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Abstract

Overlaying differential changes in gene expression on protein interaction networks has proven to be a useful approach to
interpreting the cell’s dynamic response to a changing environment. Despite successes in finding active subnetworks in the
context of a single species, the idea of overlaying lists of differentially expressed genes on networks has not yet been
extended to support the analysis of multiple species’ interaction networks. To address this problem, we designed a scalable,
cross-species network search algorithm, neXus (Network - cross(X)-species - Search), that discovers conserved, active
subnetworks based on parallel differential expression studies in multiple species. Our approach leverages functional linkage
networks, which provide more comprehensive coverage of functional relationships than physical interaction networks by
combining heterogeneous types of genomic data. We applied our cross-species approach to identify conserved modules
that are differentially active in stem cells relative to differentiated cells based on parallel gene expression studies and
functional linkage networks from mouse and human. We find hundreds of conserved active subnetworks enriched for stem
cell-associated functions such as cell cycle, DNA repair, and chromatin modification processes. Using a variation of this
approach, we also find a number of species-specific networks, which likely reflect mechanisms of stem cell function that
have diverged between mouse and human. We assess the statistical significance of the subnetworks by comparing them
with subnetworks discovered on random permutations of the differential expression data. We also describe several case
examples that illustrate the utility of comparative analysis of active subnetworks.
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Introduction

Developments in genomic and proteomic technologies in recent

years have given us numerous methods for capturing high

resolution snapshots of cellular processes. The end result of a

genome-scale experiment is typically a long list of candidate genes

that provide a basis for further, more detailed, follow up

experiments. For example, gene expression microarrays are a

popular approach for identifying differentially expressed genes

between two cell types or experimental conditions, and this

technology typically yields several hundred to a few thousand

differentially expressed genes in a typical comparison [1,2]. While

there are sometimes obvious biological processes represented

within these lists, developing precise hypotheses from such a long

list of candidates can be challenging. Although to varying degrees,

this is also true of other genome-scale experiments or screens (e.g.

Genome wide association studies [3] or genetic interaction screens

[4]). In short, the bottleneck in genomic research has quickly

moved from the production of high-quality data to interpretation

and hypothesis generation.

One powerful approach that has been used to aid in the

interpretation of candidate genes lists is integrative analysis with

complementary genome-scale data. For example, in a landmark

study, Ideker et al. addressed the challenge of interpreting lists of

significantly differentially expressed genes by overlaying them on a

protein-protein interaction network [5]. They found that certain

groups of differentially expressed genes tend to cluster together on

the interaction network, building confidence that the signature was

indeed biologically relevant and suggesting that entire physical

modules were differentially expressed together. This approach has

since been extended to several other scenarios, all demonstrating

the utility of this idea. For example, Rajagopalan et al. extended

Ideker’s method to larger, literature-curated biological networks

[6]. Others incorporated co-expression scores to favor selected

edges of the protein interaction network [7,8,9,10]. Dittrich et al.

later formulated the problem as an integer linear programming

optimization problem [10]. Recent work has also extended this

idea to show that sample classification based on expression profiles

can also take advantage of complementary structural information

in protein-protein interaction networks [11].

In separate studies, groups have compared and aligned the

structure of protein-protein interaction networks across species

[12,13]. The basic approach adopted by these methods is to

identify subgraphs with conservation at the protein sequence level

PLoS Computational Biology | www.ploscompbiol.org 1 December 2010 | Volume 6 | Issue 12 | e1001028



(nodes) as well as at the physical or functional interaction level

(edges). This approach has been used to suggest core pathways that

are conserved across species and to build confidence in individual

protein-protein interactions based on the co-occurrence in

multiple species [12,13]. However, to our knowledge, no one

has yet applied this idea to study network-based patterns of

expression across species. We propose that just as protein-protein

interaction networks can be mined for conserved patterns,

differential expression patterns overlaid on biological networks

can be aligned to identify conserved patterns of expression, which

we call conserved active subnetworks.

In this study, we describe a novel approach for identifying

conserved active subnetworks in interaction networks across

multiple species. Given differential expression measures represent-

ing analogous phenotypes in two different species and correspond-

ing interaction networks (for example, protein-protein interaction

networks), our approach identifies tightly connected network

modules that show a high degree of differential expression, i.e.

dense subnetworks, and are conserved in both networks. This is in

contrast to previous approaches, which focused on using

differential expression or other activity scores to identify dense

subnetworks in protein-protein interaction networks for a single

species [5,6,7,8,9,10,11].

In addition to addressing the new question of conservation of

network patterns across species, our approach presents a scalable

solution to active subnetwork identification, which has typically

been restricted to relatively sparse protein-protein interaction

networks. Sparse coverage of current protein-protein interaction

studies limits the ability to match patterns across species. Recent

work in area of genomic data integration helps to address this

issue. Several approaches now exist which integrate interaction

and other information to infer functional associations between

genes, to form functional linkage networks [14,15,16]. Such

approaches can incorporate protein-protein and genetic interac-

tions, gene expression, protein localization, phenotype, and

sequence data; and have been applied now in many species

including yeast, bacteria, worm, fly, plants (Arabidopsis), mouse,

and human [14,15,16,17,18,19,20,21]. These networks are often

significantly denser than protein-protein interaction networks and

include hundreds of thousands or even millions of weighted edges

that reflect confidence in gene-gene functional relationships. The

power (and challenge) in using functional linkage networks is that

they capture a broad range of functional relationships that have

relevance for defining network modules: for example, physical

interactions between proteins, co-expression, regulatory relation-

ships, or shared mutant phenotypes. This is in contrast to protein-

protein interaction networks which focus on physical interactions

between proteins, our knowledge of which is relatively limited in

many species, particularly higher eukaryotes. A more detailed

comparison of functional linkage and protein-protein interaction

networks and the implications for their use for active subnetwork

discovery is provided as Supplementary Material (see a detailed

discussion in Text S1, Note 1, ‘‘Implications of using functional

linkage vs. physical interaction networks for active subnetwork

discovery’’).

Given their more comprehensive coverage of a broad variety of

gene relationships, functional linkage networks should allow for

more sensitive discovery of networks that are differentially

expressed under various conditions of interest. However, with

their broader coverage also come several computational issues.

Given the fact that functional linkage networks are orders of

magnitude more dense than protein-protein interaction networks,

existing algorithms for the discovery of dense subnetworks do not

easily scale to this problem. Using functional linkage networks

from human and mouse as a basis, we applied our scalable cross-

species network discovery approach to identify conserved

subnetworks that are differentially active in stem cells relative to

differentiated cells based on parallel gene expression studies in

mouse and human. We show that these conserved patterns are not

likely to have occurred by chance, and that they are enriched for

known as well as novel stem cell and differentiation-related

processes. Another useful application of our approach is to find

functional modules which have diverged or which have been

rewired across the two species, which has been previously

approached using expression data alone [22]. We designed a

variation of our cross-species network search approach to find a

number of species-specific networks, which likely reflect differences

in the active cellular program between mouse and human

pluripotent stem cells. Finally, we demonstrate the usefulness of

our algorithm by discussing specific examples of subnetworks

discovered, some of which highlight the potentially novel

candidate genes involved in the maintenance of stem cell

pluripotency.

Results/Discussion

A method for discovering conserved active subnetworks
across species

We developed an algorithm to find conserved active subnet-

works across species (Figure 1). Our approach requires lists of

differentially expressed genes and corresponding fold change

values in two different species, assumed to represent analogous

conditions. The aim of our approach is to overlay gene activity

scores on the respective functional linkage or interaction networks

to discover dense subnetworks with a large number of differentially

active genes with similar expression patterns in both species. Our

approach assumes a set of orthologous clusters for the two species

of interest and weighted linkage networks in both species, although

it can be also applied to binary interaction networks (e.g. protein-

Author Summary

Microarrays are a powerful tool for discovering genes
whose expression is associated with a particular biological
process or phenotype. Differential expression analysis can
often generate a list of several hundred or even thousands
of significant genes. While these genes represent real
expression differences, the large number of candidates can
make the process of hypothesis generation for further
experimental studies challenging. Use of complementary
datasets such as protein-protein interactions can help filter
such candidate lists to genes involved with the most
relevant pathways. This approach has been applied
successfully by many groups, but to date, no one has
developed an approach for discovering active pathways or
subnetworks that are conserved across multiple species.
We propose an algorithm, neXus (Network – cross(X)-
species – Search), for cross-species active subnetwork
discovery given candidate gene lists from two species and
weighted protein-protein interaction networks. We vali-
date our approach on expression studies from human and
mouse stem cells. We find many active subnetworks that
are conserved across species relevant to stem cell biology
as well as other subnetworks that show species-specific
behavior. We show that these networks are not likely to
have been discovered by chance and discuss several
specific cases that reveal potentially novel stem cell
biology.

