panel A) and hot spots (panel B) were represented by blue and red, respectively. The percentage of variant
sites within the cluster (q) was set 60%. Each point represents the average of 10000 replicate simulated sequences, with each sequence composed of
1000 sites. The results shown were generated implementing the AIC for model selection. Similar results were obtained implementing the other
criteria and incorporating model averaging (see Table S2).
doi:10.1371/journal.pcbi.1000421.g005
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Effect of sequence length
The powers of MACML and ECDF were plotted against

sequence length in Figure 7 and the corresponding accuracy and

precision were plotted in Figure 8. When sequence length

increased from 100 to 1000 sites, MACML and ECDF provided

decreasing power to detect both hot spots (Figure 7A) and cold

spots (Figure 7B). This decrease was more prominent for MACML

than for ECDF. Nonetheless, MACML outperformed ECDF for

most of these cases.

The accuracy and precision of MACML and ECDF varied little

across all values of sequence length. With increasing sequence

length, the accuracy of ECDF diverged from zero positively for hot

spots and diverged slightly negatively for cold spots. The precision

of ECDF diverged from the ideal positively for both hot spots and

cold spots (Figure 8A and 7B). Overall, MACML exhibited better

accuracy and precision than ECDF as sequence length increased

from 100 to 1000 (Figure 8).

Effect of the number of clusters
The powers of MACML and ECDF were plotted against the

number of clusters in Figure 9. Under the parameters examined

for multiple clusters (see Materials and Methods), MACML and

ECDF performed similarly when the sequence had only one

cluster to be detected. However, when the number of clusters

ranged from 2 to 10, ECDF was unable to detect more than one

cluster, whereas MACML had significant power to detect multiple

clusters, especially for large values of n. In general, the power of

MACML was limited for small values of n = 10 (Figure 9A) and

n = 50 (Figure 9B), but much greater for large values of n = 100

(Figure 9C) and n = 200 (Figure 9D).

Applied example
We applied MACML to detect heterogeneous clusters of

polymorphisms within the Drosophila Adh gene and to profile

potential for polymorphism for each site based on model selection

and model averaging, respectively. Identified clusters as well as

profiles of the potential for polymorphism were plotted against

sequence coordinate (Figure 10). As expected, profiles of potential

for polymorphism based on model selection (Figure 10A and 9C)

are highly discrete, whereas smoother, continuous profiles are

produced based on model averaging (Figure 10B and 9D). When

using BIC, MACML detected two clusters along the Adh gene and

both are cold spots residing between sites 98 and 189 and between

sites 26 and 70 (Figure 10A and 9B). In addition to these two cold

spots, when using AIC or AICc, MACML also identified two hot

spots between sites 80 and 84 and between sites 212 and 218

(Figure 10C and 9D). In contrast, ECDF detected only one cold

spot between sites 98 and 211 (data not shown), consistent with

previous applications of the method [29,30].

Detailed clustering results for the Adh gene are summarized in

Table 3. For the AIC or AICc, the four detected clusters all

deviate significantly from the null model (DAIC,0 and DAICc,0

in Table 3). When sample size is large, like sequence from sites 0 to

253, the DAICc asymptotically approaches DAIC, and thus their

values are nearly same. However, for a smaller sample size, for

example, when detecting sub-sequence from sites 71 to 97, DAICc

is much larger than DAIC. By contrast, BIC incorporates a heavier

penalty than AIC or AICc and DBIC.0 indicated no significant

cluster among sub-sequences from sites 71 to 97 or from 190 to

253, whereas AIC and AICc identified two clusters along these two

sub-sequences.

Figure 6. Comparison of accuracy and precision based on the Kullback-Leibler (KL) divergence, evaluating a range of ratios of
variant rates within the cluster to outside of the cluster. The KL divergence was used as a metric of the distance between the estimated
distribution and the expected known distribution. A measure of the KL divergence approaching zero, indicates the two distributions are approaching
identity. Variant sites were simulated with known distributions containing cold spots (panel A) and hot spots (panel B). The percentage of variant sites
within the cluster (q) was set 60%. Each point represents the average of 10000 replicate simulated sequences, with each sequence composed of 1000
sites. The results shown were generated implementing the AIC for model selection.
doi:10.1371/journal.pcbi.1000421.g006

Table 2. False positive rates and overparameterization of the
clustering model.

