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Abstract

Function diversification in large protein families is a major mechanism driving expansion of cellular networks, providing
organisms with new metabolic capabilities and thus adding to their evolutionary success. However, our understanding of
the evolutionary mechanisms of functional diversity in such families is very limited, which, among many other reasons, is
due to the lack of functionally well-characterized sets of proteins. Here, using the FGGY carbohydrate kinase family as an
example, we built a confidently annotated reference set (CARS) of proteins by propagating experimentally verified
functional assignments to a limited number of homologous proteins that are supported by their genomic and functional
contexts. Then, we analyzed, on both the phylogenetic and the molecular levels, the evolution of different functional
specificities in this family. The results show that the different functions (substrate specificities) encoded by FGGY kinases
have emerged only once in the evolutionary history following an apparently simple divergent evolutionary model. At the
same time, on the molecular level, one isofunctional group (L-ribulokinase, AraB) evolved at least two independent
solutions that employed distinct specificity-determining residues for the recognition of a same substrate (L-ribulose). Our
analysis provides a detailed model of the evolution of the FGGY kinase family. It also shows that only combined molecular
and phylogenetic approaches can help reconstruct a full picture of functional diversifications in such diverse families.
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Introduction

The large and functionally heterogeneous protein families that

we see today result from long evolutionary processes with multiple

duplications, gene losses, lateral gene transfers, and speciation

events. The gene duplications usually leads to functional

diversification within the family, for example, through the

emergence of new catalytic mechanisms while preserving a

common catalytic step as in the enolase superfamily [1,2]. Even

more common is the diversification of substrate preferences with

the overall conservation of a catalytic mechanism [3] as in various

amidohydrolases [4] and kinases [5]. It is generally agreed that

new functional specificities emerge as a result of gene duplication

and subsequent specialization, while they usually remain un-

changed during speciation events [6]. In phylogenetic terms,

functions tend to differ between paralogs and be conserved

between orthologs, but the complex evolutionary history of most

protein families, which includes also gene losses and lateral gene

transfers, limits the application of purely phylogenetic approaches

in interpreting function divergence. At the same time, other

mechanisms, including convergent evolution of the same func-

tions, are also possible. Among plausible evolutionary scenarios, a

simple divergent model assumes the emergence of distinct functional

specificities following duplication. In this scenario the same

function is never invented twice, although it might become a

subject of multiple gene losses and horizontal transfer events

leading to mosaic phylogenetic distribution. Mixed models include

instances of convergent evolution in which the same functional

specificity is reinvented in distinct groups of species through

lineage-specific expansions and specialization events. For example,

the latter model was inferred for the evolution of some receptors in

the innate immune system [7]. An extreme case of convergent

evolution of essentially identical functions from non-homologous solutions is

well documented in literature (for a recent review, see [8]). It is

tempting to speculate that the same functional specificity would

more readily reemerge (be reinvented) within the same family than

between non-homologous families. Yet, whether such a phenom-

enon is indeed characteristic of functionally heterogeneous protein

families remains an open question.

Two major constraints that limit our ability to effectively

address this question are the insufficient knowledge of the actual

functions within such families and the limited accuracy of their

evolutionary models. Indeed, experimental data about functional

specificities are typically available for only a handful of

representative proteins, and the homology-based annotation,

available for other members of the family, is often imprecise

(general class annotation such as carbohydrate kinase) or simply

incorrect (misannotation) [9]. Likewise, the existing methods of
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evolutionary reconstruction based on sequence information alone

often fail to disambiguate divergent branches on phylogenetic trees

[10]. In this study we attempted to overcome both limitations by

applying a combination of several complementary bioinformatic

techniques. We tested this approach on a large protein family of

FGGY carbohydrate kinases, which displays extensive variations

in functional specificity: proteins in this family carry out ATP-

dependent phosphorylation on one out of at least nine distinct

sugar substrates (see Table 1 and the right panel of Figure 1A).

The choice of the FGGY family for this analysis was supported

by several considerations. The broad cross-genome distribution of

this family is illustrated by the identification of over 4,000

members in the NCBI Non-Redundant sequence database. A

remarkable functional diversification of this family (mentioned

above) was also emphasized in a recent review [8]. Three-

dimensional structures of at least 44 members of this family have

been solved, providing a solid overview of the structural

divergence in this family. Known substrates of FGGY kinases

include several distinct sugars ranging from trioses to heptoses.

This family also contains a divergent subfamily functioning in

quorum sensing, which phosphorylates AI-2, a bacterial signaling

molecule derived from 4,5-dihydroxy-2,3-pentanedione (DPD)

[11,12]. The functional plasticity of FGGY kinases plays an

important role in evolutionary diversity and adaptability of

bacterial carbohydrate utilization machinery. Many bacterial

genomes contain several representatives of the FGGY family with

distinct specificities involved in catabolic pathways of different

carbohydrates. For example, the E. coli and B. subtilis genomes

each contain six FGGY kinases. Biological functions and

biochemical substrate preferences of individual representatives of

each specificity type were experimentally characterized, mostly for

model species. For instance, in a recent study, substrate

specificities of five FGGY kinases from the hyperthermophilic

bacterium Thermotoga maritima were predicted and experimentally

characterized (Rodionova et al., unpublished) as an extension of

our genome-scale reconstruction of a T. maritima metabolic

network [13]. The metabolic network are used here to illustrate

the diversity of FGGY kinases in the genomic and functional

context of carbohydrate metabolism (Figures 1B, 1C). Notably, the

divergent nature of three out of five T. maritima FGGY kinases

would not have allowed a confident homology-based assignment of

their substrate specificity (biological function). Indeed, in most

public databases their annotations were typically limited by a

general class function (e.g., ‘‘sugar kinase of FGGY family’’).

