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Abstract

The cellular response elicited by an environmental cue typically varies with the strength of the stimulus. For example, in the
yeast Saccharomyces cerevisiae, the concentration of mating pheromone determines whether cells undergo vegetative
growth, chemotropic growth, or mating. This implies that the signaling pathways responsible for detecting the stimulus and
initiating a response must transmit quantitative information about the intensity of the signal. Our previous experimental
results suggest that yeast encode pheromone concentration as the duration of the transmitted signal. Here we use
mathematical modeling to analyze possible biochemical mechanisms for performing this ‘‘dose-to-duration’’ conversion. We
demonstrate that modulation of signal duration increases the range of stimulus concentrations for which dose-dependent
responses are possible; this increased dynamic range produces the counterintuitive result of ‘‘signaling beyond saturation’’
in which dose-dependent responses are still possible after apparent saturation of the receptors. We propose a mechanism
for dose-to-duration encoding in the yeast pheromone pathway that is consistent with current experimental observations.
Most previous investigations of information processing by signaling pathways have focused on amplitude encoding
without considering temporal aspects of signal transduction. Here we demonstrate that dose-to-duration encoding
provides cells with an alternative mechanism for processing and transmitting quantitative information about their
surrounding environment. The ability of signaling pathways to convert stimulus strength into signal duration results directly
from the nonlinear nature of these systems and emphasizes the importance of considering the dynamic properties of
signaling pathways when characterizing their behavior. Understanding how signaling pathways encode and transmit
quantitative information about the external environment will not only deepen our understanding of these systems but also
provide insight into how to reestablish proper function of pathways that have become dysregulated by disease.
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Introduction

Many substances, such as hormones, neurotransmitters and a

variety of pharmaceuticals, affect cellular behavior by binding to

membrane receptors and activating intracellular signaling pathways.

These pathways transmit information from the plasma membrane to

selected cellular components to generate an appropriate response to

the environmental cue. However, signaling networks are not simply

passive relay systems, but actively modulate the transmitted signals.

For example, cross inhibition is used to avoid spurious crosstalk

between pathways. Similarly, negative feedback allows pathways to

adapt or desensitize to persistent stimuli [1,2]. In many cases, the

nature of the response depends on the dose of the stimulus. Thus, in

addition to relaying qualitative information (e.g. the presence or

absence of a stimulus), signaling pathways must also transmit

quantitative information about the intensity of the stimulus.

Many signaling pathways consist of a cell surface receptor, G

protein transducer, and a series of protein kinases, including a

mitogen activated protein kinase (MAPK). This architecture is

widely employed in mammalian cells, but is also found in single-

cell eukaryotes such as yeast [3]. The pheromone response

pathway of the yeast Saccharomyces cerevisiae provides an instructive

example in which the elicited cellular response depends on the

concentration of the stimulus. At low pheromone levels, cells

continue vegetative growth. At intermediate concentrations, cells

develop an elongated morphology and in the presence of a

pheromone gradient the growth is directed to the source of the

stimulus, a process known as chemotropic growth [4–7]. Finally, at

high pheromone concentrations cells initiate a mating program

that eventually leads to growth arrest and the development of

mating projections (for a review see [3]). Therefore, for yeast to

make the correct developmental decision, quantitative information

about the pheromone concentration must be reliably transmitted

to the appropriate cellular components. Here we use mathematical

modeling to investigate the different ways this information can be

transferred. The results of this analysis taken together with our

recently published data demonstrate that the pheromone pathway

uses a strategy in which the agonist dose is encoded as the duration

of the signal. Because the yeast pheromone response pathway

consists of a G-protein coupled receptor and MAP kinase cascade,

the results of our investigations should have direct implications for

signal transduction in mammalian cells.
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Results

Quantitative Information Transfer
In the simplest scenario of a linear signaling pathway subject to

a sustained stimulus (Figure 1A), quantitative information about

the dose of the stimulus can only be transmitted as the activity level

of the signaling proteins that make up the pathway. We refer to

this mode of signal transduction as ‘‘amplitude encoding’’ because

information about the stimulus is contained in the amplitude of the

propagated signal [8]. For linear pathways, the dynamic range,

(i.e., the range of stimulus levels to which the pathway can respond

in a dose-dependent manner) is limited when the activity of a

pathway component becomes saturated. Often, a downstream

component saturates before the receptor. Thus the agonist

concentration required to achieve the maximum downstream

response may be less than the concentration needed to saturate the

receptors, causing the dose-response curve of the pathway to shift

to the left of the receptor-occupancy curve (Figure 1B). Pharma-

cologists refer to this phenomenon as ‘‘amplification’’ or ‘‘receptor

reserve’’.

Signaling networks are rarely linear, however, and often include

combinations of feedback and feed-forward loops that positively

and negatively regulate pathway activity. Among other things,

these regulatory mechanisms allow signaling systems to respond

transiently (adapt) to a persistent stimulus. We show that transient

pathway activation provides the possibility of ‘‘dose-to-duration’’

encoding. That is, information about the stimulus concentration is

transduced as the duration of the propagated signal rather than

the amplitude. We demonstrate that an advantage of dose-to-

duration encoding is that it provides a mechanism for increasing

the dynamic range of signaling systems by allowing them to

respond in a dose-dependent manner even after pathway

components have become saturated, even at agonist concentra-

tions that saturate the receptor (Figure 1C).

