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Abstract

Synaptic plasticity is considered to play a crucial role in the experience-dependent self-organization of local cortical
networks. In the absence of sensory stimuli, cerebral cortex exhibits spontaneous membrane potential transitions between
an UP and a DOWN state. To reveal how cortical networks develop spontaneous activity, or conversely, how spontaneous
activity structures cortical networks, we analyze the self-organization of a recurrent network model of excitatory and
inhibitory neurons, which is realistic enough to replicate UP–DOWN states, with spike-timing-dependent plasticity (STDP).
The individual neurons in the self-organized network exhibit a variety of temporal patterns in the two-state transitions. In
addition, the model develops a feed-forward network-like structure that produces a diverse repertoire of precise sequences
of the UP state. Our model shows that the self-organized activity well resembles the spontaneous activity of cortical
networks if STDP is accompanied by the pruning of weak synapses. These results suggest that the two-state membrane
potential transitions play an active role in structuring local cortical circuits.
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Introduction

Cortical networks show complex dynamics of intrinsic activity

when sensory inputs are absent. Whether this spontaneous activity

is a mere idling state of the brain or, rather, an internal state that

actively engages in brain functions remains unclear. Recent

experimental studies have revealed an important characteristic of

the intrinsic dynamics of cortical neurons. In vivo and in vitro

cortical pyramidal neurons exhibit spontaneous transitions of the

membrane potentials between a depolarizing UP state and a

resting DOWN state [1–14]. Results of a multi-intracellular

recording study showed that the onsets of the UP state spread from

a local focus and that activations originating from multiple cortical

sites are almost synchronous [15]. Other experiments revealed a

repeated activation of neurons in neocortical slices with a diverse

repertoire of precisely-timed temporal sequences [16–19]. Since

blockade of glutermatergic synaptic transmissions eliminated the

membrane potential transitions, recurrent synaptic input is

considered to be crucial for these transitions.

These results indicate that the spontaneous cortical activity is not

merely a collection of irregular neuronal firing, but is organized into

the spatiotemporal patterns that possibly reflect the structure of local

cortical networks. We may raise several questions regarding this

issue. How can recurrent cortical networks maintain the two-state

membrane potential transitions? Does the self-organized spontane-

ous activity exhibit precise temporal sequences? What is the likely

structure of the local cortical networks self-organized through the

two-state transition? Does the two-state transition exert a significant

impact on the network structure?

To address these issues, we constructed a recurrent network

model of pyramidal neurons and fast-spiking interneurons with

synapses between pyramidal neurons modifiable by spike-timing-

dependent plasticity (STDP) [20]. As observed in cortical networks

[17], the minority of the model’s pyramidal neurons displays

autonomous membrane potential transitions in the absence of

synaptic input. We show that, driven by the autonomous activity,

the network self-organizes repeated epochs of UP-state propaga-

tion that exhibit irregular durations and intervals. This irregular

network activity well resembles the experimentally-observed

cortical activity if we prune weak excitatory synapses. Further-

more, transitions from the DOWN state to the UP state (UP

transitions) exhibit precisely-timed sequences in the self-organized

network.

Self-organization of spontaneous two-state transitions was

studied partially in our previous model [21]. A novel finding in

the present paper is a repeated activation of temporal sequences

during network UP states, in which UP transitions propagate

through the entire network. While such sequences were not

remarkable in the previous model consisting of homogeneous

neuronal populations, the inhomogeneous intrinsic properties of

the present model induce neuron-dependent excitabilities that

promote sequential neuronal activation. We demonstrate the role

of the self-organized synapses and the nontrivial interactions

between the self-organizing process and the two-state transitions in

generating the repeated sequences. In addition, the non-homoge-

neous intrinsic properties create a wide variety of firing patterns, as

observed in experiments.
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Results

Self-Organized Spontaneous Network Activity
Pyramidal neurons were numbered in the ascending order of

the excitability, with neuron #512 having the highest excitability.

In this model, the neuron-dependent excitability of each neuron

was adjusted by the density of H-current. Some arguments

favorable to the use of H-current are given in the discussion. In

highly excitable (HiE) neurons, H-current is slowly activated in the

DOWN state and eventually depolarizes the membrane potential

to cause an UP transition. H-current is rapidly inactivated in the

UP state, and a hyperpolarizing current in turn grows by slow

activation of Ca2+-dependent potassium current, so the neurons

may return to the DOWN state. Thus, the HiE neurons display

autonomous two-state transitions through the intrinsic mechanism

even without synaptic inputs. In the present study, the excitatory

neurons with indices .400 were classified as the HiE neurons,

which in reality may correspond to the layer 5 pyramidal neurons

that initiate the spread of UP state [3].

Self-organization of recurrent synapses proceeded as in our

previous network models with [21] and without [22] two-state

membrane potential transitions. The pyramidal-to-pyramidal

connections were initially all-to-all and had equal weights, i.e.,

the half maximum conductance. Due to the activity regulation by

STDP, the average weight was reduced to approximately half of

the initial value (Figure 1A, left), and the weights of self-organized

recurrent synapses developed a bimodal distribution (Figure 1A,

right) [23,24]. The average weight and bimodal profile remained

unchanged once the network reached a stationary state. The self-

organized synapses exhibited relatively weak competition in the

recurrent network, with the synaptic weights continuously

distributed from the minimum to the maximum [21,22].