Number of
variant sites ECDF MACML

AIC AICc BIC

10 0.0646 0.9957 0.9957 0.2214

50 0.2967 1.0000 1.0000 0.2799

100 0.4906 1.0000 1.0000 0.6753

200 0.3987 1.0000 1.0000 0.5217

Note: Values tabulated are the average over 10000 replicate simulated
sequences, each composed of 1000 sites.
doi:10.1371/journal.pcbi.1000421.t002
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Discussion

Comparative analysis of simulated results
The power to detect heterogeneous clustered sites within

sequences depended in moderately complex ways on the

parameters we examined in this report. Consistent with expecta-

tions, our results show that the power of MACML to detect hot

spots and cold spots increased with increasing percentage of

variant sites within the cluster (Figure 3). Across simulations

comparing different percentages of variant sites within the cluster,

MACML exhibited both high accuracy and high precision: the

estimated variant rates within and outside clusters were close to the

expected ones across all parameter combinations (Figure 4). In

contrast to MACML, ECDF performed more variably across

different percentages of variant sites within the cluster. This

inconsistency of performance agrees well with our theoretical

analysis on ECDF (Text S1) as well as with results from a previous

study [30]. The hot spots and cold spots estimated by ECDF tend

to be narrower than the simulated hot spots and cold spots [30].

The misattributed region between the boundary of the estimated

hot or cold spot and the corresponding boundary of the simulated

hot or cold spot generally gives rise to much greater KL

divergence than any other region of the sequence. Thus, the KL

divergence of the full sequence tends to be dominated in direction

and magnitude by the KL divergence of the region between these

boundaries, a region that is usually present as a consequence of the

bias in estimation of the width of hot and cold spots. Accordingly,

positive divergence from perfect accuracy and precision for hot

spots (Figure 4A to 3D) follows from underestimation of the

variant rate of this region. Likewise, negative divergence from

perfect accuracy and positive divergence from perfect precision for

cold spot (Figure 4E to 3H) follows from overestimation of the

variant rate of this region.

Across a range of ratios of variant rates within the cluster to

outside of the cluster, MACML and ECDF exhibit similar trends

in power, but different trends in accuracy and precision. With both

Figure 7. Comparison of the power to detect heterogeneous clusters, evaluating a range of sequence lengths. Ratios of variant rates
within the cluster to outside of the cluster were set at 5:1 (red) and 1:5 (blue), representing hot spots (panel A) and cold spots (panel B), respectively.
Parameters were set at n = 30 and q = 60%. Each point represents the average of 10000 replicate simulated sequences. The results shown were
generated implementing the AIC for model selection. Similar results were obtained implementing the other criteria and incorporating model
averaging (see Table S3).
doi:10.1371/journal.pcbi.1000421.g007

Figure 8. Comparison of accuracy and precision based on the Kullback-Leibler (KL) divergence, evaluating ten sequence lengths.
The KL divergence was used as a metric of the distance between the estimated distribution and the expected known distribution. A measure of the
KL divergence approaching zero, indicates the two distributions are approaching identity. Ratios of variant rates within the cluster to outside of the
cluster were set at 5:1 and 1:5, representing hot spots (panel A) and cold spots (panel B), respectively. Parameters were set at n = 30 and q = 60%. Each
point represents the average of 10000 replicate simulated sequences. The results shown were generated implementing the AIC for model selection.
doi:10.1371/journal.pcbi.1000421.g008
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methods, a significant difference between variant rates within the

cluster and outside of the cluster leads to greater power, and nearly

equal rates for all sites results in lower power (Figure 5). The KL

divergence measure of the accuracy of ECDF is negative for cold

spots and positive for hot spots, respectively (Figure 6). When the

variant rate inside of the cluster approaches the variant rate

outside of the cluster, estimated and actual variant rates are very

close for any cluster model. Therefore, the accuracy and precision

of ECDF approach those of MACML, consistent with simulation

results (Figure 6). In contrast, as variant rates within the cluster

diverge from rates outside the cluster, MACML produces

incrementally better accuracy and precision across all parameter

combinations (Figure 6).

Both MACML and ECDF exhibit decreasing power with

increasing sequence length (Figure 7), presumably as a conse-

quence of the decreasing proportion of variant sites relative to

sequence length. Increasing sequence length with a fixed number

of variant sites is equivalent to decreasing the number of variant

sites with a fixed sequence length. Therefore, it is consistent that

the power decreases with decreasing variant sites in Figure 3. This

relationship between variant sites and power also agrees well with

the results observed when varying the number of clusters (Figure 9),

with the additional note that ECDF fails to detect more than one

cluster. It is notable that simulations performed by Tang and

Lewontin [30] were less general in scope than ours. That is, in

Tang and Lewontin [30], the heterogeneous cluster was always

centered and the two regions flanking the cluster were always

equal in length. As noted by Tang and Lewontin, the power of

ECDF is affected when the cluster moves off center [30]. In our

simulations, the starting position and ending position of cluster are

randomly generated, leading to a random location of the cluster

and thus to an unequal length of the two flanking regions (see

details in Materials and Methods). For these reasons, our

simulations that incorporated random positions of clusters yielded

different results in terms of success detecting multiple clusters than

were yielded by the simulations of Tang and Lewontin [30].