In the following sections, we analyze dose-to-duration encoding

as a means for relaying quantitative information about the

extracellular environment and discuss simple pathway architec-

tures capable of carrying out this conversion. The key information

transfer in this strategy occurs during the transient activation of

pathway components rather than through their steady state levels

of activation [9]. Next, we present data for MAP kinase activity

that demonstrates dose-to-duration encoding is used in the

pheromone response pathway of yeast. Finally, we present a

mathematical model of the pathway based on the mechanisms

discussed here that is consistent with experimental observations.

Encoding Information as Signal Duration
Dose-to-duration encoding requires the propagated signal to act

transiently. That is, at least one component of the pathway must

return to its pre-stimulus level on a time-scale significantly shorter

than that of the physiological response. This transient activity can

result from the stimulus itself acting transiently or arise because the

pathway contains regulatory elements that convert a sustained

input into a transient output. The first case is commonly observed

in inter-cellular signaling, where the duration of pathway activity

often is regulated by the slow degradation or elimination of the

agonist (e. g., reuptake of a neurotransmitter) [10,11]. We focus on

the second case, that is, adaptive systems that possess the ability to

convert the intensity of the input signal into duration of the output

signal in the presence of a persistent stimulus. Figure 2 shows

schematically how dose-to-duration encoding works. In this

example, a fixed agonist concentration quickly activates receptors

in the plasma membrane. The steady-state level of active receptor

(input) causes the activation of a signaling module (‘‘encoder’’, grey

box) that generates a transient activation of the signaling protein

A. We use an asterisk to denote the active form of a protein (e.g.,
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Figure 1. Dose response in signaling pathways. (A) A linear
signaling pathway (L: ligand, R: receptor, A–C: signaling molecules, red
dots: phosphate groups). (B) Dose response curves for a linear pathway.
Saturation of a downstream pathway component leads to a shift of the
physiological response curve (purple) to the left of the receptor
occupancy curve (dashed black). Sensitivity at low stimulus doses is
increased but the dynamic range (gray area) is reduced. (C) Dose
response curves for a nonlinear pathway. Feedback or feed forward
regulation can extend the dynamic range of the system (purple curve)
and produce responses with an EC50 value displaced to the right of the
receptor Kd.
doi:10.1371/journal.pcbi.1000197.g001

Author Summary

Cells must be able to detect and respond to changes in their
surroundings. Often environmental cues, such as hormones
or growth factors, are received by membrane receptors that
in turn activate intracellular signaling pathways. These
pathways then transmit information about the stimulus to
the cellular components required to elicit an appropriate
response. In many cases, the nature of the response depends
on the dose of the stimulus. Thus, in addition to relaying
qualitative information (e.g., the presence or absence of a
stimulus), signaling pathways must also transmit quantita-
tive information about the intensity of the stimulus. Here we
introduce ‘‘dose-to-duration’’ encoding as an effective
strategy for relaying such information. We demonstrate that
by providing a mechanism for overcoming saturation
effects, modulation of signal duration increases the range
of stimulus concentrations for which dose-dependent
responses are possible. This increased dynamic range
produces the counterintuitive result of ‘‘signaling beyond
saturation’’ in which dose-dependent responses are still
possible after apparent saturation of the receptors. Finally,
we demonstrate that dose-to-duration encoding is used in
the yeast mating response pathway and presents a simple
mechanism that can account for current experimental
observations.

Dose-to-Duration Encoding
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A*). The output of the encoding module is a signal of constant

amplitude but dose-dependent duration (A* in Figure 2). At each

stimulus dose, the amplitude of A* rapidly saturates, but

information about the level of receptor occupancy is preserved

in the duration of the A* signal. Mechanisms capable of such dose-

duration transformations are the subject of the next section.

Figure 2 shows two possible scenarios for how A* activates its

downstream targets. In the first scenario, species B is slowly

activated by A*. This causes the activity of B (B*) to increase

during the entire period of A’s transient activation. If the kinetics

for the deactivation of B also are slow, B activity remains elevated

for a significant amount of time after the A* has returned to its

basal level. In this case B effectively works as a decoder,

transforming the duration of A activity into the amplitude of B

activity. In other words, slow kinetics makes B an integrator

capable of measuring how long the upstream signal has been on.

In the second scenario depicted in Figure 2, species C has fast

activation and deactivation kinetics. As a result, the C*

concentration closely mimics the behavior of A*, reaching a

quasi-equilibrium level soon after the signal is received and rapidly

returning to pre-stimulation levels once A activity ceases. In this

case, quantitative information about the stimulus is preserved even

when C* is saturated because it is encoded as signal duration. We

note that dose-to-duration encoding does not place restrictions on

what types of responses a cell can initiate. For example, positive

feedback acting downstream of either components B or C can be

used to convert transient pathway activation into a permanent

developmental switch [12].

Simple Architectures That Function as Duration Encoders
In this section we discuss mechanisms that can achieve dose-to-

duration encoding. As previously mentioned, we are focusing on

cases involving a sustained input, and therefore need to consider

systems capable of adaptation or desensitization. In order to work as

a dose-to-duration transducer, the duration of the output has to

increase with the concentration of the stimulus. As we illustrate

below, this is not a general property of adaptive systems. Figure 3

shows a number of architectures capable of performing the dose-to-

duration transformation. The two pathway architectures depicted in

Figure 3A consist of incoherent feed-forward loops [13] in which the

upstream stimulus activates both a positive and negative regulator of

the signaling protein K. For the system to show transient activity,

negative regulation must occur on a slower time scale than the

activation rate of K. As shown in the figure, this can be achieved if

the negative regulation is mediated by an intermediate species X.