Reverberating synaptic inputs induce input-output correlations

in individual neurons, and presumably contribute to the

strengthening of the weak synapses.

Spontaneous activation of HiE neurons propagated synaptically

to the other neurons with low excitability (LoE neurons). Driven

by recurrent synapses, activities of the neurons were strongly

synchronized in the beginning of self-organization. During the

initial stage transient, short-term depression at the pyramidal-to-

pyramidal AMPA synapses prevented too rapid increases in firing

rate of each neuron, thus preventing too rapid decreases in the

maximum synaptic conductance by STDP. Thus, short-term

depression made it much easier to maintain the persistent network

activity. As recurrent synapses settled down on the steady

distribution, pyramidal neurons started to exhibit spatiotemporal

activity patterns representing the spread of UP transitions to the

entire network (network UP state) (Figure 1B). Recurrent

excitation maintained the network UP state, until the negative

feedback effects by the activation of Ca2+-dependent potassium

currents, inhibitory interneurons and synaptic depression would

terminate it.

Effects of the various inhibitory feedbacks on self-organization

were quantitatively studied in Figure S1A. In general, a weaker

inhibition results in higher firing rates of excitatory neurons during

network UP states. Since the synapses are significantly modified by

STDP during these states, the average synaptic weight in the

steady state was decreased (as STDP is LTD-dominant). However,

an overly weak inhibition failed to produce epochs of the DOWN

state in the spontaneous network activity (see the slowly decaying

curves in some of the leftmost panels). Such a continuous UP state

made the synaptic weights too weak to maintain the persistent

network activity (asterisks in the rightmost panels). Figure S1B

schematically summarizes the resultant patterns of network

activity.

Self-Organization with Different STDP Rules
If the network activity could survive the initial-stage down

regulation by LTD, a steady state with a moderate firing rate was

robustly obtained for additive STDP [23] with different timing

windows or different LTD/LTP area ratios (Figure S1C). In

contrast, the steady state with a low firing rate was not achieved by

other rules of STDP that do not exhibit activity regulation, e.g., a

multiplicative STDP rule [25] (Figure S1D). In such a case, all

neurons in the network displayed very high-frequency (.150 Hz)

tonic firings, in which searching for a structure in network activity

is meaningless. The result is also consistent with that of a recent

study of self-organization without the two-state transitions using a

variant of multiplicative rule [26].

Activation Patterns of the Individual Neurons
The model neurons displayed a broad range of firing patterns

depending on their temporal positions in the activity spread. The

HiE neurons exhibited brief UP states with a few spikes, whereas

the LoE neurons displayed long-lasting UP states with bursts of

spikes (Figure 1C, leftmost column). The different activity patterns

resulted in quite different profiles of the bi-modal membrane-

potential distributions (Figure 1C, middle column). The distributions

exhibited clearly distinct bimodal peaks in the LoE neurons,

whereas such peaks were obscure in the HiE neurons. These

results are consistent with the experimentally observed variation of

membrane potential distributions [1–5,14,16]. We note that the

distributions of the synaptic weights show quite different profiles in

the two neuron types (Figure 1C, rightmost column). In HiE neurons,

the distribution was strongly biased towards weak synapses due to

the asymmetric flow of neuronal activity from HiE to LoE

neurons.

Why do pyramidal neurons display this variation of firing

patterns? In particular, why do LoE neurons exhibit highly

irregular firing patterns when they are driven by the near-regular

firing of HiE neurons? In our model, the complex interactions

between recurrent inhibition and the inward-rectifier K+ current

Author Summary

Information processing by the brain relies crucially on
neuronal circuits. Therefore, clarifying the structure of the
brain circuitry is a crucial step towards understanding how
the brain processes information. In particular, the cerebral
cortex occupies a large portion of the brain in primates
and humans, so the organization of local cortical networks
is essential for the emergence of higher cognitive
functions. However, the complex structure and computa-
tions of local cortical networks remain largely unknown. In
this study, we investigate the neuronal wiring and activity
self-organizing with synaptic plasticity in a model of local
cortical networks. Synaptic plasticity describes how
synapses between neuron pairs are modified according
to activities of the individual pairs. The irregular activity
self-organizing in our model surprisingly resembles the
spontaneous cortical activity observed during sleep.
Moreover, such an autonomous activity contains a diverse
repertoire of precisely timed temporal sequences. Whether
local cortical networks produce such precise temporal
sequences is currently debated in neuroscience. The self-
organization of temporal sequences in the sleep-like state
suggests that they may play an active role in learning
sensory experiences and motor skills, for which sleep is
known to be crucial.

Structure of Spontaneous UP and DOWN Transitions
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Figure 1. Neuronal activities in the self-organized recurrent network. (A) The time course of normalized weights of recurrent AMPA
synapses (left). The thick curve shows the value averaged over all synapses and thin curves show three representative synapses. The steady state
distribution of the normalized synaptic weights has a bimodal shape (right). (B) The network repeated epochs in which pyramidal neurons are
sequentially activated to the UP state. Each dot represents an UP transition, and neurons are arranged in an increasing order of maximum
conductance of H-current. (C) The model pyramidal neurons displayed a variety of activation patterns depending on the neuron’s excitability. The
activation patterns of Ih-rich, highly excitable (HiE) neurons were regular, while those of Ih-poor neurons with low excitability (LoE) exhibited spike
bursts and were highly irregular (left column). Accordingly, the distributions of the membrane potential (middle column) and the weights of incoming
synapses (right column) show different profiles in the two categories of neurons. (D) Time courses of membrane potential, inward rectifier potassium
current IAR, total EPSC and total IPSC in a pyramidal neuron model are shown. A large IPSC hyperpolarizes the membrane potential and in turn
activates IAR to reset the neuron to the DOWN state. Dashed line indicates the baseline level of IAR, with inward current shown below the baseline.
doi:10.1371/journal.pcbi.1000022.g001