False positive rates and overparameterization for clustering

models were high, as expected as a consequence of the large

number of potential cluster boundary sets that are possible.

Powerful methods for this class of problem are expected to display

high false positive rates, a tradeoff that is natural in statistical

inference. Although ECDF presents lower false positive rates,

MACML achieves more power than ECDF to reject the null

hypothesis when it is not true (Figures 3, 4 and 6). Moreover,

MACML achieves markedly greater accuracy and precision of

variant rates as determined by the KL divergence (Figures 3, 5 and

7), demonstrating the marked superiority of MACML in selecting

the best model of variant rates across a discrete linear sequence.

Furthermore, MACML is more capable of detecting multiple

clusters among sequences, as demonstrated by simulation (Figure 9)

and by application to the empirical data (Figure 10).

Differences of the adopted criteria
Unlike ECDF, which is not integrated into a model selection

framework, MACML adopts AIC, AICc and BIC for model

selection. To clarify the differences observed implementing these

diverse criteria, the different penalties for additional parameter-

ization that they entail may be compared. Based on the clustering

model, two parameters (cs and ce) are evaluated (from which p0 and

pc can be calculated). Therefore, the number of parameters under

the clustering model is two, whereas the number under the null

model is zero. From equations 4–6, then,

AIC : ln Lc{ln L0w2, ð11Þ

AICc : ln Lc{ln L0w2z
6

l{3
, and ð12Þ

BIC : ln Lc{ln L0wln lð Þ, ð13Þ

where l is sample size, that is, (sub-)sequence length.

The values of lnLc–lnL0 may be plotted against sample size

(Equations 11–13, Figure 11). AIC yields constant penalties for all

values of sample size. For smaller sample size, AICc yields larger

penalties than AIC or BIC. When sample size increases to large

numbers, the penalty of AICc approaches AIC, and BIC produces

much larger penalties than AICc.

For a given value of lnLc–lnL0, the three criteria are most likely

to give different results with regard to rejection of the null model.

The three lines plotted corresponding to the three different criteria

in Figure 11 may be helpfully related to the results of our

application of MACML to the Adh gene. MACML started by

detecting a cluster from site 0 to 253. The sample size was 254,

and the corresponding value of lnLc–lnL0 was 6.53 (Table 3). This

cluster is represented by a point (254, 6.53), located above all three

Figure 9. Power to detect multiple heterogeneous clusters. Four n values (10 in panel A, 50 in panel B, 100 in panel C, and 200 in panel D)
were used for simulations, and each point represents the average of 10000 replicate simulated sequences, with each sequence composed of 1000
sites. The summed width of all clusters was always 40% of entire sequence length. The results shown were generated implementing the AIC for
model selection. Similar results were obtained implementing the other criteria and incorporating model averaging (see Table S4).
doi:10.1371/journal.pcbi.1000421.g009
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lines. This location signifies that the three criteria all reject the null

model. After locating the first cluster, MACML proceeded to

detect clusters along sub-sequences from 0 to 97, from 98 to 189,

and from 190 to 253, until all possible sub-sequences had been

tested. As a consequence, it identified several clusters. Two of

them are located above the three lines, signifying that all three

criteria reject the null model. The remaining two points are

located below the BIC line and above the other lines, signifying

that BIC does not reject the null model, but that the rest do

(Figure 11). This graphical analysis clarifies results in which BIC

identified only two cold spots, whereas the other criteria identified

an additional two hot spots (Figure 11 and Table 3).

Significance of profiling heterogeneity
The Drosophila Adh is the most studied enzyme that catalyzes the

oxidation of alcohols to aldehydes/ketones [48]. It has been

extensive reported that several functionally important residues

reside in the Adh gene: tyrosine-152, lysine-156 and serine-139 are

Figure 10. Profile of clustering of polymorphic sites within the Adh protein (254 amino acids) in D. melanogaster. (A) BIC with model
selection, (B) BIC with model averaging, (C) AIC with model selection, and (D) AIC with model averaging (AICc obtained results similar to AIC; data not
shown). Colors of sites were based on their estimated probability of polymorphism. A higher percentage of blue indicates low probability of
polymorphism, whereas a higher percentage of red indicates larger probability of polymorphism. Polymorphisms are present at sites 2, 9, 26, 72, 81,
83, 85, 98, 191, 213, 216, 219, 229, and 247, depicted by tick marks above the x-axis. Grey lines in panels B and D are composed of the 95% confidence
intervals across models for the measured probability for each site.
doi:10.1371/journal.pcbi.1000421.g010
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conserved in homologous dehydrogenases and have important

roles in catalysis [49–53]; glycine-130, glycine-133 and glycine-184

contribute substantially to the structure of the active form [50];

and aspartic acid-64 lies within a coenzyme-binding domain [51].