Cross Species Active Subnetworks Discovery
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protein interaction networks [23]). Briefly, subnetworks are

simultaneously grown in both species from seed genes by adding

nearby genes in the interaction networks that maximize the

average activity score of the subnetwork while at the same time

maintaining a minimum desired clustering coefficient of the genes

in the subnetwork (see Materials and Methods for details).

Subnetwork growth is stopped when the average activity score

reaches a minimum threshold. This process is then repeated with

each differentially active gene in either species serving as the seed.

The result is a set of highly clustered subnetworks with a high

density of matched differential expression in both species (see

Materials and Methods for details).

Figure 1. A method for discovering conserved active subnetworks across species. (A) The flowchart describes the growth of a subnetwork
from a candidate seed gene (red) in the functional linkage network. (B) Genes that are functionally related to the seed are defined as those whose
path confidence from the seed gene is above a certain threshold (colored yellow in A), and are considered to be the functional neighborhood of the
seed. The aim of the approach is to integrate the expression data with functional linkage networks and discover active conserved subnetworks. (C)
The candidate subnetwork initially contains the seed gene and is grown by adding genes iteratively from the functional neighborhood so as to
maximize the average expression activity score of the genes in the subnetwork. At all iteration steps, the connectivity constraint must be satisfied
before a candidate gene is added. The nodes in the growing subnetworks are genes and the edge-weights are derived from the functional linkage
network in either species. The genes are colored green if they are up-regulated in stem cells relative to differentiated cells and red if they are down-
regulated in stem cells relative to differentiated cells. The color intensity represents the expression normalized fold change in either direction.
doi:10.1371/journal.pcbi.1001028.g001

Cross Species Active Subnetworks Discovery
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Differential expression analysis of a compendium of
human and mouse stem cell expression data

To test our subnetwork discovery method, we compiled a

compendium of gene expression data for mouse and human

pluripotent stem cells. Briefly, 249 mouse and 132 human

expression profiles were obtained from several independent

datasets from the Gene Expression Omnibus (GEO) database

[24] (Table S3, S4). Our goal was to identify subnetworks whose

activity was associated with the maintenance of stem cell

pluripotency in both human and mouse. It has been shown that

human embryonic stem (ES) lines across the world are identical in

expression of key pluripotency markers like Nanog and Pou5f1,

but they can show remarkable differences in expression of other

lineage specific markers such as AFP, possibly due to different

culture conditions and varying levels of spontaneous differentiation

in cultures [25]. Thus, we reasoned that a large compendium of

data in both species could support a more robust differential

expression analysis, free of any biases from individual studies or

cell lines. To group expression profiles at similar stages of

differentiation, we used non-negative matrix factorization (NMF)

[26], which is an unsupervised clustering method (see Materials and

Methods for details). Clusters resulting from NMF clearly separated

the expression profiles of undifferentiated, pluripotent cells from

those that were in early stages of differentiation or late stages of

reprogramming. Differential expression analysis (SAM) was then

performed between these two classes of samples to identify a set of

genes that change in expression as the pluripotent cells start to exit

the self-renewal program during differentiation (see Materials and

Methods for details). This clustering and differential expression

analysis process was performed independently on the mouse and

human expression data. The genes deemed significant by this

analysis were labeled with activity scores reflecting normalized fold

change values (see Materials and Methods for details) and used as

input for our subnetwork discovery approach.

It is important to note that the method for differential

expression analysis (or other means of generating activity scores)

is completely independent of the subnetwork discovery algorithm.

Our large compendium of stem cell expression data for mouse and

human provided an interesting setting for subnetwork discovery,

but our approach could also be applied to activity scores derived

from more standard, single-dataset differential expression studies,

assuming comparable datasets are available for two different

species (see Text S1, Note 2, ‘‘neXus applied to single dataset

differential expression study’’ and Figure S1 for an example).

Evaluation of conserved subnetworks
We applied our subnetwork discovery approach to the results of

the stem cell differential expression analysis and functional linkage

networks from human and mouse. Human and mouse functional

linkage networks were obtained from previous work [15,16]. The

human network incorporates physical and genetic interactions,

sequence information (shared protein domains, transcription factor

binding sites), and gene expression profiles [15]. The mouse network

incorporates physical interaction data, shared phenotype data,

phylogenetic profile information, the yeast functional linkage network

where orthologs exist, and gene expression information [16]. These

functional networks reflect broad functional relationships between

genes or proteins and thus are more general than protein-protein

interaction networks (see a detailed discussion in Text S1, Note 1,

‘‘Implications of using functional linkage vs. physical interaction

networks for active subnetwork discovery’’). While the input data for

these networks are largely independent, physical interaction data for

mouse was derived from human interactions (see a detailed discussion

in Text S1, Note 3, ‘‘Independence of the datasets’’).

Conserved active subnetworks between human and mouse were

identified by varying the two parameters of the algorithm, the average

expression activity (normalized fold change) of the network, and the

minimum clustering coefficient. This resulted in between 1 and 255

network(s) from the most conservative to the most lenient parameter

settings, respectively. For example, at a network score cutoff of 0.15

(see Materials and Methods, ‘‘Microarray data processing’’ for fold

change normalization), and strict clustering coefficient criteria (.0.1

for mouse and .0.2 for human), we found a total of 255 conserved

subnetworks involving 607 genes in each of the two species

(Figure 2A). Increasing the clustering coefficient cutoff or increasing

the network score threshold enabled the discovery of fewer, but

increasingly confident subnetworks (Figure 2B, Figure S2).

Figure 2. Evaluation of conserved subnetworks. (A) The cross-
species algorithm mines subnetworks in the functional linkage network
with a high density of differentially expressed genes. The network score
of a subnetwork reflects the average differential activity of all genes in
the network. The number of subnetworks identified at a network score
threshold is plotted (solid line) and is compared to the number of
subnetworks identified after differential expression scores were
randomly shuffled (dotted line). The parameters for average clustering
coefficient are 0.1 for mouse and 0.2 for human. (B) The number of
conserved subnetworks discovered is plotted for a range of connect-
edness parameters (minimum clustering coefficient). All clustering
coefficients noted are relative to the background, single-gene average
clustering coefficient, which is 0.08 for mouse and 0.35 for human.
doi:10.1371/journal.pcbi.1001028.g002

Cross Species Active Subnetworks Discovery
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To assess the statistical and biological significance of the

networks, we performed a network randomization analysis.

Specifically, the expression activity scores in both mouse and

human were randomly shuffled five times with respect to the gene

labels, and the algorithm was then applied to the shuffled expression

profiles. Any conserved patterns of these randomized expression

data on the functional linkage network should then represent false

positives and not biologically relevant conservation. In all

randomization experiments, the functional linkage network struc-

ture was retained and only gene activities were shuffled, so that we

could specifically estimate the conserved expression patterns arising

out of clustering of the active genes by random chance. Importantly,

we found that while some subnetworks were discovered in various

instances of the randomization experiment, far fewer subnetworks

were discovered than for the original expression profiles (Figure 2A).

For example, at our lenient network score and clustering coefficient

cutoffs, we discovered an average of 11.4 subnetworks (standard

deviation of 4) across five randomization experiments in contrast to

the 255 real subnetworks discovered on the original expression data

(Figure 2A). Moreover, the average size of the real subnetworks was

much larger than the random subnetworks as they contained an

average of 22 genes compared to 5.7 genes (standard deviation of

0.6) across the random trials. This comparison clearly suggests that

the subnetworks obtained by our cross-species approach are

statistically significant, and are not likely to have been discovered

by chance. We also found that the signal to noise ratio, which is the

ratio of number of real subnetworks to the average number of

random subnetworks, improved as we increased the network score

cutoff (Figure S3) and clustering coefficient cutoffs (Figure S2). This

improvement suggests that tuning these parameters is an effective

means of isolating high-confidence conserved network signatures for

hypotheses generation.

