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Abstract

Translation is still poorly characterised at the level of individual proteins and its role in regulation of gene expression has
been constantly underestimated. To better understand the process of protein synthesis we developed a comprehensive and
quantitative model of translation, characterising protein synthesis separately for individual genes. The main advantage of
the model is that basing it on only a few datasets and general assumptions allows the calculation of many important
translational parameters, which are extremely difficult to measure experimentally. In the model, each gene is attributed with
a set of translational parameters, namely the absolute number of transcripts, ribosome density, mean codon translation
time, total transcript translation time, total time required for translation initiation and elongation, translation initiation rate,
mean mRNA lifetime, and absolute number of proteins produced by gene transcripts. Most parameters were calculated
based on only one experimental dataset of genome-wide ribosome profiling. The model was implemented in
Saccharomyces cerevisiae, and its results were compared with available data, yielding reasonably good correlations. The
calculated coefficients were used to perform a global analysis of translation in yeast, revealing some interesting aspects of
the process. We have shown that two commonly used measures of translation efficiency – ribosome density and number of
protein molecules produced – are affected by two distinct factors. High values of both measures are caused, i.a., by very
short times of translation initiation, however, the origins of initiation time reduction are completely different in both cases.
The model is universal and can be applied to any organism, if the necessary input data are available. The model allows us to
better integrate transcriptomic and proteomic data. A few other possibilities of the model utilisation are discussed
concerning the example of the yeast system.
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Introduction

The rate of translation differs for individual proteins, reflecting

both the intrinsic capability of an mRNA molecule to be translated

and the environmental factors affecting the efficiency of the

translation process. The first is well characterised in other studies

[1–3] that discuss mRNA features responsible for the regulation of

translation (e.g., length of the 59 UTR, presence and location of

mORFs, type and number of initiation codons, sequence context

around the initiation codon, presence and location of mRNA

secondary structure elements, codon usage, mRNA stability, and

posttranscriptional modifications). However, the second describes

the features of the environment in which translation occurs,

namely the amounts of particular mRNA transcripts in a cell, the

accessibility of the translation machinery elements required to

initiate and accomplish protein synthesis (such as free ribosomes,

tRNAs, and elongation factors), as well as growth conditions,

which have been proven to evoke gene-specific translational

control [4].

Although the general theoretical background of translation is

known, the process of protein synthesis is still poorly characterised

at the level of individual proteins. Experimental determination of

absolute translation rates (i.e., in time units) is a tremendous task

and we are not aware of any such research. Even though the

factors specified above have been studied separately for some

proteins, little is known about the extent to which they affect the

process and how they cooperate to keep the synthesis rate at the

required level. Another strategy to examine translation activity is

to integrate genome-wide expression datasets from different

sources [5–8]. However, it was shown [9] that these datasets

cannot be used to predict translation rates at the level of individual

proteins, as they suffer from large random errors and systematic

shifts in reported values.

In practice, upon the development of techniques to examine

transcriptome data experimentally (microarrays, Northern blot-

ting, RNA-seq, etc.), the mRNA concentration has become a

broadly used measure of protein abundance. Nevertheless, recent

research indicates that there is only a partial correlation between

mRNA and protein abundances [10–16]. It was shown that the

mRNA transcription level can explain only 20–40% of the

observed amounts of proteins [17,18], which leads to conclusion

that the role of translation in regulation of gene expression has

been constantly underestimated. Thus, a deeper insight into the

process of translation is required to better integrate transcriptomic

and proteomic data [19–21].

In this study, we developed a model to measure the absolute,

translational activity at the level of individual genes. The model

was implemented in Saccharomyces cerevisiae, however, it can be used
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to study translation in any other organism of known genome, but

only if the following data are available: (i) a dataset of mRNA

relative abundance and ribosome footprints; (ii) tRNAs decoding

specificities; (iii) average cell volume; (iv) average number of active

ribosomes in a cell; (v) average number of mRNA transcripts in a

cell; and (vi) a dataset of mRNA half-lives (optionally).

In our calculations for the yeast system the first dataset came

from one genome-wide experiment provided by Ingolia et al. [22],

quantifying simultaneously mRNA abundance and ribosome

footprints by means of deep sequencing. This method is thought

to provide a far more precise measurement of transcript levels than

other hybridisation or sequence-based approaches [23]. Based on

this dataset, we determined the absolute time of translation, in SI

units, for individual genes. The time is the sum of the time

required to accomplish two main steps of protein translation:

initiation and elongation. Analysing the initiation or elongation

time alone provides quantitative information on the extent of

translation regulation at these two steps separately. Moreover, by

introducing mRNA concentrations into the model, one can

calculate the relative rate of translation initiation, which does

not depend on the transcriptional level of a corresponding gene.