Structure of Spontaneous UP and DOWN Transitions
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IAR enhance the irregular firing of LoE neurons (Figure 1D). A

LoE neuron may exhibit UP transitions when it receives volleys of

excitatory synaptic input. However, such input does not

necessarily elicit a prolonged spike generation. A strong excitatory

input is often followed by a strong inhibitory synaptic input, which

may quickly hyperpolarize the membrane potential to activate

IAR. Then, the neuron may briefly stop firing, or even make a

DOWN transition. Thus, the inhibitory regulation, at least partly,

causes irregular firing of the driven neurons.

Structure of the Self-Organized Neuronal Circuit
To get an insight into the network dynamics, we show the

structure of the self-organized neuronal wiring in Figure 2A. Here,

we selected every 8 neurons from LoE to HiE neurons (i.e., 64

neurons in total) and arranged them anti-clockwise along a ring in

the ascending order of the excitability, with the least excitable

neuron at the three o’clock position. Hereafter, we call the

information flow directed from HiE to LoE neurons ‘‘feed-

forward’’. Strong, modest and weak synaptic connections are

separately shown, and red or blue lines indicate feed-forward or

feedback connections, respectively. The figures show that the

neuronal wiring is highly asymmetric, i.e., most of the strongest

projections are feed-forward whereas almost all weak synapses are

feedback. However, some feedback projections are also strong,

and they are dense especially among HiE neurons. The activities

of these neurons were modulated by the slow intrinsic rhythms, so

the relative times of their firing were varied in repeated network

UP states. This is why STDP does not eliminate the feedback

connections among them. Nevertheless, the feed-forward–domi-

nant organization of the self-organized network is apparent from

the average weights of the synapses terminated on or sent from the

individual neurons (Figure 2B).

To see whether STDP regulates the activity of recurrent

network, we shuffled all the self-organized synapses across the

entire population of excitatory neurons. This manipulation keeps

the distribution of synaptic weights unchanged over the whole

network. However, it mixes up the synapses among the neurons

and changes the weight distribution on each neuron. As a result,

the synaptic mechanism to regulate neuronal activity was

destroyed and the firing rate of excitatory neurons were

significantly increased (Figure 2C). Moreover, it eliminated the

hyperpolarizing DOWN state (hence, the spontaneous two-state

transitions) from the network activity. These results indicate that

the additive STDP regulates the activity of the recurrent network,

and that such a regulation is crucial for the spontaneous

membrane potential fluctuations.

The propagation of neuronal activity in the self-organized

network may resemble that observed in cortical networks in vivo

[27]. However, synchronized network UP states in the self-

organized activity occurred in narrower time windows and in

more regular temporal patterns than those in the cortical activity.

These discrepancies were robustly seen in the spontaneous two-

state transitions obtained in our simulations. Interestingly,

however, eliminating weak excitatory synapses makes the self-

organized network activity better resemble the in vivo cortical

activity. In fact, the elimination of the weakest 40% of excitatory

synapses, which involved a large fraction of the feedback

connections (Figure 2D, right), generated irregular activity patterns

quite similar to the experimentally observed ones (Figure 2D, left).

Such an elimination of the recurrent synapses significantly reduced

the frequency and amplitude of inhibitory feedback synaptic

current (Figure 2E), and allowed each neuron to stay in the UP

state for longer periods of time. However, a further elimination of

the synapses (60% elimination) spoiled the propagation of UP

states to the far downstream neurons (Figure 2F). An optimal

degree of the elimination exists.

Precise Temporal Sequences Associated with UP
Transitions

We have shown that the self-organized network has a primarily

feed-forward neuronal wiring. We tested whether this near–feed-

forward structure generates temporal sequences of UP transitions,

since such sequence has been reported in cortical networks [16].

To this end, we detected the onset times of the UP state in each

neuron by monitoring transient changes in the calcium concen-

tration (see Materials and Methods). By using a template matching

method (timing jitters,1 ms: see Materials and Methods), we

looked for such precise sequences that consisted of more than two

UP transitions and repeated in more than one UP-state epoch. In

Figure 3A, we depicted examples of those sequences that were

repeated in successive network UP states. The relative temporal

relationships between different sequences (e.g., the red and green

ones) in general changed in the repetition. Nevertheless, the

relative timing of UP transitions within each sequence little

jittered.

To confirm the statistical significance of the precise sequences,

we constructed a set of N independent non-stationary Poisson

event sequences (N is the network size). As shown previously, the

individual neurons display quite different temporal activation

patterns depending on their relative positions in the UP-state

propagation. Moreover, the driven LoE neurons participate in

sequences more often than the driving HiE neurons (Figure S2A),

presumably reflecting the fact that the driven neurons fire in

narrower temporal windows in the repeated network UP states

(Figure S2B). In constructing the non-stationary Poisson sequenc-

es, we attempted to preserve such a sub-structure of network

activity, since it may be crucial for generating the repeated

sequences. To this end, we divided the excitatory neural

population into eight subgroups of equal sizes and calculated the

UP-transition rates in each subgroup in successive time windows

sufficiently shorter than the typical duration of network UP states.