We also evaluated the subnetworks in terms of their functional

coverage and relevance. The function enrichment of the genes

contained in each subnetwork was measured based on significant

overlap with biological processes in the Gene Ontology [27] (see

Materials and Methods). A large majority of the subnetworks (235

of 255) were found to be enriched for GO processes, many with

suspected involvement in stem cell maintenance and differentia-

tion (Figure 3). Furthermore, many subnetworks were monochro-

Figure 3. Functional summaries of the subnetworks. The 2D hierarchically clustered matrix of subnetworks’ functions highlights functional
enrichments based on Gene Ontology annotations (biological process category) for the mouse counterparts of all conserved active subnetworks. A
subnetwork column is colored green if the subnetwork contained genes predominantly up-regulated in stem cells, red if the genes in the subnetwork
are up-regulated in differentially expressed cells, and yellow, if the subnetwork contains mixed genes, some of which are more highly expressed in
stem cells and some in differentiated cells. Enrichment was measured for all GO terms (Bonferroni-corrected p,0.05), and the enrichment patterns
were clustered to reveal patterns of enrichment across the subnetworks. Enriched GO Terms for individual subnetworks have been uploaded on the
subnetworks website and can be browsed at http://csbio.cs.umn.edu/neXus/subnetworks. The enriched GO Terms for stem cells, differentiated cells
and mixed subnetworks can be found in Table S5.
doi:10.1371/journal.pcbi.1001028.g003

Cross Species Active Subnetworks Discovery
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matic, that is, they contained genes with concordant changes in

expression in either stem cells or differentiated cells. Around a

third of the subnetworks were consistently more highly expressed

in stem cells while approximately half of them were consistently

more highly expressed in differentiated cells. As expected, the

monochromatic subnetworks active in stem cells were found to

play a role in metabolic processes and regulation, biosynthetic

processes, cell cycle, DNA repair, and gene transcription and

regulation (Figure 3). On the other hand, the monochromatic

subnetworks active in differentiated cells were involved in

development and differentiation of various cell types, tissues and

organs (Figure 3). We also noted another interesting class of

subnetworks that showed mixed changes in expression, including a

combination of up and down-regulated genes, whose patterns

matched across species. This class may highlight pathways that

require or at least exhibit dramatic imbalances in gene expression

to maintain stem cell state.

Comparison to gene expression overlap
We compared conserved subnetworks discovered by our

approach to gene sets obtained from a simple intersection of

orthologs on the human and mouse differentially expressed gene

lists. One might suggest that a reasonable approach to finding the

core conserved modules underlying stem cell pluripotency is to

simply analyze the most extreme differentially expressed genes in

both species. We attempted this approach by comparing the top

600 differentially expressed genes from mouse and human, which

is comparable to the total number of genes contained across our

subnetworks. There was relatively low overlap between the gene

sets: of the 600 genes, only 36 are up-regulated in the both species

while 34 are down-regulated (Figure S4). This level of agreement is

higher than the number expected by chance (,15–20), but

certainly not as high as one might expect, suggesting that there are

a number of core modules that do not exhibit the most extreme

expression changes. The overlap does improve when we consider

any genes that show significant changes in expression (FDR 5%):

1367 genes are significantly up-regulated in pluripotent stem cells

in both human and mouse while 986 are significantly down-

regulated, which reflects an overlap of ,50% (Table 1). However,

this more lenient cutoff yields thousands of candidate genes to

consider, which makes determination of the core conserved

modules difficult. Our conserved subnetworks offer a solution to

this problem: we find 255 modules containing approximately 600

genes that appear in both the human and mouse subnetworks,

including 282 that are differentially expressed and show similar

expression patterns. Simultaneous network discovery guided by

the combined differential expression data allows us to directly

identify the core conserved patterns of expression, even where

some of these patterns are subtle but consistent.

We were intrigued by the fact that our conserved subnetworks

actually contained a significant fraction of genes (,20%) that

showed no evidence of differential expression. By its design (see

Materials and Methods, Algorithm), the subnetwork discovery

algorithm can include non-differentially expressed genes in

identified subnetworks if they connect across highly differentially

expressed genes. Briefly, for a given seed gene, the algorithm starts

by finding the surrounding functional neighborhood of that seed,

which is defined as the set of genes that can be reached within a

given path confidence (the product of linkage weights along the

path). From this set of genes in the functional neighborhood, the

gene that results in the greatest increase in the network activity

score is added to the current subnetwork, including any genes

required for its connection to the seed. The addition of the

corresponding path can potentially bring in non-differentially

expressed genes, which may reflect genes that are causally linked

to the corresponding subnetwork but whose activity is simply post-

transcriptionally regulated [11]. Their activity may be modulated

at the protein level which is typical of transduction pathways that

control gene expression programs [11]. For example, TEP1 is not

differentially expressed but is found in an active subnetwork with

many well-characterized stem cells genes like POU5F1 (Figure

S5A). TEP1 is involved in telomerase activity [28] and has been

shown to be regulated by phosphorylation in breast cancer cells

[29]. These examples illustrate the advantages of integrating

differential expression data with the broader relationships

captured by functional linkage networks in that complete modules

can be identified, including genes whose activity is not necessarily

transcriptionally regulated.

The subnetworks also sometimes contain mixed expression

signatures (both up- and down-regulated genes) that are conserved

across species, highlighting genes in the same pathway that are

antagonistic or genes that exhibit different interactions at various

stages of development. For example, one conserved network with

mixed expression changes was centered about the important

extracellular structural protein ostepontin (also known as secreted

phosphoprotein 1, SPP1) (Figure S5B). SPP1 is highly up-regulated

in both mouse and human stem cells while its surrounding

subnetwork is significantly down-regulated in comparison to

differentiated cells in both species. Osteopontin is known to be

highly expressed in bone and other cell types like smooth muscle

cells, endothelial cells and hematopoietic stem cell niches. The

subnetwork captures some well-known interactions of SPP1 in

these cells. For example, osteopontin has been shown to be a

ligand for CD44 in tumor cells [30]. Pou5f1 has been shown to

bind to the preimplantation enhancer element of osteopontin, and

thus, the expression of the two proteins is highly correlated in early

mouse embryonic development [31]. The induction of osteopontin

in immortalized mouse embryonic fibroblasts, in response to TGF-

Table 1. Gene expression overlap.

Mouse Genes Human Genes Intersection*

Differentially expressed genes 8141 5353 3282

Up-regulated in stem cells 3955 3028 1367

Down-regulated in stem cells 4186 2325 986

Number of genes covered by subnetworks 607 607 601

Subnetwork genes which are up-regulated 214 181 153

Subnetwork genes which are down-regulated 220 214 129

*orthology clusters which belong to both the relevant mouse and human genes.
doi:10.1371/journal.pcbi.1001028.t001

Cross Species Active Subnetworks Discovery
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b2, has been shown to promote the maintenance of undifferen-

tiated human embryonic stem cells [32]. This is attributed to the

presence of a TGF-b responsive element in the osteopontin

enhancer. Thus, osteopontin likely plays a pivotal role in the

maintenance of both human and mouse embryonic stem cells, and

this subnetwork supports this idea. The functional linkages of

osteopontin in early embryonic cells have not been fully elucidated

yet, but this subnetwork suggests that this gene may play a role in

the embryonic context since the other genes in the subnetwork

show an opposing expression pattern. These interesting cases

would not be readily discovered through a simple comparison of

differential expression lists across species.

Comparison to other single-species network discovery
methods

To our knowledge, our method is the first attempt to interpret

differential expression data by integrating with interaction

networks across multiple species. Thus, we further assessed the

advantages of simultaneous, cross-species network search as

compared to active subnetwork discovery in a single species,

which has been the focus of previous methods [5,6,8,9,10], and is

the principle behind commonly used analysis tools such as

Ingenuity Pathway Analysis (IngenuityH Systems, www.ingenuity.

com). Analogous experiments to those performed on our cross-

species algorithm were applied to discover active subnetworks in

the mouse functional linkage network alone (see Materials and

Methods). Most of the existing approaches did not scale to the

complete functional linkage network used by our approach

(Table 2), so we reduced the scale of the mouse functional linkage

network by restricting the network to the 50,000 highest weight

edges to allow for a direct comparison of our approach to other

methods in the single-species context. We implemented MATISSE

[33], jActiveModules [5] and Ingenuity (IngenuityH Systems,

www.ingenuity.com) on the mouse data and compared with a

single-species version of our approach as well as our cross-species

algorithm. For methods that do not incorporate weighted edges,

we binarized the reduced network. To allow a direct comparison

of the number of subnetworks produced by each approach,

subnetworks were sorted in descending order by size and

overlapping subnetworks were removed when their overlap with

larger networks (in genes) was greater than 60%. To estimate the

significance of the subnetworks identified by each algorithm, we

randomized the gene labels in the expression data and ran each

algorithm five times on randomized expression data. The number

and scores of subnetworks produced by each algorithm were

compared with the number and scores of the subnetworks

generated from the 5 runs on randomized expression data

(Figure 4).