This species can operate either by inhibiting activation of K by KK

or by promoting deactivation of K. This type of architecture occurs

in ERK signaling networks in which agonists, such as epidermal

growth factor, causes transient extracellular signal-regulated kinase

(ERK) activation by triggering rapid Ras activation followed by slow

recruitment of its negative regulator, Ras GTP-ase regulating protein

(Ras-GAP), to the membrane [14].

Figure 3B shows two simple pathway architectures involving

negative feedback loops that can exhibit adaptive behavior. In

these examples, the signaling molecule activates its own negative

regulator. In the first case, the negative regulator X increases the

deactivation rate of K and in the second case X decreases the

activation rate of K. Both strategies produce qualitatively similar

behavior. Similar to the case of feed forward regulation, adaptive

behavior in these systems requires the negative feedback to operate

on a slower time scale than that of activation of K. This type of

architecture plays a role in the regulation of ERK signaling by the

enzymatic activation of members of the MAPK phosphatase group

(MKP’s) [15–17], and in the regulation of cytokine signaling by the

induction of suppressor of cytokine signaling (SOCS) proteins [18].

We focus primarily on the negative feedback system depicted by

the left diagram in Figure 3B, but the results that follow easily
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Figure 2. Dose-to-duration encoding. The receptor occupancy
level is proportional to the ligand concentration. An encoder transforms
receptor occupancy (RL) into the duration of protein A activity (A*). A*
activates two downstream proteins, B and C. Because of its slow
activation kinetics, B acts as an integrator transforming the duration of
A activity into the amplitude of B activity (B*). Protein C has fast kinetics
and therefore its activity level (C*) follows A* and information continues
to be transmitted as signal duration.
doi:10.1371/journal.pcbi.1000197.g002
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Figure 3. Pathway architectures that convert stimulus dose to
signal duration. (A) Feed-forward and (B) negative feedback
encoding modules (KK: Kinase-Kinase, K: Kinase, X: Phosphatase).
Shown are cases of negative regulation operating by inhibiting
activation (left diagrams) or promoting deactivation (right diagrams).
doi:10.1371/journal.pcbi.1000197.g003
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generalize to the other architectures. The equations that describe

this model are given in the Methods. To understand how this

system performs the dose-to-duration transformation, it is helpful

to consider the steady-state response curve of K as a function of

the activity of the upstream component KK in the absence and

presence of the negative regulator X. In Figure 4A, the left curve

corresponds to the case in which X has been deleted. When

present, the effect of the negative regulator X is to shift the signal-

response curve to higher active KK concentrations. Accordingly,

the right curve shown in Figure 4A corresponds to the case in

which X is maximally activated.

The response of the system now can be understood by considering

how the signal-response curve shifts in time (Figure 4B). This

approach is valid because the requirement of slow negative feedback

implies that the K and K* concentrations are in quasi-equilibrium

with respect to the current X* concentration. Figure 4C (left) shows

time series for an example in which the level of KK* is given by the

blue vertical line in Figure 4B. Upon activation, KK* quickly drives

the level of K activity to the steady-state value expected in the

absence of the negative regulator X, which for this example

corresponds to full activation. Subsequent to the initial rapid rise of

K*, the activation and deactivation rates roughly balance (Figure 4C,

right) and the relative ratios of K and K* remain in a quasi-

equilibrium determined by the current level of X*. As the level of X*

slowly increases, the signal-response curve gradually shifts to the

right (Figure 4B), and eventually, the EC50for K activation moves

beyond the available concentration of KK. At this point the

concentration of X* is such that the stimulus cannot counteract the

level of negative regulation and K* activity returns to near basal

levels (Figure 4C, left).

The two properties required for the dose-to-duration transfor-

mation are that (i) the activation rate of K is proportional to the

stimulus concentration (KK* concentration in the model under

consideration) and (ii) the kinetics of the negative regulator are

slow. It is also important that the negative regulator induces a

reversible change in K rather than on irreversible change, such as

degradation or irreversible desensitization. Under these condi-

tions, by slowly increasing the deactivation rate of K*, the system is

Figure 4. Dose-to-duration encoding by negative feedback. The units of concentration are arbitrary and time is measured in minutes. The
responses are normalized to the total concentration of the respective proteins. (A) Response curves for species K shown in the absence of the
negative regulator X (left curve) and in the presence of maximal X activity (right curve). (B) Displacement of the response curve during a signaling
event. Blue curve: KK* level used to generate the curves in (C). (C) Time profiles of [K*] (red curve) and [X*] (green curve, left panel) and the activation
rate of K (red curve) and deactivation rate of K* (dashed blue curve, right). Note that after an initial spike in the activation rate, the two rates roughly
equalize satisfying the quasi-equilibrium condition. The system adapts when the activation rate can no longer increase and compensate for the
increasing X activity. (D) An expanded version of the response curves shown in (A) indicating the four possible operational regimes. (E) Time courses
of K activity illustrating the four operational regimes. (F) Signal duration (defined as time between half maxima) vs. KK* concentration. Regimes I and
II are shown. (G) Same as (E) except the different regimes are now shown on the same graph.
doi:10.1371/journal.pcbi.1000197.g004
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actually ‘‘measuring’’ the activation rate of K rather than the K*

concentration. The readout is the time necessary to produce

enough X* to counteract the stimulated activation rate of K and

bring K* back to basal levels. Importantly, this approach can

potentially be used to measure stimulus concentrations much

higher than those that would saturate pathway activity in the

absence of negative feedback. In other words, by exploiting the time-

dependent properties of the system, signaling pathways can increase their

dynamic range.