As shown in Figure 10 and Table 3, these residues were all

clustered into the cold spots by MACML, indicating not only their

functional conservation and relevance, but also the extent of the

region of near-neighbor amino acids that are also conserved.

Near-neighbors may be conserved due to their structural and

biochemical effects on the known function of these residues. In

addition, according to its gene structure, two introns in the Adh

gene reside between the nucleotide sequences coding for residues

32 and 33 and between the nucleotide sequences coding for

residues 167 and 168 [54,55]. Therefore, the two cold spots

identified by MACML extending from residues 26 to 70 and from

residues 98 to 189 indicate conservation around the introns.

Heterogeneity of variant rates among specified site types is

thought to commonly occur [56–59] and may derive from many

sources, including functional constraint, gene structure, 3D protein

structure, composition bias, mutation bias or recombination

[1,18,34,60–62]. As indicated by our results based on the

simulated data and real data, MACML, equipped with model

selection and model averaging, features smooth and continuous

profiles of variant rates for each site, and is more accurate and

more informative for the detection of multiple clusters among

sequences. Therefore, MACML furnishes broad utility for any

computational analyses of heterogeneous discrete linear sequences

and provides valuable information to aid for a better understand-

ing of the structure and function of DNAs or proteins.

In addition, MACML can be applied to a broad range of

applications. For example, MACML would be appropriate for

determining whether components of any multicomponent polymer

have a clustered structure [33,63]. It can also be used to detect

compositional heterogeneity within sequences [64–66] (e.g.,

heterogeneous GC content by setting G/C = 1 and A/T = 0).

Moreover, MACML may provide a framework upon which future

modeling of the substitution process may be overlain, assessing

heterogeneity in selective pressure acting on different coding

sequence regions [60,67–70] and detecting fast-evolving regions in

noncoding sequences [71,72].

Conclusion
Here we have presented a method, MACML, to detect clustering

of a site type in discrete linear sequences. MACML features

maximum likelihood estimation, model selection criteria (AIC,

AICc, and BIC) and model averaging to profile sequence

heterogeneity. It employs a divide-and-conquer approach to

hierarchically detect multiple clusters within sequences, without

requiring a priori knowledge for cluster size or number. We

compared MACML with the most powerful competing method, the

ECDF, by exploring a full range of parameter space using computer

simulations, and by performing an analysis of empirical data. Our

comparative results show that across a wide range of parameter

combinations, MACML outperforms ECDF not only by exhibiting

greater power to detecting hot spots and cold spots. Thus, it

represents a powerful exploratory tool for profiling clustering in

discrete linear sequences. Although discoveries using MACML

should be considered tentative, it yields greater resolution than any

other method, providing a significant advance for the analysis of

clustering of sites within discrete linear sequences.

Supporting Information

Table S1 Power to detect heterogeneous clusters, evaluating a

range of percentages of variant sites within the cluster (q)

Found at: doi:10.1371/journal.pcbi.1000421.s001 (0.02 MB XLS)

Table S2 Power to detect heterogeneous clusters, evaluating a

range of ratios of variant rates within the cluster to outside of the

cluster (r)

Found at: doi:10.1371/journal.pcbi.1000421.s002 (0.02 MB XLS)

Table S3 Power to detect heterogeneous clusters, evaluating a

range of sequence lengths

Found at: doi:10.1371/journal.pcbi.1000421.s003 (0.02 MB XLS)

Table S4 Power to detect multiple heterogeneous clusters

Found at: doi:10.1371/journal.pcbi.1000421.s004 (0.02 MB XLS)

Text S1 Analysis on ECDF

Found at: doi:10.1371/journal.pcbi.1000421.s005 (0.05 MB

DOC)

Table 3. Detailed quantitative analysis of clustering of polymorphism across the Adh gene.

Location cs ce p0 pc lnL0 lnLc lnLc–lnL0 DAIC DAICc DBIC

0 , 253 98 189 0.09 0.00 254.18 247.65 6.53 29.05 29.01 21.98

0 , 97 26 70 0.15 0.00 227.71 222.49 5.22 26.44 26.31 21.27

71 , 97 80 84 0.09 0.60 212.94 210.07 2.87 21.74 21.24 0.85

190 , 253 212 218 0.05 0.43 219.91 216.53 3.38 22.76 22.56 1.56

doi:10.1371/journal.pcbi.1000421.t003

Figure 11. Depiction of the relationships between model
selection criteria, lnLc–lnL0, and sample size.
doi:10.1371/journal.pcbi.1000421.g011
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