Although our main contribution in this work is the cross-species

algorithm, we found a single-species version of our approach

performed favorably in comparison to existing approaches

(Figure 4). Specifically, it produced more subnetworks than other

approaches on the real expression data while producing far fewer

subnetworks on the randomized data (Figure 4). Surprisingly, we

found that 2 of the 3 existing approaches (Ingenuity and

jActiveModules) produced as many or more networks on the

randomized data as on the real data for most score cutoffs

(Figure 4B–C). Among the existing methods we evaluated,

MATISSE provides the best performance, often reporting 1.5–2

fold more real networks at a given score cutoff than on

randomized data (Figure 2A). There was significant variation in

the size of subnetworks produced across the various approaches,

with some producing networks as large as 2000 genes and others

producing relatively small subnetworks consisting of less than 10

genes (Figure S6). The most useful number and size of networks

will, of course, depend on the application, but one particularly

unique feature of our implementation is that subnetworks are

captured at all stages of their growth, thus giving the user to

control of the tradeoff between size and significance of the

subnetwork in consideration (see Web Interface section).

Perhaps the most striking result of our comparison was our

finding that any single species approach, including our own,

performed much worse than our cross-species subnetwork

discovery algorithm. For example, in the single-species setting

for mouse, we were able to find 164 subnetworks while discovering

an average of 71 (standard deviation of 7.8) subnetworks in our

randomization experiments under the same setting (mouse,

clustering coefficient threshold = 0.1, network score cutoff = 0.3),

suggesting an enrichment of approximately 2.5-fold (Figure 4D).

Using the cross-species approach, we found 234 subnetworks while

discovering an average of 9.8 (standard deviation of 4.16) in our

randomization experiments (parameter setting: mouse and human

clustering coefficient thresholds = 0.1 and 0.2, network score

cutoff = 0.15), which represents a 20-fold enrichment (Figure 2B).

Thus, not only did we discover more candidate networks in the

cross-species setting, but the networks we found were of higher

Table 2. Comparison to previous approaches.

First Author Year # Nodes # Edges Weighted edges
# subnetworks
reported in the study

Average size of
subnetwork (# nodes)

Ideker [5] 2002 77 362 No 5 11.4

Rajagopalan [6] 2004 9000 30000 No ,100 34–50

Cabusora [9] 2005 106 233 No 2 65

Ulitsky [33] 2007 6230 89327 No 20 105.35

Guo [7] 2007 6509 23157 No 1 2181

Dittrich [10] 2008 2034 8399 No 1 46

Ulitsky [8] 2009 6220 63989 Yes 14 33.6

Our study - mouse 17868 2700000 Yes 116 11.7

Our study - human 15806 6000000 Yes 127 16.6

Our study - Cross species (neXus) Yes 255 22

doi:10.1371/journal.pcbi.1001028.t002
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statistical confidence. Similar results were obtained when we

applied our single-species approach to the complete functional

linkage network (Figure S7).

The improvement in sensitivity and specificity by the cross-

species approach is a particularly interesting result because it

suggests that simultaneous cross-species network discovery can

serve as an effective means of improving the signal-to-noise ratio in

network discovery even if one is not necessarily interested in asking

questions about conservation across species. More pessimistically,

this result suggests that separating biologically relevant active

subnetworks from random networks based on a single functional

linkage network is a challenging problem.

The enhanced performance of the cross-species approach can

be attributed to the fact that coordinated expression changes can

be reasonably clustered in both species’ functional linkage

networks. Due to the small-world nature of functional linkage

networks (or protein-protein interaction networks) [34], given a

large set of genes, subnetworks involving partitions of this set can

often be readily found even if these genes do not necessarily play a

specific role together. The coherent grouping of genes across

species eliminates random aggregation of active genes, and thus,

the cross-species approach is able to relax both the network score

and clustering coefficient stringency criteria, while still maintaining

statistical confidence in the networks. Indeed, when our approach

was applied independently to mouse and human data, we found

little intersection among the two species’ subnetworks: of the genes

covered by human (305 orthologous clusters) and mouse

subnetworks (261 orthologous clusters), only 21 were overlapping.

In contrast, the cross-species approach discovers around 250

subnetworks covering 607 genes in both mouse and human

(Table 1). We obtained a similar result when comparing to

subnetworks derived from another approach, MATISSE, applied

to the human and mouse data (see Text S1, Note 4, ‘‘Comparison

of the overlap of mouse and human subnetworks discovered

through MATISSE and neXus’’, Table S1, S2). Thus, in addition

to the underlying biological question of conservation of expression

signatures, cross-species analysis can serve as an effective noise

filter, which is critical for discovering clustered patterns of

expression changes in a dense interaction network.

The difficulty in identifying subnetworks from a list of genes

within a single species has important implications for how the

statistical significance of such networks should be assessed. This

problem often arises in practice during the interpretation of

candidate gene lists. For example, analysis tools such as Ingenuity

Pathway Analysis (IngenuityH Systems, www.ingenuity.com) are

now being widely used based on the single-species discovery

method we evaluated above. The significance of networks

identified by such approaches are typically assessed by comparing

the network score after optimization to scores that obtained by

randomly sampling a similarly sized set of genes. However, as

demonstrated above, high-scoring networks are often obtained

when search algorithms are applied to randomly selected

candidate genes. Put simply, in many protein interaction networks,

random lists of genes are much easier to connect than one might

expect. Our results suggest that significance should instead be

estimated by applying the network search process (with the same

parameters) to several random candidate genes lists, and

evaluating the actual scores in the context of the resulting random

score distribution.

Discussion of specific examples
Using the cross-species network discovery algorithm, we are

able to find subnetworks reflecting conserved functional modules

between mouse and human pluripotent stem cells. We found many

of these subnetworks to be monochromatically active in stem cells

or differentiated cells. This was not a prerequisite for network

discovery, but reflects that the majority of genes supporting a local

process are regulated in the same direction. Monochromatic

subnetworks up-regulated in stem cells were our primary focus

because these reflected potential candidate processes that are

necessary for maintaining a pluripotent, self-renewing stem cell

state. One of the most significant conserved subnetworks of this

type captures the core pluripotency circuit in embryonic stem cells

(Figure 5A). This network recovers associations between important

transcription factors such as POU5F1, NANOG, SOX2 and FGF4,all

of which have been shown to form an important transcriptional

circuit in embryonic stem (ES) cells, consisting of feed-forward and

autoregulatory loops [35]. Chromatin immunoprecipitation ex-

periments have shown that these three proteins exhibit a

significant overlap in their binding sites in the genome [35,36].

The subnetwork links FGF4 to the core signaling circuitry formed

by POU5F1, SOX2, and NANOG. FGF4 has been shown to be

expressed in the peri-implantation mouse embryo [37] and the

SOX2/POU5F1 complex has been shown to activate transcrip-

tion of FGF4 by binding to an enhancer element [38]. The role of

this module has also been studied quite extensively in early

embryonic development. FGF4 null mutants in mouse are

embryonic lethal due to defective primitive endoderm [39]. The

cells of the mouse inner cell mass (ICM) show a reciprocal

expression pattern of FGF4 (ligand) and FGFR2 (receptor). It has

been shown that the FGF4 secreted by the epiblast precursor cells

is crucial to the differentiation and maintenance of cells of the

trophectoderm and extraembryonic endoderm lineages [40,41].

Human ESCs show a striking resemblance to mouse epiblast-

derived stem cells in terms of morphology and maintenance

culture conditions, amongst other characteristics [42,43]. Thus,

this network highlights a core, conserved module active in the

pluripotent cells of both the species, irrespective of the downstream

effects on cell signaling and morphology. FGF4 stimulation of

ERK1/2 signaling in mouse ES cells has been shown to facilitate

lineage commitment [44]. In human ES cells, FGF signaling

promotes self-renewal by directly affecting the expression of

NANOG [45,46] as well as suppressing expression of genes

responsible for reversion to an ICM-like state [47].