The dose-to-duration transformation described above occurs

most efficiently when the activity level of the signaling component

involved in the transformation is saturated. More generally, there

is a repertoire of four operational regimes available to the adaptive

system. These are summarized in Figure 4D and 4E. Figure 4D

again shows the steady state response curves in the absence (left)

and presence (right) of the negative regulator. In this figure, the

graph has been expanded for illustrative purposes. The four

shaded regions correspond to the different operational regimes.

The first regime corresponds to low stimulus concentrations.

When the stimulus strength increases within this regime, the

response of the system consists of transient peaks of increasing

amplitude but roughly the same duration (Figure 4E, left). For

each stimulus, the peak amplitude can be approximately

determined by the signal-response curve in the absence of negative

regulation. Increased upstream K activity increases the rate at

which X is activated, and hence only a relatively weak dependence

of the signal duration on the stimulus dose is observed.

Regime II arises when the stimulus strength is sufficient to saturate

K activity. This is the regime in which the dose-to-duration

transformation occurs (Figure 4E, center). Figure 4F presents the

relationship between signal duration (defined as time between half-

maxima) and stimulus concentration in Regimes I and II. In Regime

III, the stimulus level is high enough so that the negative regulator is

no longer able to counteract the induced activation rate of K, even

when X is maximally activated. In this regime the system begins to

lose its ability to adapt (Figure 4E, right). If the stimulus level

increases even further, the system operates in Regime IV and

adaptation no longer occurs (Figure 4E, right). In this regime, a

sustained input produces a sustained output. Therefore, this pathway

architecture is capable of acting as a switch; at low stimulus dose the

response is transient, whereas at high levels the response becomes

sustained. To illustrate how the transition between these regimes

occurs, Figure 4G shows characteristic time series from each regime

on the same graph. Physiological conditions and kinetic properties of

signaling pathways may constrain some systems to operate in a

subset of the theoretically possible regimes.

The minimalistic systems described here are intended to

illustrate some of the mechanisms available to signaling networks

for producing dose-to-duration encoding. Although very simple,

they are useful for understanding the behavior of more complex

architectures. The addition of more pathway components would

not change the underlying operating principles of dose-to-duration

encoding. In fact, additional components can be used to generate

more robust responses and provide more opportunities to fine-tune

the input-output relations of the pathway.

Dynamic Regulation of the Receptor Allows Signaling
beyond Saturation

When operated in Regime II, the temporal profile of K*

resembles a square pulse (Figure 4C). This is because the signal-

response characteristics of the system in the absence of the

negative regulator were taken to be switch-like. Therefore, it is

important to study how the dose-to-duration transformation is

affected when this assumption is relaxed. We start by observing

that the switch-like signal-response curves result from the small

values of the Michaelis constants used in the reaction rates (k1m,

k2m, and k3m in Equation1), which means that the reaction rates

saturate at low substrate levels. In the opposite extreme, the

activation rates operate far from saturation. In this case, the

catalytic reactions can be described in terms of mass action

kinetics. For the system to efficiently adapt, a relatively steep dose-

response curve is still required. This can be achieved by

manipulating the parameters involved in the negative regulation.

For such cases, the system’s response to a sustained stimulus is no

longer a square pulse, but shows a more gradual decay in time (cf.

Figure 5C, middle). However, as we show next, the length of time

required for the signal to decline below a given threshold still

depends on the strength of the stimulus, and therefore the stimulus

concentration can still be encoded as signal duration.

The scenario discussed above is of particular interest because it

applies to a situation in which the negative feedback loop acts at

the level of the receptor. Figure 5A shows a schematic diagram of a

model in which the ligand-bound receptor activates a negative

pathway regulator X. The protein X inhibits the pathway by

modifying the ligand-bound receptor (phosphorylation in this

example) and decreasing its affinity for the ligand (Figure 5A).

Equations 2–4 of the Methods provide a mathematical description

of this model. Figure 5B shows the steady-state receptor occupancy

curves in the absence and presence of the negative regulator X.

Temporal responses of the ligated receptor concentration for the

four operational regimes are shown in Figure 5C. Note that while

these time series do not have square pulse shapes, dose-to-duration

encoding is still possible, because higher ligand levels cause active

receptors to persist for longer times (Figure 5C, middle).

Furthermore, a square-pulse activity profile is easily generated if

the pathway contains a downstream component with switch-like

signal-response characteristics. As shown in Figure 5D, the

pathway component B measures how long receptor occupancy

remains above its activation threshold, thereby transforming the

time series for receptor occupancy into a square-pulse of B activity.

An important consequence of this pathway architecture is that it

allows for ‘‘signaling beyond saturation’’. That is, the system

responds in a dose-dependent manner to ligand concentrations

higher than required to saturate the receptor (Figure 1C). In other

words, the dissociation constant of the receptor can be dynamically

modulated and exploited to expand the dynamic range of the

signaling pathway.