Likewise, incomplete and often incorrect functional assignments

are widespread in public archives for thousands of FGGY kinases

that are present in genomes beyond a handful of model organisms

and their close relatives. This consideration was an additional

motivation for the present analysis, which takes advantage of the

well-defined biochemistry of carbohydrate utilization pathways

and their known tendency to form conserved operons and

regulons (Figures 1B, 1C) to efficiently use genomic and functional

context as an important additional evidence for the functional

assignment of associated enzymes. The application of such an

approach (as recently illustrated [14]) in combination with

literature information for the accurate functional classification of

FGGY kinases was a key factor in building an extensive reference

dataset, which enabled an evolutionary analysis reported in this

study.

Results

The comparative structural analysis of FGGY kinases reveals a

number of highly conserved topological elements. All described

members of this enzyme family are composed of two homologous

actin-like ATPase domains. The two domains are named

FGGY_N and FGGY_C, respectively (Figure 1A, left panel),

using nomenclatures in the Pfam database [15,16]. A catalytic cleft

is formed by the interface between these two domains, where the

sugar substrate and ATP co-substrate bind. Extensive structural

and functional studies have been carried out on many members of

the FGGY family, among them the glycerol kinase (EC:2.7.1.30,

GlpK) and rhamnulokinase (EC:2.7.1.5, RhaB) from E. coli

(Table 1). Analysis of experimentally determined three-dimen-

sional structures have shown that the sugar substrate binds deeply

within the catalytic cleft, forming interactions mainly with the N-

terminus domain, whereas ATP binds near the opening,

contacting both N- and C-terminus domains (Figure 1A, left

panel). The binding of the sugar substrate drives a conformational

change in which the two domains close to prevent solvent from

entering the catalytic cleft [17,18,19]. Although some proteins

appear to contain a single FGGY_N or FGGY_C domain, our

analysis included only those conforming to the canonical two-

domain architecture.

We have developed an FGGY kinase reference set starting from

31 representative enzymes with experimentally assigned substrate

preferences and biological functions (including those verified by us

using biochemical experiments; see Table 1). Although we focused

our analyses on bacterial species, 3 out of the 31 representative

enzymes are from eukaryotes, including 1 glycerol kinase (GlpK)

from Trypanosoma brucei and 2 xylulose kinases (XylB) from Pichia

stipitis and Candida sp. Xu316, respectively. We kept them in our

dataset just to show that our analysis could potentially be extended

to eukaryotic proteins. An expansion of this reference set to 446

proteins from a collection of fully sequenced bacterial genomes

was based on two simultaneous requirements: (i) no less than 30%

sequence identity to one of the reference proteins and (ii)

conserved genomic (operons and regulons) and functional

(pathways and subsystems) context [20,21]. The latter type of

requirement is rarely used in protein family analysis, as it is not

easily amenable to automation. The use of SEED subsystems [22]

allowed us to streamline identification of genomic neighbors of

Author Summary

The protein universe is under constant expansion and is
reshaping through multiple duplication, gene losses,
lateral gene transfers, and speciation events. Large and
functionally heterogeneous protein families that evolve
through these processes contain conserved motifs and
structural scaffolds, yet their individual members often
perform diverse functions. For this reason, the exact
functional annotation for their individual members is
difficult without detailed analysis of the family. In our
study, we performed such a detailed analysis of a
particularly heterogeneous FGGY kinase family through
the integration of several computational approaches. The
combination of phylogenetic and molecular approaches
allowed us to precisely assign function to hundreds of
proteins, thus reconstructing carbohydrate utilization
pathways in almost 200 bacterial species. This analysis
also showed that different molecular mechanisms could
evolve within a group of isofunctional proteins. Moreover,
based on our experience with this specific protein family of
FGGY kinases, we believe that our approach can be
generally adapted for the analyses of other protein families
and that the accumulation of evolutionary models for
various families would lead to a better understanding of
the protein universe.

Functional Evolution of the FGGY Kinase Family
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candidate FGGY kinases, as well as the presence or absence of

certain ‘‘signature enzymes’’ of catabolic pathways, helping

support or refute a considered functional assignment (see

Supplemental Table S2 for the identified genomic and functional

context with relevant functions). Although the 30% sequence

identity threshold is lower than typically used for homology-based

functional assignments, in our analysis it was strongly supported by

the observed consistency with genomic and functional context. In

further analysis we refer to this set of 446 FGGY kinases as a

confidently annotated reference set (CARS). It is important to

emphasize that our approach focused on the biological function of

CARS enzymes, using their participation in specific biological

pathways (Figure 1) as a key evidence for the functional

assignment. In general, the relationship between biological

function and biochemical substrate preferences of enzymes may

be quite complex. However, our computational analysis and some

experimental data argue in favor of rather good overall agreement

between these characteristics in the FGGY kinase family (see

below).

The confidently annotated reference set (CARS) of FGGY

proteins included 9 distinct substrate specificities forming 25

clusters based on 30% sequence similarity clustering (Table 1).

Some of the functions, such as glycerol kinase (GlpK), xylulose

kinase (XylB), and L-ribulokinase (AraB), span multiple clusters.

To identify cases of possible convergent evolution of substrate

specificities, we built a phylogenetic tree of all the CARS proteins

(Figure 2). The leaves of the tree represent individual proteins in

the reference set (Supplemental Table S1), and their leading

branches were colored according to the functions of the leaves. As

depicted in Figure 2, most proteins form tight clusters with

uniform function. This favors the divergent model, suggesting a

common ancestor for all enzymes of the same substrate specificity.

For example, the largest group in our dataset, the glycerol kinase

(GlpK, colored blue in Figure 2) group, although coming from five

different sequence clusters, forms a single large branch in the

phylogenetic tree, pointing to its ancestral nature and its single

origin. Some outliers, however, have been observed for a few other

FGGY kinase functions. The L-ribulokinase (AraB, colored dark

cyan in Figure 2) group appears to split into distinct branches

interspersed by D-ribulokinase (RbtK) and gluconokinase (GntK)

branches. This observation, in principle, opens a possibility of a

mixed model with elements of convergent or parallel evolution of

substrate specificities in some sub-branches.