Another highly significant subnetwork discovered by our

approach pertains to the control of cell cycle progression in ES

cells (Figure 5B). Both human and mouse ES cells have a very

short G1 phase which can be attributed to the constitutively active

CDK2/6 [48,49]. CCNB1 and MYBL2 are two important cell

cycle regulators that are expressed at high levels in undifferentiated

Figure 4. Comparison with other methods. The number of real subnetworks and random subnetworks at various network score cutoffs are
plotted for MATISSE (A), Ingenuity (B), jActiveModules (C) and the single-species version of our algorithm (D). The network scores are the metric used
by each algorithm to rank the subnetworks. Random subnetworks were obtained by running respective algorithms on the expression data, whose
gene labels have been randomly shuffled. Each of the methods uses different forms of the expression data: MATISSE uses expression profiles;
jActiveModules uses significance values of the genes; Ingenuity uses focus genes, for which we took any differential expressed gene whose log fold
change value was greater (lesser) than 20% of the maximum (minimum) of the most up-regulated (down-regulated) gene; Our method uses fold
change scores from the SAM analysis. The scale of the functional linkage network was reduced for all methods shown in (A–D) for a fair comparison.
The cross species algorithm on the full network has also been shown for a complete comparison (E).
doi:10.1371/journal.pcbi.1001028.g004
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ES cells and their expression decreases rapidly upon induction of

differentiation [50]. This happens even before loss of the

important regulator proteins such as POU5F1 or NANOG can

be detected. The conserved subnetwork highlights the role of these

two genes in the maintenance of cell cycle progression in ES cells.

Knockdown of MYBL2 has been shown to induce polyploidy/

aneuploidy in ES cells and CCNB1 is a known target of MYBL2

[51]. B-MYB is also crucial for inner cell mass development in

mice embryos [52]. The role of CCNF in embryonic stem cells has

not been explored but yeast two hybrid assays have shown that the

NLS domain of CCNF can regulate nuclear localization of

CCNB1 [53].

Many conserved subnetworks also included genes that are up-

regulated during the initiation of differentiation. This supports the

idea that the maintenance of ES cell phenotype requires the

suppression of differentiation-associated gene expression as well.

One interesting example of this phenomenon was highlighted in a

third subnetwork discovered by our approach, which was centered

on the protein ZIC3 (Figure 5C). ZIC3 has been shown to be

required for maintaining pluripotency of mouse embryonic stem

cells by suppressing endoderm specification [54] while GLI1 has an

important effect on embryonic stem cell proliferation [55]. These

two proteins are known to work in coordination for transcriptional

activation or repression [56]. Both of these genes code for DNA

binding zinc finger proteins and they share and recognize highly

conserved zinc finger domains. The down-regulated genes in the

subnetwork, namely, WNT5A, FOXF2 and RARB, play important

roles in the differentiation of embryonic stem cells [57,58,59]. It is

interesting to observe that these genes have GLI binding sites in

their promoter region or cis-regulatory domains, which suggests

that GLI1 and ZIC3 could potentially regulate their expression in

ES cells [60,61]. Also, GLI proteins participate in regulation of

Hedgehog signaling, of which RARB and FOXF2 are members,

and GLI is also known to regulate the members of WNT family

[62]. These functional interactions and coordinated expression

strongly suggest ZIC3 and GLI1 might be responsible for

suppressing the expression of genes such as FOXF2, WNT5A and

RARB.

This network in particular provides an illustrative example of

how subnetwork discovery can provide novel testable experimental

hypotheses. This hypothesis could be explored experimentally

through RNAi knockdown of ZIC3 and GLI1 in embryonic stem

cells to check for resultant changes in expression of the other genes

in the network. Lim et al. [54] conducted RNAi knockdown of

ZIC3 in human and mouse ESCs and saw enhanced expression of

endodermal transcripts like SOX17 and PDGFRA. Further

experiments could also be used to check for direct binding of

ZIC3 and GLI1 to the promoter regions of the differentiation-

associated genes. The subnetwork also highlights the striking

observation that the gene ZIC1, despite sharing 69% homology

with ZIC3, does not show the same trend in expression in either

mouse or human pluripotent stem cells. While ZIC2 and ZIC3

have been suggested to have partially overlapping or redundant

roles in suppressing endoderm in embryonic stem cells, the role of

ZIC1 in this context has been not been explored much. Further

overexpression studies of this gene could be used to elucidate its

exact role in this network.

Another interesting subnetwork found by our approach was

centered around the seed gene SIRPA. The only gene in the whole

subnetwork that is found to be up-regulated in mouse and human

pluripotent stem cells is LCK (Figure 5D). LCK is one of the eight

SRC family kinase genes, which are known to play crucial roles in

regulating signals from a variety of cell receptors, affecting a

variety of cellular processes such as differentiation, growth and cell

shape [63]. Members of this family, namely Hck and Lck, have

been implicated in the maintenance of self-renewal of murine

embryonic stem cells [46]. Cyes, along with Hck, have been shown

to be regulated by LIF in mouse embryonic stem cells and the

expression of their active mutants allows the maintenance of these

cells at lower concentrations of LIF [64]. Other studies have also

reported the evolutionarily conserved transcriptional co-expression

of LCK in human and mouse embryonic stem cells based on

transcriptomic studies [65]. LCK has also been shown to induce

STAT3 phosphorylation and this is believed to cause transforma-

tion of cells having constitutive LCK activity [45]. All of the other

genes in the sub-network are down-regulated in ES cells, which

may be due to the fact that the expression of SFKs is generally

associated to lineage-restricted patterns in the adult, such as, the

expression of LCK in T lymphocytes.

While the hypotheses suggested by the discovered subnetworks

ultimately require experimental follow-up, these examples illus-

trate that the networks capture many of the well-characterized

processes supporting stem cell pluripotency as well as implicating

some novel players. In general, the process of active subnetwork

discovery can play an important role in interpreting differential

expression or other genome-wide data. Active subnetworks, and in

particular those that are conserved across species, provide

evidence that a whole process or pathway is up/down-regulated,

which is more definitive than the type of information provided by

a differential expression list, for example. A single highly

differentially expressed gene is less compelling than an entire

functional module with evidence of differential expression.

Furthermore, because the underlying functional linkage networks

are based on large collections of genomic data, our approach can

potentially identify functional modules that are not yet character-

ized, but that play a critical role under the conditions being

studied.

Discovery of species specific subnetworks
We modified the cross-species network discovery algorithm to

discover subnetworks that are markedly different in the expression

patterns between the two species (see Materials and Methods,

‘‘Score of a Subnetwork’’). These subnetworks represent tightly

interconnected groups of genes or proteins that are active only in

one of the species or where the expression changes are in opposite

directions, highlighting places where pluripotent stem cell

Figure 5. Examples of conserved subnetworks. Subnetworks (A–D) are examples of interesting conserved subnetworks discovered by the
cross-species network search algorithm on differentially expressed genes between stem cells and differentiated cells. Each subnetwork represents a
subgraph of mouse (left column) and human (right column) functional linkage networks, respectively. Nodes are genes and they are colored green if
the gene is up-regulated in stem cells when compared to differentiated cells and red if down-regulated in stem cells relative to differentiated cells.
The intensity of green or red color of the genes represents the normalized fold change of the expression. The edge thickness in the subnetworks
represents the edge confidence based on the functional linkage networks. The subnetwork (A) shows a conserved subnetwork which contains
important stem cell transcription factors. The subnetwork (B) highlights cell cycle related pathway genes. The subnetworks (C, D) are mixed
subnetworks, as they contain both up-regulated and down-regulated genes. The genes are functionally related but their mode of function is
antagonistic in nature.
doi:10.1371/journal.pcbi.1001028.g005
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signaling differs between human and mouse. Through random-

ization experiments similar to the conserved subnetwork identifi-

cation approach (see Materials and Methods) we found that we

were able to find such non-conserved network signatures

approximately twice as frequently as on randomized expression

profiles (Figure 6A). We note that this is a substantially lower

signal-to-noise ratio than for the conserved subnetwork discovery

approach, for which we achieved approximately 20-fold improve-

ment over random, suggesting that statistically significant species-

specific active subnetworks are harder to discover. This is not

surprising given that the relatively frequent appearance of random

subnetworks in a single species (Figure 4D), which cannot be easily

classified as statistical artifacts or biologically relevant changes

across species. The species-specific network discovery problem is

not able to take advantage of the noise filtering property of the

conserved network search described above.