Then, in each subgroup we set the time evolution of the

population event rate of the Poisson sequences equal to thus

calculated time evolution of UP-transition rate. Thus, the non-

stationary Poisson events preserve the spatial and temporal

structure of UP transitions in larger scales, while randomizing

the fine spatiotemporal structure of the events (Figure S2C). We

found that the number of temporal sequences in the network

simulations is significantly larger than that expected by chance

(p,0.001) (Figure 3B).

Actually, the neuronal wiring self-organizing through STDP

underlies the sequence generation in the present recurrent

network. To show this, we shuffled the synaptic connections in a

completely random manner. This manipulation destroys the

weight distributions on the individual neurons, while preserving

the distribution of the synaptic weights over the entire network.

Shuffling synaptic connections eliminated most of the DOWN

states, and therefore greatly reduced both the number of UP

transitions and that of recurrent patterns (Figure 3C). In order to

rescue the DOWN states, we rescaled all the excitatory synapses

by a factor less than unity. This manipulation recovered the

number of UP transitions to the original level, but not that of

temporal sequences. The results strongly indicate that the specific

structure of self-organized neuronal wiring underlies the repeated

sequences.

To further elucidate the role of the self-organized synapses, we

examined whether a recurrent network might generate temporal

sequences without STDP. We connected pyramidal neurons

Structure of Spontaneous UP and DOWN Transitions

PLoS Computational Biology | www.ploscompbiol.org 4 2008 | Volume 4 | Issue 3 | e1000022



Figure 2. Structure of the self-organized excitatory neuronal network. (A) We selected every 16 neurons from LoE to HiE neurons and arranged
the 64 selected neurons along a ring anticlockwise in the ascending order of the excitability. The least excitable neuron is located in the direction of three
o’clock. Red lines represent synaptic connections in the feed-forward direction (HiERLoE), while blue lines show connections in the feedback direction.
The left, middle and right panels display strong (g.0.7 gmax), modest (0.45 gmax,g,0.55 gmax) and weak (g,0.01 gmax) synapses, respectively. Initially, all
synapses were set at g = 0.5 gmax. (B) The average weight of the outgoing (black) or the incoming (red) synapses of the individual neurons. (C) Left, The
average firing rate of excitatory neurons was simulated with the self-organized synapses (solid) or randomly shuffled ones (dashed). Right, The mean and
variance of the population firing rate are presented in both cases. The error bars represent SD. (D) Left, A network in which the weakest 40% (g=0.4gmax)
of all AMPA synapses were eliminated exhibited an irregular activity pattern (bottom). We show the average firing rates of the excitatory (black) and
inhibitory (red) neuron pools (middle). For comparison, we display similar traces obtained in the original model (top). Right, The ring diagrams represent
the resultant patterns of neuronal wiring. (E) Behavior of the membrane potential and postsynaptic current of a pyramidal neuron in the normal (left) and
40%-eliminated conditions (right). (F) Similar results are shown for the case in which the weakest 60% of the excitatory synapses were eliminated.
doi:10.1371/journal.pcbi.1000022.g002
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Figure 3. Precise sequences of UP transitions. (A) Each network UP state contained precisely-timed sequences of UP transitions. In the second
and third rows, we presented only those sequences that were repeated in successive network UP states. Each sequence allowed timing jitters less
than 2 ms, and should be repeated at least three times in a 10 sec-long simulation trial. (B) To test the statistical significance of the sequence
generation, we compared the observed number of precise sequences with that of artificial non-stationary Poisson sequences. Both cases generated
approximately the same number of UP transitions. In B and C, filled bars refer to the number of UP transitions, while empty bars to that of temporal
sequences. Error bars represent SD. (C) A random shuffle of excitatory synapses eliminated most of the UP transitions and temporal sequences
(center). Rescaling the synapses revived the UP transitions, but not the temporal sequences (right). (D) Activities of three excitatory neurons are
presented to show the large jitters in the relative times of neuronal firing. For instance, the three neurons fired almost synchronously in epoch 1,
while the firing of cell 2 preceded that of the others by about 50 ms in epoch 2. (E) A typical example of the repeated sequences (solid and dashed
traces), which consist of three neurons, displays different fluctuating patterns of the subthreshold membrane potentials. Dots indicate the UP
transitions constituting the two sequences.
doi:10.1371/journal.pcbi.1000022.g003

Structure of Spontaneous UP and DOWN Transitions
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randomly by excitatory synapses of identical strength, and adjusted

the synaptic strength such that the network could exhibit

spontaneous two-state transitions at a low rate similar to that of

the self-organized network activity. The connectivity of the

resultant random recurrent excitation was about 20%. The

number of precise sequences was significantly smaller in the

random network than in the self-organized one (Figure S3). These

results confirm that the precise temporal sequences are a

consequence of STDP.

Excitatory neurons were activated nearly in a sequential

manner in each network UP state. However, the order of

activation was not strictly fixed across different epochs of the

network UP state, but rather jittered from epoch to epoch

(Figure 3D). Moreover, unlike in experiments [16], the sequences

did not generally repeat similar temporal patterns of the

subthreshold membrane-potential fluctuations (Figure 3E). The

results seem to reflect the fact that the present self-organized

network is not a purely feed-forward network (Figure 2A), which

would generate only small jitters in the activation order and repeat

similar fluctuating patterns of the membrane potential (or

postsynaptic current). It is noted that the propagation of UP

transitions in cortical neurons was shown to exhibit large timing

jitters during slow-wave sleep [15].