Dose-to-Duration Encoding in the Yeast Pheromone
Pathway

The mating response pathway of yeast mediates the organism’s

response to pheromone secreted into the medium by cells of the

appropriate mating type. When bound with pheromone, a specific

G-protein coupled receptor activates its cognate G protein causing

the dissociation of the a and bc subunits. The bc complex then

recruits the scaffold protein Ste5 to the membrane, which in turn

recruits and activates a signaling cascade composed of Ste20

(MAP4K), Ste11 (MAP3K), Ste7 (MAP2K), and the MAP kinases

Fus3 and Kss1 (Figure 6A, for a review see [3]). The developmental

response initiated by yeast depends critically on the pheromone

concentration. In the presence of very low levels or no pheromone,

cells continue to grow and divide normally. At intermediate levels of

pheromone, the cells become elongated and are capable of

chemotropic growth towards a pheromone gradient. High levels of

pheromone produce a bona fide mating response, involving cell

division arrest and the emergence of mating projections [3,5,6]. We

recently published an experimental study demonstrating that the

scaffold protein Ste5 slows the activation rate of the MAP kinase

Dose-to-Duration Encoding
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Fus3 and that this slow activation underlies the developmental switch

from chemotropic growth to mating [7]. In this section we present a

mathematical analysis of the temporal profiles of MAP kinase activity

measured as a part of our previous investigation. Our analysis

suggests that the mating response pathway is using dose-to-duration

encoding to relay information about the extracellular pheromone

concentration.

Figure 6B shows time course data for active (dually-phosphor-

ylated ) Fus3 and Kss1 as measured by immunoblotting for wild

type cells in response to different pheromone concentrations (see

[7] and methods for details of the experimental methods). The

transition from chemotropic growth to mating occurs between 3

and 10 mM, where there is a large increase in Fus3 activity [7].

Note the qualitative similarity between the experimental results

and the graphs in Figure 2 (compare pp-Fus3 to B* and pp-Kss1 to

C*). The roughly dose-independent rate (slope) for Fus3

phosphorylation suggests that its activation rate is saturated. This

behavior is consistent with the level of upstream kinase activity

being independent of the pheromone dose, whereas the duration

of this activity is dose-dependent. On the other hand Kss1 shows

fast kinetics. Note that for high pheromone concentrations

(10 mM), Kss1 seems to undergo two stages of phosphorylation

with a second increase in phosphorylation starting around 30 min

after exposure. If we disregard this second increase in Kss1 activity

(see Discussion), then by virtue of its fast kinetics, Kss1

phosphorylation mirrors the upstream signal dynamics. Further-

more, it appears from the data that for the doses measured, Kss1

operates in Regimes I and II (and perhaps III) of Figure 4. These

observations when combined with the very good correlation

between the duration of Kss1 and Fus3 activity, suggest that Fus3

and Kss1 phosphorylation are driven by an upstream signal in

which the pheromone dose has been converted to signal duration.

To test the idea of dose-to-duration encoding, we sought to

establish a single upstream input profile capable of reproducing

the experimental results for both Kss1 and Fus3. Specifically, we

looked for a signal profile s(t) that when used as input to the

equations for Fus3 activation (Equation 7) and Kss1 activation

(Equation 8) generates the Fus3 and Kss1 activity time series

shown in the left and right panels, respectively, of Figure 6B. The

analysis produced the input signals and MAP kinase profiles shown

in Figure 6C and 6D, respectively. The excellent agreement

between the experimental data and model output provides strong

evidence in support of dose-to-duration encoding by the

pheromone response pathway.

In principle, any of the encoding mechanisms discussed in the

previous sections can produce temporal profiles similar to

Figure 6C (see Figures 4 and 5), and there are several potential

candidates for the negative feedback loop that mediates the dose-

to-duration transformation in the mating pathway. These include

transcriptional induction of either the RGS protein Sst2, which

increases the rate at which the Ga subunit hydrolyzes GTP [19],

or the protease Bar1, which degrades pheromone [20,21]. Note

Figure 5. Feedback regulation of receptor affinity. The units are the same as in Figure 4. (A) The active receptor activates species X, which in
turn phosphorylates the ligand-bound receptor, decreasing the affinity of the receptor for the ligand. (B) Receptor occupancy curves in the absence
and presence of active X. (C) Time courses for the ligand-bound receptor corresponding to the four operational regimes shown in Figure 4. (D) The
temporal profiles from Regime II in (C) are used as input signals for species B. The switch-like response of B converts the input signal into a square-
pulse output signal.
doi:10.1371/journal.pcbi.1000197.g005

Dose-to-Duration Encoding
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that transcriptional induction takes 30 minutes or more. Because

pathway deactivation occurs within 30 min at low pheromone

concentrations, it is likely that feedback loops involving protein

modifications also play a role in the dose-to-duration transforma-

tion. Furthermore, because the MAP kinases respond in a dose-

dependent manner at pheromone concentrations significantly

higher than the reported receptor Kd value of 5–15 nM [22,23], it

is plausible that dose-to-duration encoding involves feedback

regulation of the receptor. This is not the only possibility and any

target of feedback regulation at the level of the MAP2K Ste7 or

above would work equally well (see Discussion).

With the above considerations in mind, we developed a

mathematical model to investigate the scenario in which the

negative feedback loop acts on the receptor. Figure 7A shows a

schematic diagram of the system and the shape of the propagated

signal at each level of the pathway. The model is described by

Equations 3–5 and 7–9 of the Methods. As discussed in the

previous section, because the negative feedback acts on the

receptor, it is necessary to incorporate an intermediate step (MK

in Figure 7) to transform the propagated signal into a square-pulse.

Any of the upstream kinases (Ste20, Ste11 or Ste7) are capable of

performing this transformation. Figure 7B shows the predicted

upstream activation profile (compare with Figure 6C) and the

MAP kinase activation profiles produced by the models compared

with the experimental results. If we again disregard the second

increase in Kss1 activity at high pheromone concentrations, the

correspondence between the model results and experimental data

is striking, especially considering the simplicity of the model. We

note that this agreement does not prove the validity of the model,

but demonstrates that the mechanisms discussed above are

consistent with the experimental data. The model also provides

an important guide for future experimental work.