To explore such ambiguous cases and elucidate the molecular-

level evolutionary history of the FGGY family, we used an

additional approach aimed at identifying signature amino acid

residue positions that are responsible for the recognition of a

specific substrate. Ideally, these so-called specificity-determining

Table 1. The list of nine functions observed for the proteins in the FGGY kinase family.

Function Abbr EC number Substrate Product
Reference_proteins
(Uniprot ID) Cluster_IDs

References
(PMID)

Structures
(PDB ID)

L-ribulokinase AraB 2.7.1.16 L-ribulose L-Ribulose-5P P94524, C4B4W2,
P08204, P06188,
Q9WYC0*

AraB_Clust11,
AraB_Clust222,
AraB_Clust228,
AraB_Clust94

9084180,
19346355,
11747300,
2989100

3QDK

Erythritol kinase EryA 2.7.1.27 Erythritol D-Erythritol-4P Q9ZB32 EryA_Clust85 12639570

L-fuculokinase FucK 2.7.1.51 L-fuculose L-Fuculose-1P P11553, Q04I07 FucK_Clust100,
FucK_Clust124

3005235,
12618474

Glycerol
kinase

Glpk 2.7.1.30 D-Glycerol D-Glycerol-1P P18157, O34154,
P0A6F3, P44400,
Q9WX53, O66131,
Q9NJP9, Q9X1E4*

GlpK_Clust115,
GlpK_Clust22,
GlpK_Clust265,
GlpK_Clust309,
GlpK_Clust76

2127799,
2545516,
9162046,
2826434,
11388799,
9972264,
9540790,
11154065

1BO5, 1BOT, 1BU6,
1BWF, 1GLA, 1GLB,
1GLC, 1GLD, 1GLE,
1GLF, 1GLJ, 1GLL,
1R59, 1XUP, 2DPN,
2W40, 2W41, 2ZF5,
3D7E, 3EZW, 3FLC,
3G25, 3GE1, 3H3N,
3H3O, 3H45, 3H46

Gluconokinase GntK 2.7.1.12 D-gluconate 6P-D-Gluconate P12011, Q9WYS4* GntK_Clust13,
GntK_Clust218

3011959 3GBT, 3LL3

L-xylulose
kinase

LyxK 2.7.1.53 L-xylulose L-Xylulose-5P P37677 LyxK_Clust48 11741871,
7961955

D-ribulokinase RbtK 2.7.1.47 D-ribulose D-Ribulose-5P O52716 RbtK_Clust25 9639934

Rhamnulo-kinase RhaB 2.7.1.5 L-rhamnulose L-Rhamnulose-1P P32171, P27030,
Q9X0G2*

RhaB_Clust137,
RhaB_Clust95

2558952,
8396120,
1657713

2CGJ, 2CGK,
2CGL, 2UYT

Xylulose
kinase

XylB 2.7.1.17 D-xylulose D-Xylulose-5P Q4JHR4, P09099,
P29444, P35850,
P21939, Q9P938,
P27156, Q9WXX1*

XylB_Clust152,
XylB_Clust252,
XylB_Clust29,
XylB_Clust342,
XylB_Clust66,
XylB_Clust87,
XylB_Clust9

16834601,
6320721,
1324398,
9835554,
1660563,
11872473,
1657868

3I8B, 2ITM,
2NLX, 3IFR

Titles of columns: Function—the functional specificity of proteins; Abbr—the abbreviations of function; EC number—the Enzyme Commission number; Substrate/
Product—the name of the substrates/products; Reference_proteins—the Uniprot accession numbers of the annotations supported by literature (functions determined
in our laboratory are marked by *); Cluster_IDs—the numbering of the 30% sequence clusters in CARS; References—PubMed identification numbers of the reference
publications; Structures—identifications of three-dimensional structures in the Protein Data Bank.
doi:10.1371/journal.pcbi.1002318.t001

Functional Evolution of the FGGY Kinase Family
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Figure 1. The three-dimensional structure, functional contexts, and genomic contexts of FGGY kinases. (A) The three-dimensional
structure of a FGGY kinase (left) and a spectrum of substrates that may be utilized by this family (right). The FGGY_N and FGGY_C domains are
colored red and green, respectively, shown in the example of a glycerol kinase (GlpK) from E. coli (PDB 1GLA). The co-product ADP was projected into
the binding site from the structure of another FGGY protein (PDB 2UYT). The substrates that are utilized by T. maritima were marked with a star (*)
with corresponding colors to the pathways in Figure 1B. (B) Overview of the metabolic pathways that employ FGGY kinases, shown in the example of
a hyperthermophilic bacterium, Thermotoga maritima. The enzyme names and their encoding genes in the T. maritima genome are shown using
respective background colors (as the shade or the frame) that indicate individual pathways, where the shaded boxes indicate genes in the genomic
context of FGGY genes (shown in Figure 1C). The five FGGY kinases encoded in the T. maritime genome and their respective substrates are
highlighted using black frames. Abbreviations: GlpF—glycerol uptake facilitator protein; GlpK—glycerol kinase; GlpD—glycerol-3-phosphate
dehydrogenase; AraNPQ—alpha-arabinosides ABC transport system; AbfA—alpha-N-arabinofuranosidase; AraA—L-arabinose isomerase; AraB—L-
ribulokinase; AraD—L-ribulose-5-phosphate-4-epimerase; RhaFGHI—rhamnose oligosaccharide ABC transporter; RhaA—L-rhamnose isomerase;
RhaB—rhamnulokinase; RhaD—rhamnulose-1-phosphate aldolase; XtpHJLMG—Xylan oligosaccharide ABC transporter; XloEFGKL—Xylose oligosac-
charides ABC transporter; XylEFG—Xylose ABC transporter; XynB—Beta-xylosidase; XylQ—alpha-xylosidase; XylA—Xylose isomerase; XylB—xylulose
kinase; IdnO—gluconate 5-dehydrogenase; GntK—gluconokinase; Gnd—6-phosphogluconate dehydrogenase; Rpe—ribulose-phosphate-3-epimer-
ase. (C) The genomic context of FGGY kinases in T. maritima. Each arrow indicates a gene in the T. maritima genome, and their relative positions
indicate the distance between different genes.
doi:10.1371/journal.pcbi.1002318.g001