Interactive Effects of STDP and UP–DOWN Transitions on
Sequence Formation

If the network is not driven by HiE neurons, the depressing

effect of STDP would eventually terminate spontaneous neuronal

firing during self-organization. Thus, an apparent role of the

membrane potential transitions in the self-organizing process is to

maintain the spontaneous activity. Do they also play an active role

in sequence generation? We studied this intriguing question by

testing whether precise temporal sequences can self-organize

without clearly-distinct two-state transitions. To reduce the voltage

differences between the two membrane-potential states, we lifted

the hyperpolarizing membrane potential of the DOWN state by

reducing the maximum conductance of the inward rectifier K+

current IAR. Cortical neurons show a similar suppression of the

DOWN state typically when animals are awake or in rapid-eye-

movement sleep [4]. However, the mechanism of this change

remains unknown, and reducing IAR is to be regarded as an ad hoc

method to suppress the membrane potential transitions.

The suppression of the DOWN state changed the membrane

potential distributions from bimodal to unimodal (data not shown)

and scattered action potentials uniformly over temporal domain

(Figure 4A) without much changing the average firing rate

(Figure 4B, dashed). We then tested whether the recurrent network

with the reduced IAR could self-organize temporal sequences. STDP

failed to develop sufficiently strong synaptic connections, and the

feed-forward network structure was obscure compared with the

previous case (Figure 4C, upper raw). Consequently, the generation of

precise sequences was significantly impaired (Figure 4D).

The reason for this reduction of sequences may be understood

as follows. The excitatory neurons are sequentially activated

during network UP states according to their different excitabilities.

The loss of clearly-distinct DOWN states, which was caused by the

reduced IAR, suppresses the neuron-dependence of excitability and

the essential difference between HiE and LoE neurons. Therefore,

such a loss eliminates the sequential neuronal activation during

network UP states. In addition, clearly-distinct network DOWN

states reset network activity to prepare for the sequential

activation. Thus, the disappearance of DOWN states prevents

the development of a feed-forward–dominant network structure.

Figure 4. The role of two-state transitions in the network
organization. (A) Two cells display typical examples of highly
excitable and low excitable neurons (left columns). Suppressing the
maximum conductance of IAR reduces the amplitude of the membrane
potential transitions in these cells (right columns). (B) The population
firing rate of excitatory neurons was calculated in three cases: with a
suppressed IAR; with a reduced connectivity of inhibitory-to-excitatory
synapses; with a decreased maximum conductance of these synapses.
In all three cases, the membrane potential fluctuations exhibit no clearly
distinct DOWN states. (C) The wiring structure (leftmost and middle two
columns) and the weight distributions (rightmost columns) are shown
for the synapses self-organized under the above three conditions. (D)
The loss of distinct two-state transitions significantly reduces the
number of precise temporal sequences in all three cases (filled bars),
without much reducing that of UP transitions (empty bars).
doi:10.1371/journal.pcbi.1000022.g004

Structure of Spontaneous UP and DOWN Transitions
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We further tested the active role of clearly separated UP and

DOWN states by reducing the connection probability or the

maximum conductance of the interneuron-to-pyramidal GABAer-

gic synapses. Here, IAR was reset to the original magnitude. As in

the case of reduced IAR, the weak inhibitory feedback eliminated,

partially or perfectly, the distinct DOWN states (Figure 4B). As a

result, the weak inhibition impaired the self-organization of strong

synapses (Figure 4C, middle and lower rows) and a nontrivial structure

of the synaptic matrix (Figure 5). Therefore, the self-organized

networks failed to generate precise temporal sequences (Figure 4D).

Discussion

Computational studies revealed that STDP can self-organize

relatively short feed-forward chains to propagate synchronous

spikes [22,28], or networks that produce accurately-timed spike

sequences without relying on synchronous firing [29]. We have

studied the self-organization of cortical networks while taking the

characteristics of spontaneous cortical activity into account, that is,

a depolarizing UP and a resting DOWN state. The emergent

neuronal network was able to maintain persistent neuronal firing

with spontaneous transitions between the two distinct membrane-

potential states. We have shown that STDP achieves the balance

between recurrent excitation and inhibition to generate the two-

state spontaneous transitions. Moreover, the network generated

spike sequences with high temporal precision [16–17,29–33]. Our

results support the hypothesis that cortical information processing

may partially rely on accurately timed spike sequences [34–40].

Mechanism of the Two-State Transitions
Blocking AMPA and NMDA synaptic currents terminates the

temporally-correlated spontaneous spike sequences in cortical

slices [17]. However, layer 5 pyramidal neurons with large apical

dendrites exhibit spontaneous regular firing even after these

receptors are blocked. In addition, layer 5 neurons initiate the

spread of UP transitions in cortical slices [3]. The autonomous

activity can be diminished by blocking the persistent sodium

current (NaP) and H-current. Since H-current is abundant at the

distal sites of apical dendrites in pyramidal neurons [41–46], our

pyramidal neuron model included these ionic currents in the

dendritic compartment. The minority of the model neurons

having especially rich concentrations of H-current exhibited self-

sustained membrane potential transitions, which contributed to

setting the entire network to spontaneous activity (Figure 1B).