Nevertheless, we find interesting subnetworks which highlight

differences between gene expression in mouse and human stem

cells. For example, one species-specific subnetwork (Figure 6B)

recapitulates the well-known difference in BMP signaling between

human and mouse embryonic stem cells. Mouse embryonic stem

cells require BMP2/BMP4 to induce the expression of Inhibitor

of differentiation (Id) genes via Smad pathway for self-renewal

[66]. Thus, exogenous addition of LIF and BMP4/2 is required

to maintain mouse ES cells in culture without differentiation. On

the other hand, human ES cells cultured in unconditioned

medium exhibit high levels of BMP signaling which causes the

cells to differentiate. Mouse epiblast stem cells, like human ES

cells, differentiate to trophoectoderm upon BMP4 induction [42].

This needs to be suppressed through an antagonist such as noggin

to maintain these cells in an undifferentiated, self-renewing state

[46]. The other genes in the subnetwork that show opposite

trends in differential expression between human and mouse ES

cells are MGP, ACTC1 and ENG. Endoglin (Eng) is an accessory

receptor for several TGF-b growth factors, including BMP2, and

has been shown to be crucial for embryonic hematopoiesis [67].

Matrix GLA protein (MGP) is a small matrix protein that has

been shown to have a direct interaction with BMP2 and has been

shown to modulate BMP signaling [68]. The potentially disparate

role of these genes in mouse and human ES cells can be explored

further.

Web interface
To facilitate public access to active cross-species subnetworks

identified by our approach, we developed a web-based inter-

face for convenient browsing of conserved and species-specific

stem cell expression signatures (http://csbio.cs.umn.edu/neXus/

subnetworks, download subnetworks in raw text from http://

csbio.cs.umn.edu/neXus). Subnetworks are listed according to

their corresponding network seed gene, and when a seed gene is

selected, the following information is displayed: the conserved

active human and mouse subnetworks, significance of the

identified subnetwork based on a comparison to network

randomization, expression fold changes and name details of

mouse and human genes, and the function enrichments of the

genes in respective to human and mouse subnetworks based on the

Gene Ontology [27]. The subnetwork generation was automated

using neato, a Graphviz graph plotting tool with spring model

layouts [69]. The Cytoscape version of the subnetworks are also

available on the website, which are linked using Cytoscape

Webstart [70]. The gene names in the subnetwork are linked to

gene information at the Mouse Genome Informatics (MGI)

database [71] and GeneCards [72] for mouse and human genes,

respectively. Another useful feature of our web-interface is that

subnetworks can be interactively expanded based on the cross-

species discovery algorithm, which allows for real-time analysis of

additional candidate genes that are closely associated with the

network of interest. As networks are expanded, a statistical

significance score is calculated after each iteration, which allows

the user to estimate the potential biological relevance of the

network as it is expanded.

Figure 6. Species specific subnetwork. (A) The number of species-
specific subnetworks discovered is plotted versus the network score
cutoffs and compared with the number of subnetworks generated by
applying the same approach after randomly shuffling gene labels in the
expression data. Species-specific networks represent subnetworks with
highly divergent patterns across species. (B) An example species-
specific subnetwork that highlights the difference in expression of
BMP2 pathway related subnetwork in human and mouse. The
subnetwork nodes are genes, whose color represent whether are they
are active in stem-cells (green) or differentiated cells (red) and intensity
of the color represent the degree of expression activity. The thickness of
edges of the subnetwork represents the edge confidence based on the
functional-linkage network.
doi:10.1371/journal.pcbi.1001028.g006
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Conclusion
We have described a scalable approach for discovering

conserved active subnetworks across species. Starting from

candidate gene lists reflecting parallel differential expression

studies in two different species, we are able to search for dense

subnetworks with conserved patterns of differential expression. In

contrast to previous active subnetwork discovery algorithms, our

approach not only extends this idea across species, but also enables

application of the approach to functional linkage networks as

opposed to sparse protein-protein interaction networks. Functional

linkage networks integrate information from a diverse collection of

genomic and/or proteomic studies (including protein-protein

interactions), and thus offer the potential for more sensitive

discovery of active subnetworks, including those which involve

previously uncharacterized genes.

We applied our approach to a differential expression study

between pluripotent mouse and human stem cells versus their

differentiated cell types to produce several hundred subnetworks

that reflect conserved changes between mouse and human.

Network search across species produced specific hypotheses about

conserved and differentiated mechanisms of stem cell mainte-

nance, and importantly, demonstrated that such an approach can

be an effective means of filtering noise from the active subnetwork

discovery problem. We found that identifying statistically signif-

icant active subnetworks independently within a single species may

be a harder problem than previously appreciated, and we suggest

the cross-species approach as one solution to this problem.

Despite the success of our approach, there are a number of

promising directions for further improvement and broader

application of the method. While the approach was successfully

applied to relatively dense functional linkage networks for mouse

and human, it is a computationally challenging problem, and the

algorithm cannot be applied in real-time as it still requires several

days to run. Strategies for improving the efficiency of conserved

network discovery and more formal selection criteria for the

parameters associated with our approach are both useful future

directions. Furthermore, the approach can be readily extended to

discover conserved subnetworks across more than just two species,

which will make another fruitful direction as we begin to

accumulate functional genomic data across a broad variety of

other model organisms. Finally, although our study focused on the

interpretation of candidate gene lists derived from differential

expression analyses, the algorithm is general and can be readily

applied to interpret lists arising from other genomic screens,

including, for example, genome-wide association studies.

Materials and Methods

Microarray data processing
249 mouse microarray data samples were obtained from 20

GEO datasets (Table S3). All the samples had been hybridized to

the Affymetrix mouse chip MOE 430 2.0. 132 human microarray

data samples were obtained from 12 GEO datasets (Table S4). All

the samples had been hybridized to the Affymetrix human chip

HGU 133 plus 2.0. The raw data was normalized using the MAS

5.0 algorithm [73] and the average chip intensity was scaled to

500. The probes set IDs with detection p-values higher than 0.4

were termed absent and were filtered out for further analysis,

along with the probe set IDs with average intensity lower than 50.

Non-negative matrix factorization (NMF) was used to identify

major biological classes in the data in both species independently

[26]. The algorithm factorizes the expression matrix A into two

matrices, W and H. If the expression matrix is of size N X M, the

algorithm computes an approximation A&WH, where W and H

have sizes N X k and k X M, respectively [74]. Here, k represents

the number of clusters that the samples can be divided into. Each

of the k columns of matrix W defines a metagene in such a way

that the entry wij represents the coefficient if gene i in metagene j.

Each of the M columns of matrix H depicts the metagene

expression profile in different samples such that the entry hij

represents the expression level of metagene i in sample j. The

accuracy of the classification is evaluated by the value of the

cophonetic coefficient. NMF was used to cluster the samples into

biologically meaningful sets. As an example, for k = 6, the mouse

samples were clustered into the classes that represented the

different levels of pluripotency of the stem cells. The cophonetic

coefficient for this classification was 0.978. Similar classification

could be achieved for k = 5 in the human gene expression data

(cophonetic coefficient of 0.977). As mentioned earlier, the matrix

W detected the metagenes representing every cluster of similar

samples in the data and, the matrix H gave the expression profile

of every sample in the particular metagene. The expression profile

of the various samples in the metagene corresponding to the

cluster of pluripotent stem cells was used to divide the samples into

two major classes, on the basis of the values of the entry hij. Class 1

included the pluripotent ES cells and induced pluripotent stem

cells while class 2 represented samples that were in the process of

early differentiation or late reprogramming. Differential expres-

sion analysis was performed between these two biological classes

using Significance Analysis of Microarrays [1]. The results of this

differential expression analysis were used as the starting point for

subnetwork discovery. The differential expression criteria were set

at false discovery rate less than 5%. The results of this differential

expression analysis yielded fold changes for significantly differen-

tially expressed genes which was log normalized for both up-

regulated and down-regulated genes, separately. The log-ratios

were rescaled to ranges from 21 to +1, where 21 represented the

gene which is most down-regulated and +1 represented the most

up-regulated gene. The majority of the genes were not significantly

differentially expressed; the log-ratio of these genes was set to zero.

The normalized expression fold change data can be downloaded

from http://csbio.cs.umn.edu/neXus.