Discussion

It is widely accepted that signaling pathways are capable of

transmitting quantitative information about their surrounding

environment. While the importance of transient versus sustained

signaling has been recognized for some time [24–26], most

previous investigations have focused on information transfer using

amplitude encoding without considering the temporal aspects of

signal transduction [8,9]. Here we demonstrate that dose-to-

duration encoding provides cells with an alternative mechanism

for processing and transmitting quantitative information about

their surrounding environment. The ability of signaling pathways

to convert stimulus strength into signal duration results directly

from the nonlinear nature of these systems and emphasizes the

importance of considering the dynamic properties of signaling

pathways when characterizing their behavior. Taken together, our

computational and experimental results suggest that dose-to-

duration encoding occurs in the pheromone response pathway of

yeast and underlies the developmental switch from chemotropic

growth to mating.

One important advantage of dose-to-duration encoding is that it

has the potential to increase the dynamic range of signaling

pathways. One way this can occur is if feedback regulation

allosterically modifies the receptor’s affinity for the ligand.

Dynamically regulating the Kd of the receptor has the interesting

effect of shifting the EC50 of the cellular response to the right of the

receptor occupancy curve (Figure 1C). Depending on the response

of downstream components, the dose-response curve for the

system is not only shifted but also stretched. This highlights the

important point that receptor occupancy curves are potentially

time-dependent quantities and need to be interpreted with care.

Interestingly, Kd values determined in vitro or in reconstituted

systems usually differ from those obtained in vivo, and this

discrepancy is often attributed to an abnormal conformation of the

receptor in the artificial environment. The analysis presented here

suggests that even when there is correspondence between the

microenvironment of an in vitro experiment and the macroenvir-

onment of a cell culture, the results of ligand binding assays might

differ due to dynamic regulation of the receptor in vivo. For

example, this could happen if a downstream element of the

signaling pathway has been disrupted in the in vitro experiment,

thereby breaking the negative feedback loop. Interactions between

receptors, in particular G-protein coupled receptors (GPCRs), and

cytosolic proteins have been shown to affect receptor-ligand

affinity [27]. Most GPCR’s are known to undergo biochemical

Figure 6. The yeast pheromone response pathway. (A) Schematic diagram of the pathway. (B) Experimentally obtained time series for the
dually-phosphorylated (active) forms of the MAP kinases Fus3 and Kss1 normalized to the maximum response. The different colored data points
correspond to different pheromone concentrations. (C) Proposed upstream Ste7 signals. (D) Comparison of experimental data (circles) and model
output (curves) for time courses of Fus3 and Kss1 activity. The model results were generated using the Ste7 signals shown in (C) as input.
doi:10.1371/journal.pcbi.1000197.g006
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modifications, such as phosphorylation, and to interact with a

number of signaling proteins, including G proteins, arrestins,

kinases, RGS proteins, and to form oligomers, all of which could

affect affinity for the ligand. Therefore dynamic regulation of a

receptor as a mechanism for dose-to-duration encoding seems

quite plausible.

Dose-to-duration encoding may also provide a more robust

transmission mechanism than amplitude-encoding in multilevel

networks. This is because accurate transfer of information using

amplitude encoding requires that the input-output characteristics of

the individual components be well matched [8]. Note that dose-to-

duration encoding does not have to function throughout the whole

pathway. It is likely that multiple information processing strategies

coexist at different levels (or even under different conditions) in a

single pathway. In fact, the use of multiple information processing

strategies may provide signaling networks with more flexibility when

responding to changing environmental conditions. Another potential

advantage of dose-to-duration encoding arises from the need to

prevent spurious activation of pathways that share components.

Recently we proposed ‘‘kinetic insulation’’ [28] as a strategy for

achieving pathway specificity. Kinetic insulation relies solely on the

temporal profiles of the propagated signals to ensure signal fidelity. It

requires that at least one of the pathways responds transiently.

Because signal duration is a natural strategy for pathways with

transient activity to encode information, signaling systems with

shared components are potential candidates for dose-to-duration

encoding. Consistent with these ideas, the yeast pheromone response

pathway contains several signaling proteins (e.g., Ste11 and Ste7)

that are known to also participate in the hyper-osmotic shock [29]

and filamentous growth [30,31] pathways.

Our modeling results and experimental data provide compelling

evidence for dose-to-duration encoding by the yeast pheromone

response pathway. A key question is then what is the molecular

mechanism responsible for transducing stimulus dose into signal

duration? We have demonstrated that a scenario in which

feedback regulation acts at the level of the receptor is consistent

with our experimental data for MAP kinase activity. Our

motivation for considering such a mechanism came from data

suggesting that yeast continue to respond in a dose-dependent

manner to pheromone concentrations well beyond the reported

value for the receptor dissociation constant. As we have shown, by

dynamically altering the affinity of the receptor for pheromone,

our model provides an explanation for this phenomenon of

signaling beyond saturation. Modulation of the receptor affinity in

yeast might occur by interactions with other receptors (receptor

dimers) [32], the G-protein [27], or the RGS protein Sst2 [33].

Similarly, affinity could be altered through receptor phosphory-

lation or ubiquitination [34]. GTP-dependent changes in the

pheromone receptor affinity attributed to the interaction with the

G protein have been reported [27]. Although the physiological

relevance of this effect has not been clearly established in yeast,

this is an example of a phenomenon observed for many

mammalian GPCR’s in vitro.