Functional Evolution of the FGGY Kinase Family
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(or signature) positions (SDPs) should indicate columns in the

multiple sequence alignment of a family that are conserved within

an isofunctional subgroup of proteins while different between

subgroups with distinct specificities. Many tools have been

developed for the prediction of SDPs, using a variety of techniques

that take into account the sequence, structural, and phylogenetic

information of a protein family [23,24,25,26,27,28]. The SDPpred

algorithm [25], which we adopted for the purpose of our analysis,

is based solely on the statistical analysis of a multiple sequence

alignment. It determines a ranking of alignment columns based on

the assumption that proteins in the same group use a similar

molecular mechanism, i.e., conserved amino acid residues, to

carry out specific functions. In our analysis we combined the

predicted ranking of SDPs with protein structural information to

define signature residues (see Materials and Methods for details).

Since some functional subgroups in our dataset span multiple

Figure 2. Phylogenetic tree of proteins from the annotated protein set CARS (a subset of the entire FGGY kinase family). The root
was determined by using UvrC proteins (not shown) as an out-group, and the deep splits with a bootstrapping value higher than 40 are marked with
numbers indicating their bootstrapping values. The branches are colored based on their functional specificities, and the color scheme is consistent
with that used in Figure 1B. Some isofunctional groups were further divided into subgroups based on their positions in the tree, which is reflected in
their labels. The amino acid distribution of specificity-determining positions (SDPs) are shown as logo characters produced by the Weblogo program
[31]. The branches with three-dimensional structural information are marked with a star, and the branches supported by literature information are
marked with a black dot. The numbers in the black dots indicate the different species from which FGGY proteins were identified: 1—Thermotoga
maritima; 2—Escherichia coli; 3—Bacillus subtilis; 4—Brucella abortus; 5—Candida sp. Xu316; 6—Corynebacterium glutamicum; 7—Enterococcus
faecalis; 8—Haemophilus influenzae; 9—Klebsiella pneumoniae; 10—Lactobacillus brevis; 11—Lactobacillus pentosus; 12—Pichia stipitis; 13—Salmonella
typhimurium; 14—Streptococcus pneumoniae; 15—Streptomyces rubiginosus; 16—Thermus aquaticus; 17—Thermus thermophilus; 18—Trypanosoma
brucei.
doi:10.1371/journal.pcbi.1002318.g002

Functional Evolution of the FGGY Kinase Family
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low-identity sequence-based clusters, we first applied SDPpred to a

collection of the largest clusters from each specific group and then

mapped the predicted ranking of SDPs into all other clusters

through a ‘‘master’’ multiple sequence alignment to allow the

comparison of molecular mechanisms among different clusters

within an isofunctional group (Supplemental Figure S1). Of the

three-dimensional structures in the Protein Data Bank [29], 44

structures representing 17 distinct proteins were mapped to the

FGGY family based on database search using Hidden Markov

Models provided by Pfam database version 24.0 [30]. As a result,

five SDPs were selected, from which signature residues were

defined for each CARS protein, and a signature that reflects the

amino acid distribution in the five SDPs was determined for each

compact branch on the phylogenetic tree. Below, we will show

detailed analyses of these positions and their amino acid

distributions.

The five selected SDPs, while distant from each other in

sequence, are located in the vicinity of the active site holding

approximately the same positions in three-dimensional structures

of representative FGGY kinases from distinct isofunctional groups

(Figure 3). Side chains of the signature residues in these positions

tend to point toward the center of substrate-binding sites, forming

interactions with the substrates. For example, among the five

signature residues of glycerol kinase (GlpK), four (Arg83, Glu84,

Tyr135, and Asp245) form hydrogen bonds with the hydroxyl

groups of glycerol and one (Phe270) is in van der Waals contact

with the carbon backbone of glycerol [15]. An additional

validation of the predicted signature positions was provided by

the observation that the SDP-derived signature sequences (a

concatenated sequence of signature residues) would allow

functional classification of FGGY kinases, splitting the entire

FGGY protein space into tightly clustered and largely mono-

functional groups. This is illustrated by the protein similarity

networks (PSNs) reconstructed based on the sequence signatures

(Figure 4). Furthermore, a comparison of the PSN built on

sequence signatures with the PSN built on the entire sequences,

under various thresholds of sequence alignment E-values (Supple-

mental Text S3), showed that the functional information encoded

in the entire sequences is preserved in the five signature positions,

adding to the functional relevance of signature residues. These

observations strongly argue that the residues in the identified SDPs

play important roles in substrate recognition and the determina-

tion of functional specificities.

The amino acid distributions on SDPs form a signature of each

specific isofunctional group (and their subgroups) and are shown in

Figure 2 as consensus logos made with the Weblogo [31] software.

In addition, the SDP signatures can also be represented as position

weight matrices, and they were compared using a hierarchical

clustering approach based on the similarity of signature pairs

(Supplemental Text S2). The SDP signature of glycerol kinases

(GlpKs), in addition to their tight branching in the phylogenetic

tree, confirmed that they all came from the same origin. Although

members of the GlpK group have largely variable global

sequences forming five distinct clusters of less than 30% sequence

identity, among which only one cluster was selected for sequence-

based SDP prediction and others had their SDPs mapped from a

‘‘master’’ multiple sequence alignment of all CARS proteins, their

signature residues are extremely well conserved and identical

among different clusters. In the middle of the spectrum, the

xylulose kinase (XylB) group was divided into three branches in

the phylogenetic tree: XylB-I contains four clusters and is the most

dominant form of the xylulose kinases, while XylB-II, which

contains three clusters, was divided into prokaryotic branches

(XylB-II, Prk) and eukaryotic branches (XylB-II, Euk). The

signature motifs of all three clusters are very similar (Supplemental

Figure S3), with the prokaryotic branches of XylB-II having the

most variable amino acid distributions acting as a transition

between XylB-I and the eukaryotic branches of XylB-II. This is

also reflected in the relative positions of XylB-I and the two XylB-

II branches in the phylogenetic tree. In a more extreme case, the

L-ribulokinase (AraB) group has the least conserved signature

residues. This group was divided into four branches—AraB-I, -II,

-III, and -IV—on the phylogenetic tree. Indeed, they all have

distinct signature motifs, of which three (AraB-I, -II, and -IV) are

more similar than the fourth (AraB-III) (Supplemental Figure S3).