Since LTD is the dominant component of STDP [47], it rapidly

reduces the weights of recurrent synapses during the self-

organization. Thus, without the self-sustained activity, the network

would easily fall into a permanent quiescent state.

Previous models of UP and DOWN states hypothesized very

strong recurrent connections to induce and maintain UP states,

and a potassium-dependent intrinsic mechanism [48] or short-

term synaptic depression [49] to terminate the UP state. However,

due to the powerful down regulation by STDP, recurrent

excitatory connections in our model could not remain strong

enough to maintain network activity without the intrinsic drive by

the HiE neurons. It is likely that under the continuous influence of

STDP the persistence of spontaneous activity requires an intrinsic

mechanism to initiate the UP state. As mentioned above, here the

H-current serves for this role. To turn off the UP state, this model

employed a potassium-dependent intrinsic mechanism, short-term

synaptic depression and recurrent inhibition (Figure 4B). In

principle, we could induce DOWN transitions solely with any

one of these mechanisms. In such cases, however, it was difficult to

keep the values of the related parameters in moderate ranges. In

addition, the network UP states exhibited approximately fixed

temporal lengths and regular periodicity (data not shown). The

Figure 5. The synaptic matrices obtained in self-organization with the normal and small GABA synapses. Self-organization under the
normal condition generated an asymmetric connectivity (upper left), while such a structure is not self-organizing under the small-GABA condition
(lower left). The weights of outgoing and incoming synapses exhibit a systematic neuron-dependence under the normal condition (upper right),
whereas they show no such a dependence under the small-GABA condition (lower right).
doi:10.1371/journal.pcbi.1000022.g005

Structure of Spontaneous UP and DOWN Transitions
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highly irregular repetition of network UP states, such as observed

in experiments [27], appeared if the network recruited the multiple

mechanisms of DOWN transitions.

H-current is generally considered to be crucial for the integration

of synaptic inputs [41,45]. In addition, some experiments suggested

that the blockade of H-current enhances, rather than suppresses, the

two-state membrane potential transitions [50]. Whether this current

engages in the maintenance of the two-state transitions seems open

for future studies. We may replace H-current with some other

mechanisms of excitability, such as neuron-dependent resting

membrane potentials. In this case, however, the pacemaker activity

of the HiE neurons would not be accompanied by slow subthreshold

oscillations. Whether the autonomous neuronal firing observed

experimentally displays the subthreshold oscillations requires a

further experimental clarification.

Pruning Weak Recurrent Synapses During
Self-Organization

We have shown that an additive STDP rule self-organizes such a

neuronal wiring that is primarily feed-forward, that is, most synaptic

connections are formed to propagate activity from the self-activated

HiE neurons to the driven LoE ones. However, the network also

develops a non-negligible amount of relatively weak feedback

synaptic connections. We have shown that pruning the weak

excitatory synapses, most of which are feedback connections,

broadens the epochs of network UP state and increases the epoch-

to-epoch variability in the duration of network UP states (Figure 2D),

as seen in cortical networks [27]. In fact, this prolongation of network

UP states is caused by a resultant decrease in recurrent inhibition.

These results may suggest that some physiological mechanism

eliminates or silences overly weak cortical synapses during self-

organization. Note that STDP does not describe such an elimination

of synapses. It is intriguing to experimentally test whether such a

pruning of cortical synapses follows STDP.

Roles of Two-State Transitions in Self-Organizing of
Recurrent Synapses

Our model predicts that the membrane potential distributions

display clear bimodality for the LoE neurons located the

downstream of information flow, whereas the bimodality is less

obvious in HiE neurons (Figure 1C). The membrane potential

transitions in cortical neurons do display a wide variety of

temporal profiles [1–5]. It seems intriguing to examine whether

the experimentally observed pattern of the variations is consistent

with our categorization of neurons based on their excitability.

We have shown that the propagation of two-state membrane

potential transitions plays an active role for self-organizing precise

temporal sequences (Figure 4D). As previously mentioned, HiE

neurons provide a powerful synaptic drive on other neurons

during self-organization. This synaptic input would activate LoE

neurons in the temporal order determined by the resting levels of

their DOWN states: the lower the resting potential, the slower the

activation of that neuron. The resting level depends significantly

on the density of H-current in this model. Then, STDP would

strengthen or weaken the synaptic connections between LoE

neurons according to the relative order of their activations.

Comparison with Experimental Observations
Ikegaya et al. attributed the generation of precise temporal

sequences to the repetition of the membrane-potential fluctuations

that reflect synaptic inputs. However, Mokeichev et al. showed

that such repeated membrane-potential fluctuations do not appear

more often than the chance level expected from their power

spectrum structure, thus rejecting the hypothesis by Ikegaya et al.

that the repetition of the membrane-potential fluctuations

underlies the precise sequences [51]. In our model, the repeated

sequences were rarely accompanied by the repetition of the

membrane-potential fluctuations (Figure 3E). This was presumably

due to the lack of an obvious feed-forward network structure in our

model (note that synaptic connections still play a crucial role in the

sequence repetition: see Figure 3C and Figure S3B). Thus, our

model suggests that the repetition of the membrane-potential

fluctuations is not necessarily required for the generation of

sequences. This result seems consistent with that of a statistical

analysis by Mokeichev et al. However, our results also imply that

the repeated membrane-potential fluctuations do not always

provide a good statistical measure for the repeated sequences.