Functional linkage networks
We used the mouse functional linkage network previously

published in [16] with all edges below 0.10 confidence set to zero,

which resulted in around 2.7 million weighted edges among 17868

genes. We obtained the human functional linkage network from

[15] (the ‘‘global network’’) and trimmed the network to the

highest 6 million weighted edges, which corresponded to a

minimum edge weight of 0.58 and covered 15806 genes.

Algorithm
The algorithm identifies functional modules enriched for active

genes in both species under consideration. Conserved active

modules are found based on two criteria: (1) a high degree of

clustering in both species’ functional linkage networks, and (2) a

high average normalized differential expression fold-change

(network score) sharing the same sign across species. Because the

search space is exponential, a greedy heuristic is applied to expand

subnetworks from candidate seed genes. Each candidate network

is grown until it fails to meet one of the constraints. This algorithm

is implemented in Python and the source code can be downloaded

from the supplementary website (http://csbio.cs.umn.edu/neXus)

(see Box 1 for pseudocode). Each component of the algorithm is

described in more detail below.

Score of a subnetwork. The network score of a cross-species

subnetwork is the average activity scores (described below) of the
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genes in the two species’ subnetworks given that they obey the

following constraints: first, the subnetworks satisfy a connectedness

constraint on their respective functional linkage network; second,

the network score of the subnetwork is above a threshold. In all

other cases, the score of the subnetwork is zero. The first condition

guarantees that the genes in the subnetwork are interconnected in

each species’ functional linkage network, which suggests the

corresponding set of genes represents a functional module. By

enforcing this constraint on both species, conserved modules are

selectively chosen. The second constraint guarantees that the

subnetwork exhibits a high degree of differential expression, which

reflects a coherent response to the phenotype or conditions under

consideration.

The connectedness of a subnetwork is quantified by the average

weighted clustering coefficient of the subnetwork, which is the

ratio of existing connections between the neighbors to the total

pairs of neighbors possible. The clustering coefficient for node k is

given by rk~

P

i,j,k~D

1

n
2C

, where i, j, k =D means nodes i, j, k form a

triangle in the graph, and n is total number of neighbors of node k.

For a weighted network, the clustering coefficient can be modified

to rk~

P

i,j,k~D

wij

n
2C

[75], where wij is the weight of the edge ij.

Average (weighted) clustering coefficient is the average of the

(weighted) clustering coefficients of all the nodes in the graph,

which is given by r~

Pn

k~1

rk

n
. The network score of the

subnetwork is the average of the activity scores across all genes

in the subnetwork. For single species subnetwork discovery, the

normalized fold change of the gene was used as the activity score.

For the conserved cross-species approach, the magnitude of the

activity scores of genes were calculated as the geometric mean of

magnitudes of normalized fold changes of the genes across the two

species. The gene activity scores were assigned the same sign as the

product of the signs of the normalized fold changes. This means

that if the gene was up-regulated or down-regulated in the same

direction in both the species, the gene activity score was positive,

while genes showing the opposite direction of differential

expression were assigned a negative sign. For the species-specific

approach, the absolute difference in the normalized fold changes

was used as the gene activity score.

Growing subnetworks. Subnetworks are grown greedily to

optimize the subnetwork score, starting from each gene as a seed.

The genes are added from a pool of genes in functional proximity

to the seed gene, which are defined by any genes within a

minimum path confidence, i.e. the product of all weighted edge

confidences in the path, from the seed gene. This pool of genes is

discovered using a modification of the depth first search algorithm.

Nodes are picked starting from the seed gene, in depth-first

fashion, and if the confidence of the path of the searched gene

from the seed gene exceeds a threshold (mouse .0.3, human

.0.8), it is selected. Subnetworks are grown iteratively by selecting

the single gene from the functional neighborhood pool at each

stage that maximizes the subnetwork activity score. For each gene

in the pool, this score is calculated by adding that gene in addition to

any genes that are included in its highest confidence path to the

current subnetwork. This stage allows interesting non-differentially

expressed genes to be added to the subnetwork when they bridge

highly differentially expressed genes. Growth of each subnetwork

is constrained by two parameters: a minimum network activity

score and a minimum clustering coefficient constraint. The first

restricts the subnetworks from incorporating too many low-activity

genes, while the second ensures that the subnetwork remains

highly clustered— genes can only be added if the subnetwork still

Box 1: Pseudocode for neXus Algorithm

# assuming global mouseDifferentialGenes, humanDifferentialGenes, mouseFN, humanFN
function subnetworks()

for seed [ mouseDifferentialGenes \ humanDifferentialGenes
mouseGenesInConsideration = DepthFirstSearch++(seed, mouseFN)
humanGenesInConsideration = DepthFirstSearch++(seed, humanFN)
genesInConsideration = mouseGenesInConsideration \ humanGenesInConsideration

growingSubnetwork = [seed] # list with single gene
while growingSubnetwork can be grown

addBestGene(growingSubnetwork, genesInConsideration)
store subnetwork

return stored subnetworks
function DepthFirstSearch++(gene, seed, functionalNetwork, threshold)

for gene [ functionalNetwork
if A path between gene and seed in the functionalNetwork, such that the product of
edge weights in the path exceed threshold, then include the gene. Also store thebest
path.

return included genes
function addBestGene(growingSubnetwork, genesInConsideration)

return gene in genesInConsideration \ growingSubnetwork such that score(growingSubnetwork+ gene)
is the maximum

function score(subnetwork)
if clustering coefficient of subgraphs of subnetwork in mouseFN and humanFN is not within
constraints return 0
return average of score(gene) of all genes in subnetwork

function score(gene) # for neXus, the scoring is simple foldchange[gene] for single species experiment
return sign(mousefoldchange[gene]*humanfoldchange[gene])* sqrt(abs(mousefoldchange[gene]*humanfoldchange[gene] ))

Cross Species Active Subnetworks Discovery
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meets both criteria as described above. Subnetwork growth is

stopped when either the clustering coefficient constraint or the

minimum network score constraint is not satisfied. This process is

repeated for all differentially expressed genes (non-zero activity

score).

For the cross-species network discovery approach, the networks

are simultaneously grown in parallel. As described above, the

activity score is based on the geometric mean of two or more

orthologs’ normalized differential expression scores, so selected

orthologs are added to the respective subnetworks at each step.

Orthology. All genes for both human and mouse were mapped

to Inparanoid clusters [76]. The clusters contain mapping of genes

across species. For human to mouse or vice versa, the majority of

ortholog mappings are one to one. However, some of the mappings

are many to one, one to many, or many to many. To reduce

ambiguity, during comparison, all genes were associated with their

corresponding orthologous clusters. The mapping of the functional

linkage network from gene space into orthologous cluster space was

non-trivial as the interactions of paralogs, genes from the same

species in the same orthologous cluster, had to be merged. For a

cluster with multiple orthologs, the average of all genes’ interactions

was assigned as the cluster interaction. For this process, the lack of

an edge in the functional linkage network was considered to be a

zero weight edge. The outputs of the algorithm, the discovered

subnetworks, are reported in the orthologous cluster space.

Randomization. To estimate the significance of the obtained

subnetworks, randomization experiments were carried out. For

both species, the differential expression values were shuffled

independently relative to the gene names to remove any

connection between them. Fold change values were only shuffled

among genes present in the functional linkage network, while the

functional linkage network was kept the same. The network

discovery algorithm was then run on the shuffled expression data

to discover any conserved subnetworks. This entire process was

repeated several times to establish a mean and standard deviation

for the number of conserved subnetworks identified by chance,

which was used to assign confidence values for the real

subnetworks. Alternative randomizations schemes provided

similar results, and they are described in more detail in Text S1

(Text S1, Note 5, ‘‘Other Randomizations’’, and Figure S8).

Functional coverage of the subnetworks. Gene Ontology

[27] enrichment analysis was conducted on each of the

subnetworks discovered by our approach using terms from the

‘‘biological process’’ ontology. Significance was assessed using the

hypergeometric distribution was used to assess significance [77]

and terms with a p-value of less than 0.05 after Bonferroni

multiple hypothesis correction were deemed significant. The GO

term enrichment analysis results are summarized as a

hierarchically clustered matrix with subnetworks as columns and

GO terms as rows, where colored elements represent significant

enrichment (Figure 3). To distinguish monochromatic subnetworks

active in stem cells from the subnetworks active in differentiated

cells, we colored the subnetworks green and red, respectively. If

the number of genes up-regulated in stem cells is more than twice

the number of genes up-regulated in differentiated cells, then the

subnetwork is considered active in stem cells and the column

corresponding to the subnetwork in the functional matrix is

colored green. On the other hand, if the number of genes in the

subnetwork up-regulated in differentiated cells is more than twice

the number of the genes up-regulated in stem cells, then the

subnetwork is active in differentiated cells and is colored red. All

the other cases where neither the gene up-regulated in stem cell

nor the gene up-regulated in differentiated clearly dominates, the

subnetworks are colored yellow in the functional matrix.