Although the signature of AraB-III is more distant from other L-

ribulokinases (AraBs), this branch is closer to AraB-I and -II on the

phylogenetic tree, whereas AraB-IV, whose signature is closer to

AraB-I and -II (Supplemental Figure S3), is more distant from

other L-ribulokinases (AraBs) on the tree. This observation favors

the simple divergent model in the evolution of L-ribulokinases

(AraBs), in which a common ancestor of all L-ribulokinases (AraBs)

diverged within the same isofunctional group, followed by the

emergence of at least two distinct biochemical mechanisms for the

implementation of the AraB function. The D-ribulokinase (RbtK)

and gluconokinase (GntK) branches, which independently

emerged from AraB-II and AraB-III, carry signatures that are

similar to these two subgroups, respectively, indicating that they

adopted the different signature residues and evolved from the two

subgroups of L-ribulokinase (AraB). An additional case of interest

was the L-fuculokinase (FucK) and rhamnulokinase (RhaB)

groups. They carry very similar signatures (Supplemental Figure

S3) and form a poorly resolved single cluster on the phylogenetic

tree (shown as green and orange in Figure 2), suggesting these two

functions not only are evolutionarily related, but also have

employed similar biochemical mechanisms.

In addition to assisting the evolutionary analysis, identification

of SDPs helped in accurate propagation of functional assignments.

Thus, we used a combination of context-based and signature-

based analyses (see Materials and Methods for details) to expand

annotations of all 9 specificities over the entire set of 191

completely sequenced bacterial genomes comprising the original

CARS. As a result, functional assignments were made for 785

additional proteins from these complete genomes based on the

consensus between signature residues and the genomic context of

newly annotated FGGY kinases. This expansion allowed us to

analyze the taxonomic distribution of FGGY kinase functions,

illustrated here by a projection over a species tree (a subtree

derived from [32], see Materials and Methods for more details)

(Figure 5). Comparative analyses of the protein and species trees

(as in Figures 2 and 5) are commonly used for detailed

evolutionary reconstructions of functionally heterogeneous protein

families [33,34,35].

The obtained results showed that glycerol kinase (GlpK) is the

most dominant isofunctional group that exists in nearly all species.

As another extreme, D-ribulokinase (RbtK) and erythritol kinase

(EryA) appear exclusively in Alphaproteobacteria, whereas L-

xylulose kinase (LyxK) exists only in a few groups of Gammapro-

teobacteria. The taxonomic distributions of the various subgroups of

L-ribulokinase (AraB-I, -II, -III, -IV) and xylulose kinases (XylB-I,

-II) were indicated with roman numerals on the species tree. In the

case of AraB, while the most abundant group, AraB-I, is spread

broadly among various phyla, AraB-III and AraB-IV are contained

within the two lineages of Firmicutes and Thermotogales,

respectively. Similarly, XylB-I is the dominant case, whereas

XylB-II is confined only in Actinobacteridae. Notably, the FGGY

kinase family experienced several instances of lineage-specific

expansion, for example, in Pasteurellales and Enterobacteriales,

Functional Evolution of the FGGY Kinase Family
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leading to an extensive repertoire of six FGGY kinases including a

‘‘newborn’’ L-xylulose kinase (LyxK) function. Although the

analysis of lateral gene transfer events was beyond the scope of

this study, it apparently played a substantial role (together with

massive lineage-specific gene losses) in shaping up the observed

mosaic distribution of several FGGY kinase functions. For example,

Figure 3. Position of signature residues in the three-dimensional structures of FGGY kinases. Labels in each cell show the protein and
chain identification numbers from the Protein Data Bank [29], as well as the protein function. The protein backbone is shown in white cartoon
representation, the signature residues are marked with red sticks, and the co-crystallized substrates are marked as cyan sticks.
doi:10.1371/journal.pcbi.1002318.g003
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the AraB-III subgroup was shared by species out of the Firmicutes

lineage (Actinobacteridae and Pasteurellales), while the AraB-II

subgroup appeared in some Firmicutes.

Discussion

A majority of proteins in the protein universe belong to a

relatively small number of large protein families [6]. In evolution,

large protein families have expanded through duplications and

subsequent specializations within single genomes, leading to the

emergence of new (but usually similar) functions within the same

family. However, little is known about how different functions

emerge in protein families and how the emergence of such

functions happens on the molecular level. Here, in the example of

the FGGY carbohydrate kinase family, we assessed contributions

of divergent and convergent evolution of functions in the history of

this family. Such analyses could not have been done even a few

years ago because of the lack of experimental data, three-

dimensional structural information, and sufficiently large sets of

functionally assigned protein sequences from a wide variety of

organisms. In order to reconstruct the evolutionary history of

FGGY kinases, we built a reference set of proteins with accurate

annotations of biological functions (CARS) based on experimental

data and context-based functional predictions. We then expanded

it by combining predictions based on genomic and functional

context analysis with predictions based on signature residues. This

allowed us to study the evolution of substrate specificity in the

FGGY kinase family on both phylogenetic and molecular levels,

combining a protein phylogenetic tree, a species tree, and

signature residues.