In a broad range of parameter values, the self-organization with

UP and DOWN states led the present recurrent network to

repetition of network UP states, in which neuronal activations are

broadly synchronized (Figure 1). Moreover, pruning the weak

synapses made the temporal pattern of the network UP states

similar to those observed in vivo (Figure 2D, 2E). By contrast, the in

vitro cortical activity displayed no obvious synchronous activation

patterns [16]. Whether the present model may replicate the in vitro

cortical activity is open for further studies.

In vivo cortical neurons typically display the two-state membrane

potential fluctuations when subjects exhibit a slow-wave oscillation

state [4,52–54]. Boosting the slow oscillations during non-REM

sleep improves the ability of declarative memory [55], and the

removal of slow-wave sleep significantly disrupts subject’s memory

[52,53]. The present results suggest that the two-state transitions

may assist local cortical networks in encoding temporal sequences

to enhance memory consolidation during sleep.

Materials and Methods

Model Neurons
Mathematical details of the model are given in Supporting

Information (Text S1). We modified the two-compartment model

of pyramidal neurons which was previously introduced for

describing the propagation of spontaneous neuronal activity in

cortical networks [48]. Thus, the pyramidal neuron is modeled as

CmAs
dVs

dt
~{As(ILzINazIDRzIAzIKS){Isyn,s

{gsd (Vs{Vd )zInoise,s,

CmAd

dVd

dt
~{Ad (ICazIKCazINaPzIARzIh){Isyn,d

{gsd (Vd{Vs)zInoise,d

where Cm = 1 mF/cm2, As = 0.015 mm2, Ad = 0.035 mm2 and

gsd = 1.75 mS. The somatic compartment involves a voltage-gated

sodium current (INa), a delayed-rectifier potassium current (IDR), a

leak current (IL), a transient potassium (IA), and a slowly

inactivating potassium current (IKS). The dendritic compartment

contains a high-threshold calcium (ICa), a calcium dependent

potassium (IKCa), a non-inactivating persistent sodium (INaP), and a

non-inactivating inward rectifier potassium current (IAR) that is

activated at hyperpolarization. In experiments, a minority of

pyramidal neurons exhibited autonomous membrane potential

transitions even after the blockade of excitatory synaptic

transmissions. A hyperpolarization-activated cation current (H

current, Ih) and a persistent sodium current have been suggested as

the source of this autonomous activity [17]. We included H-
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current in the dendritic compartment, as it is abundant at the

distal dendritic sites of the neocortical and hippocampal CA1

pyramidal neurons [41–46]. H-current plays an active role in

generating rhythmic firing of thalamocortical relay neurons [56]

and globus pallidus neurons [57]. The voltage-dependent kinetics

of this current follows those of a thalamocortical relay neuron

model [58]. We set the values of parameters and the kinetics of the

various ionic currents as given in [48], except for the following: the

reversal potential of leak current EL = 265 mV; values of the

maximum conductance were scaled by 1.2 and 0.5 for an inward-

rectifier and a calcium dependent potassium current, respectively;

values of the maximum conductance of Ih were distributed across

neurons according to a Gaussian distribution with a mean of

0.004 mS/cm2 and a variance of 0.02 (mS/cm2)2. Cell-dependent

strength of the H-current determines different excitability for

individual neurons. H-current-rich neurons show spontaneous

rhythmic firing at a low rate (,1 Hz) even without synaptic input.

All pyramidal neurons received a weak background input

represented by a Gaussian white noise with a diffusion constant

of 3.0 mV2/ms. Following [21,22], fast-spiking GABAergic

interneurons were modeled as

C
dVin

dt
~{IL{INa{IK{Isyn,s:

Network Organization
Our network model has 512 two-compartmental pyramidal

neurons and 128 inhibitory interneurons and ,500,000 synapses

including plastic ones for most of the simulations presented here.

Pyramidal-to-pyramidal synaptic input is mediated by AMPA and

NMDA receptor-mediated glutamatergic synaptic currents, and

the pyramidal-to-interneuron synaptic current is mediated by

AMPA receptor-mediated synaptic current. Interneuron-to-pyra-

midal and interneuron-to-interneuron synaptic transmissions,

however, are mediated by GABAA receptors. The AMPA and

NMDA glutamatergic synapses are located on the dendritic

compartments, whereas the GABAergic synapses are located on

the somatic components of pyramidal neurons.

The gating variables s(t) of the AMPA and GABAA synapses are

increased by 1.0 at the arrival of a pre-synaptic spike and then

decay following a first-order kinetics with a decay time constant of

tdec = 5 ms. The NMDA synaptic current obeys a double ex-

ponential function with a raising time constant of traise = 10 ms

and a decay time constant of tdec = 50 ms [59]. In addition, the

NMDA synaptic current is gated by a voltage-dependent gating

variable [59]. Reversal potentials of synaptic currents were set

as EAMPA, NMDA = 0 mV, EGABA = 80 mV, and the values of

maximum conductance as gAMPA
EE ~0:4 nS, gNMDA

EE ~0:4 pS,

gAMPA
EI ~50 nS, gGABA

IE ~3 nS, and gGABA
II ~10 nS:

Synaptic Pasticity Rules
AMPA synapses at excitatory-to-excitatory connections are

modifiable by STDP depending on the relative times Dt between

an EPSP and a postsynaptic spike [20,23,60]:

g?gzgmaxG Dtð Þ

G Dtð Þ~
Az exp {Dt=tzð Þ Dt:tpost{tprew0

{A{ exp { Dtj j=t{ð Þ Dtv0

(

A synapse is strengthened or weakened if the interval from an

EPSP to a neighboring postsynaptic action potential is positive or

negative, respectively. We employed this additive form of STDP to

induce competition between synapses, which has received some

experimental support [61]. This rule was chosen to obtain

persistent network activity at a moderate firing rate and repeated

sequences. However, other study reported a multiplicative STDP

rule at cortical synapses [25]. The strength of NMDA synapse

between an excitatory neuron pair is rescaled in proportion to that

of the AMPA synapse between the neuron pair [62,63]. The

values of the parameters were set as A+ = 0.005, A2 = 0.00525, and

t+ = t2 = 20 ms. The area law (A+t+,A2t2) induces a competi-

tion between the synapses [23].