Supporting Information

Figure S1 neXus applied to a single-dataset differential

expression analysis. neXus was applied to differential expression

lists resulting from analysis of one mouse dataset (GSE3653) and

one human dataset (GSE9940). For a clustering coefficient

constraint of 0.1 on the mouse network and 0.2 on the human

network, we plotted the number of distinct subnetworks generated

for a range of network score cutoffs. Overlapping subnetworks

were removed when their member genes overlapped more than

60% with larger subnetworks. The number of subnetworks

obtained given randomized differential expression values for

human and mouse across 5 different random instances is also

plotted. We observe a similar enrichment over random subnet-

works as in the analysis described in the Results section,

demonstrating that the approach applies equally well to smaller-

scale differential expression analysis.

Found at: doi:10.1371/journal.pcbi.1001028.s001 (0.03 MB PDF)

Figure S2 Parameter sensitivity analysis to randomized expres-

sion data. The cross-species subnetwork discovery algorithm

depends on the setting of two parameters: a network score cutoff

and a clustering coefficient constraint. Based on 5 random

instances in which the differential expression data were shuffled

for both species, this figure shows how the number of random

conserved subnetworks discovered varies with changes in both the

clustering coefficient and network score parameters. This figure

can be compared to the parameter sensitivity analysis of real

discovered subnetworks (Fig. 2B). All clustering coefficients noted

are relative to the background, single-gene average clustering

coefficient, which is 0.08 for mouse functional linkage network and

0.35 for human functional linkage network.

Found at: doi:10.1371/journal.pcbi.1001028.s002 (0.03 MB PDF)

Figure S3 Fraction of random to real subnetworks vs. network

score cutoff. For a range of network score cutoffs (average

normalized fold change), the cross-species subnetwork discovery

approach was run on the real differential expression values as well

as on several random instances, where the differential expression

data were shuffled with respect to the gene labels. At each

parameter setting, the ratio of the number of subnetworks

obtained from the random instances was measured relative to

the number of real subnetworks (noise to signal ratio). The

parameters used for this experiment are clustering coefficient 0.1

and 0.2 for mouse and human respectively and .0.15 for network

score cutoff.

Found at: doi:10.1371/journal.pcbi.1001028.s003 (0.03 MB PDF)

Figure S4 Analysis of ortholog overlap in differential expression

lists vs. conserved subnetworks. To address the question of

whether the core conserved modules involved in stem cell

pluripotency could be identified by simply comparing the most

highly differentially expressed genes in both species, we compared

among differentially expressed genes to that obtained from our

subnetworks. Specifically, we selected a subset of the significantly

differentially expressed genes (based on SAM) that was similar in

size to the total number of genes that appear in the human and

mouse subnetworks produced by our approach (,600 genes). This

gene list contained roughly half up- and half down-regulated

genes. We then measured the intersection (based on our orthology

mapping) between the human and mouse gene lists, which resulted

in 36 up-regulated and 34 down-regulated genes in common.

Although this overlap is highly statistically significant, it is much

lower than the overlap between the mouse and human gene lists in

the subnetworks produced by our approach (overlap of 601 as

compared to 70). The subnetworks from our approach were

Cross Species Active Subnetworks Discovery
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obtained with clustering coefficient constraints of 0.1 on the mouse

network and 0.2 on the human network and a network score cutoff

of 0.15.

Found at: doi:10.1371/journal.pcbi.1001028.s004 (0.04 MB PDF)

Figure S5 Example conserved active subnetworks. Subnetworks

(a–b) are interesting subnetworks discovered by the cross-species

network search algorithm on differentially expressed genes

between stem cells and differentiated cells. Each subnetwork

represents a subgraph of the mouse (left column) and human (right

column) functional linkage networks. Nodes are genes, and they

are colored green if they are up-regulated in stem cells relative to

differentiated cells. The intensity of the green or red color of the

genes represents the normalized fold change in expression. The

edge thicknesses in the subnetworks represent the edge confidence

based on the functional linkage networks. The subnetwork (a)

shows that TEP1 is not differentially regulated in the subnetwork

enriched for transcription factor genes. The subnetwork (b) is an

interesting case where both up-regulated and down-regulated

genes are found in the subnetwork.

Found at: doi:10.1371/journal.pcbi.1001028.s005 (0.04 MB PDF)

Figure S6 Cumulative size distribution of subnetworks generat-

ed by existing methods. All methods were run on the mouse

reduced functional linkage networks (50,000 highest weight edges).

For each method, the subnetworks were sorted in term of the sizes

and the sizes were plotted against their rank in the sorted list. The

greater the difference between the real and random curve, the

greater the confidence we can have in the biological significance of

the real subnetworks. To display the utility of our cross species

approach, we ran the approach (clustering coefficient parameters

.0.1 and .0.2 for mouse and human, respectively and network

score .0.15) on the full functional linkage networks which is also

shown for comparison.

Found at: doi:10.1371/journal.pcbi.1001028.s006 (0.04 MB PDF)

Figure S7 Evaluation of single species approach. The figures

show the comparison of number of real subnetworks to average of

random subnetworks over multiple experiments (5), when the

single species variant of the network search algorithm was applied

to the human and mouse expression data and functional linkage

networks. The number of subnetworks identified at increasingly

network score criteria is indicated when the algorithm was applied

independently to (A) mouse (clustering coefficient criterion .0.2)

and (B) human (clustering coefficient criterion .0.5).

Found at: doi:10.1371/journal.pcbi.1001028.s007 (0.03 MB PDF)

Figure S8 Subnetwork evaluation based on alternative random-

ization schemes. In addition to the randomization scheme

described in the Results section, which involves shuffling the

differential expression values in both species, we evaluated three

other schemes as well: randomizing differential expression values

in only mouse, randomizing differential expression values in only

human, and randomizing the orthology links between mouse and

human. The figure plots the average number of subnetworks

discovered across 5 random instances for each scheme with the

dotted line providing a reference corresponding to 10% of the

subnetworks identified on the real data. At the same parameters at

which we discover 255 real subnetworks (clustering coefficient

parameters .0.1 and .0.2 for mouse and human, respectively

and network score .0.15), we found an average of ,11 with our

original randomization approach, an average of ,30 with the

mouse-only randomization, an average of ,24 with the human-

only randomization, and an average of ,3 with the orthology

randomization. Even by the most conservative randomization

scheme, our approach finds ,10-fold more real networks than

random.

Found at: doi:10.1371/journal.pcbi.1001028.s008 (0.03 MB PDF)

Table S1 Overlap between human and mouse genes covered by

MATISSE and our cross species algorithm.

Found at: doi:10.1371/journal.pcbi.1001028.s009 (0.17 MB PDF)

Table S2 Analysis of considerable overlap between the subnet-

works of the two species obtained through MATISSE and our

cross species algorithm.

Found at: doi:10.1371/journal.pcbi.1001028.s010 (0.18 MB PDF)

Table S3 Summary of Mus musculus microarray data.

Found at: doi:10.1371/journal.pcbi.1001028.s011 (0.27 MB PDF)

Table S4 Summary of Homo sapiens microarray data.

Found at: doi:10.1371/journal.pcbi.1001028.s012 (0.27 MB PDF)

Table S5 List of GO Terms enrichments for stem cells,

differentiated cells and mixed subnetworks.

Found at: doi:10.1371/journal.pcbi.1001028.s013 (0.19 MB XLS)

Text S1 This document contains the following supplementary

notes: Note 1: Implications of using functional linkage vs. physical

interaction networks for active subnetwork discovery; Note 2:

neXus applied to single dataset differential expression study; Note

3: Independence of the datasets; Note 4: Comparison of the

overlap of mouse and human subnetworks discovered through

MATISSE and neXus; Note 5: Other randomizations.

Found at: doi:10.1371/journal.pcbi.1001028.s014 (0.42 MB PDF)
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