To determine specificity-determining positions (SDPs), we used

a modified integrative approach combining the sequence-based

algorithms [25,26,36] with the structure-based determination of

functionally important residues [15] using three-dimensional

structures of representative FGGY kinases co-crystallized with

their natural substrates. The consensus of both helped eliminate

false-positive predictions and narrowed our search to positions that

are essential for molecular binding rather than for general catalysis

(Supplemental Figure S2). The identified SDPs were highly useful

in the evolutionary analysis of FGGY kinases and provided

consistent functional assignments for both the CARS proteins

(Figure 4B) and the new proteins in a number of complete

genomes. They also gave remarkable insights into the structural

basis and biochemical mechanism of specific substrate recognition

in the FGGY family. The molecular signatures of SDPs, however,

have certain limitations in discriminating some functional groups.

For example, the signatures of the L-fuculokinase (FucK) and

rhamnulokinase (RhaB) groups are very similar to each other

(Supplemental Figure S3), and these two functional groups form a

poorly resolved single branch in the phylogenetic tree (Figure 2).

In this case it is tempting to speculate that the observed similarity

at their overall sequence and signature levels reflects the chemical

similarity of the stereoisomeric substrates, L-fuculose and L-

rhamnulose, but at the same time we should keep in mind that this

does not hold true for all stereoisomers. For instance, the similarity

between SDP signatures of D- and L-xylulose kinases, or D- and

L-ribulokinases, is less obvious.

The construction of protein phylogenetic trees is a common

approach for the evolutionary study of protein families. In the case

Figure 4. Protein similarity networks reconstructed based on entire sequences (A), as well as signature sequences (B), for all FGGY
proteins in CARS. Each node in the network represents a single protein in the annotated dataset, and each edge represents a BLAST alignment
with an E-value better then a given threshold indicated in the graph. The nodes are colored according to their functions (see Legend—color scheme
is the same as in Figure 2). The edges are colored in a gray scale: the darker the color is, the more significant the similarity is. The nodes were arranged
using the yFiles organic layout provided with Cytoscape version 2.7 [47].
doi:10.1371/journal.pcbi.1002318.g004
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of the FGGY family, phylogenetic analyses revealed a single origin

for eight out of nine studied isofunctional groups. However,

different L-ribulokinase (AraB) branches were seen on the

phylogenetic tree, suggesting two possible evolutionary scenarios:

(i) these branches represent decedents of distinct ancestor proteins

or (ii) these branches represent an early divergence of a common

ancestor. The former would support the mixed model, in which

the same function was ‘‘invented’’ independently more than once.

The latter scenario would support a simple divergent model. A

likely solution of the AraB conundrum was obtained by combining

the location of different branches on the phylogenetic tree with the

molecular-level analysis of signature residues. The signatures of

AraB-III and GntK contain successive methionine and histidine

residues at the first two positions, which also appeared in the XylB-

I cluster, suggesting a divergent evolution event that created the

GntK function from AraB-III. The same is true for RbtK, which

emerged from the AraB-II branch following the divergence of

their molecular binding sites. Therefore, the latter evolutionary

scenario (the simple divergent model) is favored, and it is quite

likely that the D-ribulokinase (RbtK), gluconokinase (GntK), and

L-ribulokinase (AraB) functions all emerged from a common

ancestor but followed distinct molecular-level solutions. The

evolution of multiple molecular solutions for the L-ribulokinase

function reflected the plasticity of enzyme active sites as described

by Todd et al. [37].

The combined analyses of a protein phylogenetic tree and a

species tree allowed a complete evolutionary reconstruction of the

FGGY kinase family (Figure 6). The glycerol kinase (GlpK), L-

ribulokinase (AraB), and xylulose kinase (XylB) groups are the

most dominant isofunctional groups that exist in the majority of

bacterial species. As inferred by both the protein and the species

trees, they are probably the ancestral forms of FGGY kinases in

bacteria. While GlpK remained unchanged in its functional

specificity and molecular mechanism, AraB and XylB diverged to

form distinct biochemical mechanisms within the same function or

to form new functional groups. In the case of AraB, at least two

distinct solutions have emerged for the recognition of L-ribulose

substrate with the splitting of Thermotogales and Firmicutes

species. Additionally, an ancestral AraB apparently gave rise to

two distinct functions, gluconokinase (GntK) and D-ribulokinase

(RbtK). Four distinct groups of diverse specificities appear to have

evolved within the XylB branch, and among them is a relatively

recent divergence of rhamnulokinase and L-fucolokinase func-

tions. The GlpK group stayed remarkably unchanged during

evolution, exhibiting a high level of conservation of signature

residues compared to other isofunctional groups. This observation

may be rationalized by considering at least two types of

constraints. First of all, GlpK plays a unique role, which extends

beyond carbohydrate catabolism and links to the lipid metabolism,

in the central metabolic network of all bacterial species (Figure 1B).

Figure 5. Distribution of FGGY kinase functions in a species tree extracted from a published tree of bacterial species [32]. Branches in
the species tree were collapsed to show the higher taxonomic level. The colored rectangle bars (color scheme is the same as in Figure 2) on the right
shows the functional distributions of each taxonomic group. The width of the bar indicates the proportion of species within a taxonomic group
containing a specific function. The XylB and AraB groups are numbered according to the divisions in the protein tree to show their evolutionary
patterns. The original layout was made with the Web interface of iTol [49] and was proportionally scaled and manually labeled. All rectangle bars
were zoomed in proportionally so that they could be highlighted in the graph.
doi:10.1371/journal.pcbi.1002318.g005
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This is consistent with the ancestral origin and broad conservation

of GlpK across the species tree (Figure 5). Second, glycerol is the

smallest (three-carbon) in the entire panel of substrates of FGGY

kinases (Figure 1A, right panel), which may provide another set of

constraints on active site variations while preserving optimal

affinity and specificity.

The functional assignments in our dataset were based on the

reconstruction of genomic and functional context and reflect the

biological functions of proteins. The signature residues, on the

other hand, should in principle reflect the biochemical specificities

of proteins regardless of their biological context. The fact that we

can extract compact biochemical signatures from the isofunctional

groups annotated through biological-context analyses suggests that

there is good agreement and relatively little promiscuity between

biological function and biochemical specificity. In fact, experi-

mental data available so far suggest a typically narrow specificity of

Figure 6. The proposed evolutionary model of the FGGY kinase family.
doi:10.1371/journal.pcbi.1002318.g006
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FGGY kinases to the preferred physiologically relevant substrate.