We note that interpreting dose-response data for the pheromone

pathway is complicated by the presence of the protease Bar1

[20,21]. In fact, a mechanism based solely on Bar1 degradation of

pheromone is in theory sufficient to achieve the dose-to-duration

transformation. However, our recent experiments performed in a

bar1D mutant show cells responding to lower pheromone doses,

but with time courses of MAPK activity that are consistent with

dose-to-duration encoding (Supplemental Data [7]). These results

argue against a mechanism involving Bar1 alone. It should be

emphasized that dose-to-duration encoding does not require the

negative feedback to act at the level of the receptor. For example,

induction of the negative regulator Sst2 [35], feedback phosphor-

ylation of an upstream pathway component [36], or receptor

endocytosis could also accomplish this transformation, although

they would not account for the observed shift in the EC50. Thus, it

is clear more work is necessary to unambiguously identify the

mechanisms responsible for information transfer in the pheromone

Figure 7. A model for dose-to-duration encoding in the pheromone response pathway. (A) Receptor affinity is feedback-regulated by
species X. The signal is converted into a square pulse by the intermediate kinase MK (e.g., Ste20, Ste11, or Ste7), which also activates the MAP kinases
Fus3 and Kss1. (B) Time courses of signal activity at different stages of the pathway: receptor occupancy (top left) and [MK*] (top right), and Fus3 and
Kss1 activity (bottom left and right, respectively).
doi:10.1371/journal.pcbi.1000197.g007
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response pathway. However, the remarkable agreement between

our modeling results and experimental data offers strong evidence

in support of dose-to-duration encoding and provides a foundation

for interpreting future experimental results.

Interestingly, the combination of fast and slow kinetics exhibited

by the two MAP kinases, Kss1 and Fus3, has the potential to form

a feed-forward adaptive system. It has been demonstrated that

pheromone-induced degradation of the transcriptional activator

Ste12 requires Fus3, but not Kss1 [37]. Ste12 might also play a

role in generating the second peak of Kss1 activity observed at

high pheromone concentrations, a possibility that we are now

investigating. In the absence of pheromone, Kss1 acts as a

transcriptional repressor by forming a complex with Ste12 and the

proteins Dig1 and Dig2 (also known as Rst1/2) [38]. It is possible

that pheromone-stimulated release of Kss1 from this complex [39]

generates a second pool of Kss1 and this pool is responsible for the

second peak of activity. However, at this point we cannot rule out

alternative explanations including transcriptional induction, re-

localization, or positive feedback.

Dose-to-duration encoding is not restricted to yeast. For

example the intensity of light (number of photons) impinging on

photoreceptors in rod cells is encoded as the duration of G protein-

mediated activity of the pathway [40]. It has been shown recently

that the RGS protein RGS9 plays a particularly important role in

determining the duration of the signal [41]. Furthermore, switches

based on transient versus sustained signals, like the ones arising

from transitions between the regimes of Figure 4, have been

proposed to underlie cell fate decision process in a number of

systems [14,26,42,43]. The recent discovery that different

temporal profiles of IkB kinase (IKK) activity in the NF-kB

signaling module selectively activate different groups of target

genes, further supports the notion that dose-to-duration encoding

plays a significant regulatory role in determining cellular

responses. In this case, stimulation of murine embryonic fibroblasts

with tumor necrosis factor-a produces a short transient peak of

IKK activity whereas stimulation with polysaccharides results in a

slower and more sustained IKK response [44,45]. The fact that

each profile affects the expression of different groups of genes

illustrates how the temporal dynamics of a signaling pathway can

play a role in determining pathway specificity.

Finally, it is remarkable that the simple pathway architectures

considered here can generate such a variety of responses

depending on the strength of the stimulus (Figure 4). These

systems not only function as amplitude and dose-to-duration

encoders, but also can act as biochemical switches that transition

from transient to sustained outputs potentially generating different

physiological responses [26,42,46]. Typical signaling pathways

involve multiple levels of regulation that in general should lead to

even more complex behavior. Our results demonstrate how

quantitative measurements of the temporal patterns of pathway

activity when combined with mathematical modeling can be used

to discover the design principles upon which signaling networks

operate and decipher the code used by these systems to transmit

information.

Methods

Model Equations
In this section we describe the mathematical models used to

generate the results presented in the figures. All the differential

equations were solved using Mathematica by Wolfram Research.

The model depicted in Figure 3B (left), in which the mechanism

for pathway adaptation involves a negative feedback loop that

increases the deactivation rate of K*, is described by the following

two equations:

d K�½ �
dt

~
k1
: KK�½ �: KTOTAL{ K�½ �ð Þ
k1mz KTotal{ K�½ �ð Þ {

k2 K�½ �
k2mz K�½ �{

k3 X �½ �: K�½ �
k3mz K�½ �

ð1Þ

d X �½ �
dt

~
k4
: K�½ �: XTOTAL{ X �½ �ð Þ

k4mz XTOTAL{ X �½ �ð Þ {
K5 X �½ �

k5mz X �½ � ð2Þ

Where [K]Total = [K*]+[K] and XTotal = [X*]+[X]. The parame-

ter values used to generate the results shown in Figure 4 are (in

arbitrary units): k1 = 1, k1m = 1022, k2 = 1022, k2m = 1022, k3 = 8,

k3m = 1022, k4 = 1024, k4m = 1021, k5 = 5 1026, k5m = 1. The

curves in this figure correspond to s values of: 1022, 2 1022, 3

1022, 4 1022, 6 1022 (region I), 1021, 3 1021, 5 1021, 1, 1.5

(region II), and 6.0, 7.0, 7.5, 8.0, 8.5, 20.0 (region III+IV).