The pyramidal-to-pyramidal synapses also exhibit short-term

synaptic depression [64–66]. The mathematical description of

depressing synapses follows that given in [66]. Each synapse is

multiplied by a depression factor at every presynaptic spike, while

each synapse recovers from the depression in the absence of

presynaptic spikes. Depression factors are 0.99 and recovery time

constants were distributed over the excitatory neuron population

according to Gaussian distributions with a mean of 700 ms and a

variation of 50 ms2. The connectivity of pyramidal-to-interneuron

and interneuron-to-interneuron synaptic connections is 10%, and

the interneuron-to-pyramidal synaptic connections have a con-

nectivity of 30%. These types of synaptic connections are not

modifiable by STDP. Simulation software was written in C and

ran on Pentium 4 3.0 GHz68CPU PCs using parallel computing

by the MPI programming techniques.

Sequence detection.

We marked the UP transitions by the times at which the relative

calcium influx defined by D[CA2+]/([Ca2+]+e) exceeded 2.0

(e = 0.01 mM). We used a template matching method to detect

the precise sequences repeated more than two times. We selected a

reference excitatory neuron, say n1, and picked up the first UP

transition in this neuron at time t1 as a reference event. Then, we

searched for all UP transitions that occurred in other neurons after

t1 to construct an event vector, [t1 t2 … n1 n2 …]. We constructed

similar event vectors taking every UP transition in neuron n1 as the

reference event. We compared all possible pairs of thus obtained

event vectors as follows. Whenever the same neuron, say nk,

appeared in the two vectors, we examined whether the time

differences tk2t1 are equal in the two vectors with a precision of

60.5 ms (criteria 1). If so, we kept the chain n12nk and repeated

the same procedure until we reached the end of the vectors,

adding every neuron satisfying criteria 1 to the chain. If the final

chain contained more than two neurons (including n1 itself), we

regarded this chain as a precise sequence (criteria 2). We repeated

the above procedure for all possible choices of the reference

neuron. It is noted that this algorithm might count some sequences

in multiple times. However, these redundant counts were

negligibly small since the majority of precise sequences contained

only three UP transitions in the present simulations (thus, multiple

counting was rejected by criteria 2).

Supporting Information

Figure S1 Parameter dependence of the self-organizing network

behavior. (A) The time courses of the population firing rate (left)

and normalized average synaptic weight (middle) during the self-

organizing process are shown. We conducted the simulations while

varying the values of the depressing factor, interneuron-to-

pyramidal synaptic connectivity, maximum conductance of the

GABAergic synapses and maximum conductance of potassium-

dependent calcium current. All these parameters control the

overall inhibitory effects on the recurrent network. The average

population firing rates are also shown for the steady states of self-

organization (right). Error bars show SD. (B) The steady states
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obtained at various levels of the overall inhibitory effect are

schematically illustrated. (C) The self-organizing process was

simulated using STDP rules with different timing windows (upper

panels) or different LTP/LTD area ratios (lower panels). (D) The

equilibrium distribution of synapses obtained by the STDP rule

proposed in van Rossum et al., 2000, where LTD obeys a

multiplicative rule.

Found at: doi:10.1371/journal.pcbi.1000022.s001 (3.46 MB EPS)

Figure S2 Sub-structure of repeated sequences. (A) The driven

LoE neurons (with small indices) have much larger chances to

appear in the repeated sequences than the driving HiE neurons

(with large indices). (B) The distributions of the times of UP

transitions during a network UP state are shown for 100 LoE and

100 HiE neurons (upper). The origin of the time axis indicates the

time point at which each network UP state was over. The mean

relative times (circle) of Up transitions are shown for the two

neuron groups. Error bars indicate SD. The difference in SD is

statistically significant (F-test, p,10-7). (C) An example of the non-

stationary Poisson event sequences (lower) is shown for the steady

state obtained by simulations of the model network.

Found at: doi:10.1371/journal.pcbi.1000022.s002 (0.97 MB EPS)

Figure S3 Generation of UP transition sequences without

STDP. (A) The averages firing rates were calculated for a

recurrent network, in which excitatory neurons were connected

randomly with a connectivity of 10, 20 or 30%. The 20%-

connectivity network showed approximately the same firing rate as

that of a self-organized network. Error bars represent SD. (B) The

number of UP transitions (empty) and that of their sequences

(gray) are displayed for the self-organized and 20%-connectivity

random networks.

Found at: doi:10.1371/journal.pcbi.1000022.s003 (0.59 MB EPS)

Text S1 The mathematical details of the model given with

references.

Found at: doi:10.1371/journal.pcbi.1000022.s004 (0.16 MB

DOC)
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