Our experiments on all five T. maritima FGGY kinases showed

non-overlapping substrate specificity profiles, in each tested case

showing over tenfold preference for the respective physiological

substrate (Rodionova et al., unpublished). Therefore, members of

the FGGY family are characterized by their specific functions that

are mediated by a small number of specificity-determining

residues. A notable exception is the rhamnulokinase (RhaB) and

L-fucolokinase (FucK) functions. Our computational analyses on

the protein phylogenetic tree and signature residues suggested that

they might have mixed specificities to both substrates (L-

rhamnulose and L-fucolose), and biochemical experiments also

confirmed that an E. coli rhamnulokinase has a spectrum of

potential substrates that includes L-rhamnulose, L-fuculose, and L-

xylulose [38,39]. This biochemical promiscuity can also be

explained by our evolutionary model, in which the functions of

L-fuculokinase (FucK), L-xylulose kinase (LyxK), and erythritol

kinase (EryA) emerged relatively recently from rhamnulokinase

(RhaB).

Finally, our study provides a workflow that can be efficiently

used for the functional and evolutionary analysis of large and

functionally heterogeneous protein families. Based on our

experience with the specific protein family of FGGY kinases, we

believe that this approach can be generally adapted for the

analyses of other protein families. Specifically, this workflow can

be useful in building an initial set of high-quality annotations to

allow the application of other high-throughput approaches for the

identification and analyses of isofunctional subfamilies [33,40,41].

Materials and Methods

Preparation of the annotated protein set
The confidently annotated reference set (CARS) of proteins was

created through expanding a literature-based reference set of 31

proteins (Table 1) based on sequence similarity and comparative

genomic approaches. Specifically, we required that the annotated

proteins should have at least 30% sequence similarity to a

reference protein and that the annotation should be supported by

the genomic and functional context [20]. The 30% sequence

clustering was achieved using the UCLUST method implemented

in the USEARCH package [42]. We used the SEED annotation

and analysis tool [22] to collect information about the genomic

and functional context of proteins. A subsystem was built for the

nine reported functions of FGGY kinases and their adjacent

functions in the respective metabolic pathways, and then all the

complete genomes in the RAST server [43] were mapped to the

subsystem to check for the functional annotation of FGGY kinases

and their neighbors in the genomes. The functional assignment of

a specific protein is confirmed and included into CARS only when

it has genomic neighbors that perform relevant functions in a

metabolic pathway.

Prediction of signature residues
The signature residues in our analyses were identified based on

two criteria. First, the residues should be significantly conserved

within a subgroup of proteins of identical substrate specificity, and

they should be distinct among different subgroups. Second, the

residues should locate within a certain range of a co-crystallized

substrate in the three-dimensional structure. The first criterion was

achieved using the SDPpred server [25], which requires as input a

multiple sequence alignment (MSA) and a grouping of proteins

based on their specificity. In this case, the MSA of all CARS

proteins was built with the MUSCLE program [44], and we used a

modified procedure to better accommodate the algorithm of

SDPpred (Supplemental Text S1). The result of SDPpred is a list

of rankings for each individual alignment position, and the ranking

indicates the significance of the position in distinguishing different

isofunctional groups. The second criterion was achieved by

calculating the average distance from a residue position to the

substrate. The residues were mapped from structures to the MSA

so that an average distance could be calculated for each alignment

position. The average distances of the residues to the substrates

were plotted against the SDPpred ranking of residue positions to

show the overall trend of these two parameters (Supplemental

Figure S2). Five positions were selected from the MSA using the

following threshold: the ranking should be better than the global

minimum of a Bernoulli estimator, and the average distance to co-

crystallized, functionally relevant ligands in the structured proteins

should be no more than 4 Å. The false-positive predictions using

the sequence-based SDPpred algorithm alone were indicated with

filled black dots, and those using structure-based information alone

were shown in a dashed square in the upper left of Figure S2. The

consensus of both helped to eliminate these false-positive

predictions.

Reconstruction of protein similarity networks
The protein similarity networks (PSNs) were built using the

method described in [45], and the same approach was used to

build PSNs for both signatures and entire sequences. First,

alignments were obtained for each pair of sequences using the

‘‘blast2seq’’ program from the NCBI toolkit [46] with a parameter

of word-size equal to 1. The program returns an E-value for each

pairwise alignment, indicating its significance. Second, a threshold

is chosen for the selection of sequence pairs that are significantly

similar (with an E-value better than the cutoff value). Finally, a

network is built based on the pairwise E-values and the selected

threshold. Each node in the network indicates a protein in CARS,

and each edge in the network indicates that the pair of nodes

linked by this edge has an alignment with an E-value more

significant than the selected threshold. The network was visualized

using Cytoscape software version 2.7 [47], and the nodes in the

network were arranged using the yFiles organic layout method.

Similarity and hierarchical clustering of signatures
Position weight matrices (PWMs) were built for the annotated

protein set on each 30% sequence cluster. The matrices each have

20 rows and 5 columns, indicating the distribution of 20 amino

acids on the 5 signature positions. Pairs of signatures (in the form

of PWMs) were compared based on the correlation coefficients

calculated with the corr2 function in MATLAB. Based on the

correlation coefficients, signatures of different protein clusters were

grouped using hierarchical clustering implemented in the hclust

function in the R software package. More details on how to

evaluate the similarity of PWMs and how to perform hierarchical

clustering of signatures are in the Supplemental Text S2.

Phylogenetic trees
A protein phylogenetic tree (Figure 2) was built on the CARS

proteins with the FastTree program [48] using default parameters.