For the model in which the negative feedback acts on the

receptor, the equations are:

d RL½ �
dt

~k1 L½ � RTOTAL{ RL½ �{ RL�½ �ð Þ{k2 RL½ �{

k0 X �½ �: RL½ �
k0mz RL½ �

ð3Þ

d RL�½ �
dt

~
k0 X �½ �: RL½ �
k0mz RL½ � {k3 RL�½ � ð4Þ

d X �½ �
dt

~
k4
: RL½ �z RL�½ �ð Þ: XTOTAL{ X �½ �ð Þ

k4mz XTOTAL{ X �½ �ð Þ {
K5 X �½ �

k5mz X �½ � , ð5Þ

where RTotal = [R]+[RL]+[RL*]. For simplicity, ligand release and

receptor de-phosphorylation are taken to occur in a single step. This

simplification does not affect the results provided both biochemical

steps are not rate limiting. Even if this separation of times scales does

not exist, we do not expect a more detailed model that separates

these events to produce qualitatively different behavior.

To transform the transient response in Figure 5C into a square

pulse the following equation for B* was used

d B�½ �
dt

~
k6
: RL½ �z RL�½ �ð Þ: BTOTAL{ B�½ �ð Þ

k6mz BTotal{ B�½ �ð Þ {
k7 B�½ �

k7mz B�½ � ð6Þ

The parameters used to produce the results shown in Figure 5 are

k1 = 1, k2 = 1022, k3 = 80, k4 = 1 1024, k4m = 1021, k5 = 5 1026,

k5m = 1, k0 = 10, k0m = 1021, k6 = 10, k6m = 1022, k7 = 4,

k7m = 1022. The curves correspond to s values of: 1 1022, 2

1022, 3 1022, 5 1022, 1 1021 (region I), 1021, 3 1021, 5 1021, 1,

1.5 (region II), and 6, 10, 15, 20, 50, 500 (region III+IV).

The equations used to model the kinetics of Fus3 and Kss1

activation are

d ppFus3½ �
dt

~
k10
:s: Fus3TOTAL{ ppFus3½ �ð Þ

k10mz Fus3TOTAL{ ppFus3½ �ð Þ{

k20 ppFus3½ �
k20mz ppFus3½ �

ð7Þ
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d ppKss1½ �
dt

~
k30
:s: Kss1TOTAL{ ppKss1½ �ð Þ

k30mz Kss1TOTAL{ ppKss1½ �ð Þ{

k40 ppKss1½ �
k40mz ppKss1½ �

ð8Þ

respectively, where Fus3Total = [ppFus3]+[Fus3], Kss1To-

tal = [ppKss1]+[Kss1]. The parameters used to produce the results

shown in Figure 6 are: k10 = 5.53 1024, k10m = 3.75 1022,

k20 = 3.25 1024, k20m = 3 1021, k30 = 2.55 1022, k30m = 1,

k40 = 2.5 1023, k40m = 2. The input signals consist of a square

pulse of duration tpulse followed by an exponential decay (i.e.,

signal = S for time,tpulse, and signal = S e2(time-tpulse)/l for

time.tpulse). The signal parameter for each concentration were

as follows: S = 0.2, 0.25, 0.75, 0.75, 0.75, tpulse = 559, 229, 69, 49,

49, and l= (50, 50, 250, 300, 300)63600 min.

The full model depicted in Figure 7 is described by Equations

3–5 and 7–8 above, in which s has to be replaced by [MK*]. The

following equation describes the dynamics of MK*:

d MK�½ �
dt

~
k6
: RL½ �z RL�½ �ð Þ: MKTOTAL{½MK��ð Þ

k6mz MKTotal{ MK�½ �ð Þ {

k7 MK�½ �
k7mz MK�½ �

ð9Þ

Here MKTotal = [MK*]+[MK]. The parameters used to produce

Figure 7 are (arbitrary units): k1 = 2, k2 = 3 1022, k3 = 1.9 102,

k4 = 1 1024, k4m = 3 1022, k5 = 8.5 1028, k5m = 2.5 1022, k0 = 6.6

101, k0m = 5.1 1022, k10 = 4.1 1024, k10m = 4.4 1024, k20 = 5.9

1024, k20m = 4.6 1021, k30 = 2.8 1022, k30m = 2.6, k40 = 1.15 1023,

k40m = 3.8 1021, k6 = 3.2 k6m = 4.9 1024, k7 = 1.7, k7m = 3.3 1021.

Parameter Selection
As described in [47] the signaling modules presented above are

capable of producing adaptive behavior for a wide range of

parameter values. The main condition that must be met is that

activation occurs on a fast time scale as compared to the feedback

inhibition. The parameters for the examples used to illustrate

dose-to-duration encoding were selected to comply with this

requirement. The parameters for Figure 6 were tuned manually to

generate a good fit to the data. However, the number of

experimental points leaves significant leeway for the exact shape

of the decay phase of the input signal. The parameters used to

generate the curves for Figure 7 were obtained using a Monte

Carlo algorithm. The values of the rate constants associated with

ligand binding and dissociation in the absence of feedback

regulation were fixed to reflect a Kd value of 15 nM [23].

Experimental Methods
Immunoblot data for kinases Fus3 and Kss1 were obtained from

[7]. Briefly, BY4741 (MATa leu2D met15D his3D ura3D) cells were

grown using standard practices. Cell extracts (20 mg/lane) were

resolved by 12% SDS-polyacrylamide gel electrophoresis and

immunoblotting performed as described in [42]. Band intensity

was quantified by scanning densitometry using ImageJ (National

Institutes of Health).
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