The root (marked as a black circle) of the protein tree was

determined using the endonuclease subunit of excinuclease ABC

(UvrC) as an out-group. The bootstrapping values on the tree were

computed with the consensus of 100 random trees using the ‘‘Fast

Tree-Comparison Tools’’ provided with the FastTree program

(scaled so that 100 is the maximum), and the random trees were

calculated with the ‘‘-n’’ option of the FastTree program [48] over

a list of bootstrapped sequences generated from the original
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sequence alignment using the SEQBOOT program in the

PHYLIP package.

The species tree was extracted from a published tree of bacterial

species built on a concatenated alignment of a number of marker

genes [32]. When extracting the species tree, we only considered

species whose genomes were completely sequenced, and we only

used this tree to determine location of a species, but not specific

strains. In Figure 5, branches were collapsed to show an overview of

the more general taxonomic level, and this general taxonomic

annotation was shown as leaves of the tree. A complete expansion of

all species and their functional predictions in the species tree is listed

in Supplemental Table S3. The functional distribution view in

Figure 5 was prepared with the support of the iTol interface [49].

The width of the colored bars is proportional to the ratio between

the number of species that contain a protein of given function and

the total number of species examined in a taxonomic group.

Full genome survey of FGGY kinases in selected bacterial
species

In order to remove biases given by false-negative annotations in

the species tree analyses, we expanded the training set (only for the

species tree analysis) through full genomic surveys of all species in

the annotated set. All the predicted FGGY functions (Supplemen-

tal Table S3) were based on genomic and functional context

prediction, as well as the identity of signature residues. Functional

assignments were made when consistencies were reached between

the two criteria and were added to the functional spectrum views

in Figure 5.

Supporting Information

Figure S1 Sequence-based prediction of specificity-
determining positions (SDPs). When the level of sequence

similarity within isofunctional groups is low, a sequence-based

protein clustering is needed to identify a list of conserved

isofunctional clusters for the application of standard SDP

prediction algorithms. The predicted SDPs can then be mapped

to the rest of the proteins using a master alignment of the entire

family. The amino acid distributions among different clusters

within the same isofunctional group can then be compared to

identify same or distinct chemical mechanisms. F1 and F2 indicate

two different isofunctional groups within a family. C1, C2, C3, and

C4 are conserved isofunctional clusters, among which C1 and C3

were selected in SDP prediction to represent F1 and F2,

respectively.

(TIF)

Figure S2 Selection of SDPs in a multiple sequence
alignment (MSA) of FGGY kinases combining sequence
and structural information. The SDPpred ranking of MSA

positions were plotted against their average distances from co-

crystallized, functionally relevant ligands in three-dimensional

structures. Each data point represents an alignment position. The

open circles are all positions in the MSA that have an SDPpred

ranking and an average distance value. The filled black dots

indicate MSA positions with an SDPpred ranking higher than the

global minimum. The red circles indicate the five signature residue

positions with and SDPpred ranking higher than the global

minimum and the average distance no more than 4 Å.

(TIF)

Figure S3 Comparison of SDP signatures among clus-
ters of isofunctional proteins. (A) A heat map based on the

correlation coefficients of the signature position weight matrices.

The heat map is symmetric, with identical row and column labels.

Each cell in the heat map contains the correlation coefficient of

two signatures indicated by their column and row labels. The heat

map is color coded so that brown indicates higher and blue

indicates lower correlation coefficient values. (B) An enlarged

version of the similarity tree in the heat map. The tree was built

based on a hierarchical clustering approach implemented in the

hclust tool in the R software package. Red boxes indicate the

global-level clustering (based on signature identity) of the protein

clusters.

(TIF)

Table S1 List of proteins in the confidently annotated
reference set (CARS) with their annotations based on
literature and/or context-based analyses. Uniprot_Acc:

the Uniprot accession number of proteins; SEED_PEGid: the

protein identification number in SEED; Uniprot_Recname: the

Uniprot-recommended name of the protein; Uniprot_Subname:

the submitter-recommended name of the protein; Organism:

organism name from which the protein was identified; Context-

based annotation: the annotation based on genomic and functional

context analyses; Functional_context: the number of proteins in

the genome that perform neighboring functions in a metabolic

pathway of the target protein; Genomic_context: the number of

proteins in a same operon of the target protein that perform

neighboring functions in the metabolic pathway; Reference_an-

notation: the annotation based on literature; Clust_ID: the cluster

numbers of the target proteins in 30% sequence identity clustering.

(PDF)

Table S2 Genomic and functional context of proteins in
the confidently annotated reference set (CARS). Uniprot

_Acc: the Uniprot accession number of proteins; SEED_PEGid:

the protein identification number in SEED; Context-based

annotation: the annotation based on genomic and functional

context analyses; Functional_context: the number of proteins in

the genome that perform neighboring functions in a metabolic

pathway of the target protein (same as in Table S1); Functio-

nal_context_PEGids: the SEED protein identification numbers of

the functional context; Genomic_context (same as in Table S1):

the number of proteins in a same operon of the target protein that

perform neighboring functions in the metabolic pathway;

Genomic_context_PEGids: the SEED protein identification num-

bers of the genomic context.

(PDF)

Table S3 Prediction of FGGY kinase functions in a list
of selected genomes based on genomic and functional
context prediction, as well as the identity of signature
residues. Taxonomy_ID: the taxonomy identification numbers

of the species; Species (Strain): the name and strain number of the

species; Uniprot_list: the list of FGGY proteins identified by their

Uniprot Accession numbers; Taxonomy_level: the taxonomy

levels chosen in Figure 5 to collapse the species tree; Species: the

name of species without counting strain names (when calculating

the existence of various FGGY functions in the species tree, the

counts were averaged among various strains of the same species,

which is represented only once on the tree); Functions: the

existence of various FGGY functions (see Table 1 for the full

names of different functions), a number larger than 0 indicates a

function exists in the genome, ‘‘0’’ indicates a function does not

exist in the genome.

(PDF)

Text S1 The prediction of SDPs, combining sequence
and structural information.

(DOC)
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Text S2 The hierarchical clustering of SDP signatures.
(DOC)

Text S3 Reconstruction and analysis of protein simi-
larity networks.
(DOC)
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