Assuming identical conditions for all mRNAs in the cell (i.e., equal

amounts of available ribosomes, elongation factors, tRNAs, etc.),

the measure will reflect the mRNA’s intrinsic ability (in relation to

other analysed mRNAs) to regulate the efficiency of translation

initiation. Such a deep insight into the process of initiation is

particularly important, as this step of protein synthesis is thought

to be the main and rate-limiting target for translational control

[24]. Furthermore, by combining our results with a dataset on

mRNA stability [25], we calculated the absolute amounts of

protein produced from each transcript during its lifespan.

We compared our results with direct experimental studies

measuring the mRNA and protein levels of chosen genes. Good

correlation with most of the experimental data was observed, and

calculated mRNA and protein abundances did not differ

significantly from those reported in vivo. In addition, other

calculated parameters of translation, such as the overall rate of

protein synthesis, were in agreement with earlier reports.

The calculated translational parameters were also used to study

the general characteristics of the yeast translational system,

revealing the diversity of strategies of gene expression regulation.

For instance, we showed that two commonly used measures of

translation efficiency – ribosome density and number of protein

molecules produced – are affected by two distinct factors. We

observed strong negative correlations between values of both

measures and translation initiation time, however, the origins of

initiation time reduction for most efficient transcripts are

completely different. In case of elevated ribosome density, short

initiation is caused mostly by mRNA instristic capability of being

translated discussed at the beginning of this section. Contrary, in

case of high number of protein molecules produced, short

initiation is caused primarily by elevated mRNA concetrations.

Finally, we exemplified and discussed other possible ways of

model utilisation, as the model may be of considerable help in

examining gene expression regulation, protein-protein interac-

tions, metabolic pathways, gene annotation, ribosome queuing,

protein folding, and translation initiation. Additionally, the model

provides an overall and quantitative picture of the translation

process, crucial for better integration of transcriptomic and

proteomic data from high-throughput experiments.

Results

The following translational parameters were attributed to the

yeast genes (for derivation, see the Materials and Methods): L,

length of the transcript coding sequence (CDS) in codons; x,

absolute number of transcripts in a yeast cell; B, total amount of

protein molecules produced from transcripts of particular type; g,

ribosome density in number of ribosomes attached to a transcript

per 100 codons; w, the absolute number of ribosomes on a

transcript; T , total time of translation of one protein molecule

from a given transcript; I , total time required for translation

initiation; E, total time required for translation elongation;

mean E, mean time required for elongation of one codon of a

transcript; P, translation initiation frequency; Pz, relative rate of

binding of free ribosomes to the 59 end of a transcript,

proportional to the concentration of the transcript; Ps, relative

rate of successful accomplishments of initiation once the ribosome-

mRNA complex is formed (the obtained values of the parameter

Ps ranged from 3.4e-4 to 65.9. For clarity, we decided to

normalise them by the maximal reported value of Ps obtained for

the gene YLL040C. The normalised values of Ps range from 0 to

1 and allow more intuitive comparison); h, estimated half-life of a

transcript; and m, estimated mean lifetime of a transcript.

Parameters T , I , E, mean E, h, and m are given in SI units.

We managed to attribute quantitative measures of translation to

the majority of 4648 transcripts from the initial dataset. Four

transcripts were rejected at the beginning of processing, as

ribosome footprints were not observed on them. Further, 23

transcript had unrealistic, elevated g values (i.e., gw10).

Assuming, that a ribosome covers ten codons, a transcript CDS

built of 100 codons cannot contain more than ten ribosomes.

Eventually, we eliminate transcripts at which queuing of the

ribosomes may occur. Our simulation program yielded 130

transcripts suspected of queuing, plus 21 for which translation at

the 59 end is so slow that the first attached ribosome prevents the

attachment of the following ribosomes. Further calculations were

performed for the most relevant transcripts, i.e., the remaining

4470 yeast genes, without ribosome queuing.

The values of parameters T , E, mean E, I , L, x, g, w, P, Pz, and

normalised Ps were determined for all 4470 transcripts in the

dataset, of which 4192 could also be attributed with additional

Author Summary

Translation is the production of proteins by decoding
mRNA produced in transcription, and is a part of the overall
process of gene expression. Although the general theoret-
ical background of translation is known, the process is still
poorly characterised at the level of individual proteins. In
particular, the quantitative parameters of translation, such
as time required to complete it or the number of protein
molecules produced from a transcript during its lifetime,
are extremely difficult to measure experimentally. To
overcome this problem, we developed a computational
model that, on the basis of only few datasets and general
assumptions, measures quantitatively the translational
activity at the level of individual genes. We discussed it
concerning the example of the yeast system; however, it
can be applied to any organism of known genome. We
used the obtained results to study the general character-
istics of the yeast translational system, revealing the
diversity of strategies of gene expression regulation. We
exemplified and discussed other possible ways of model
utilisation, as it may help in examining protein-protein
interactions, metabolic pathways, gene annotation, ribo-
some queueing, protein folding, and translation initiation. It
also may be crucial for better integration of cell-wide, high-
throughput experiments.
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parameters h, m, and B. The calculation of all parameters except h,

m, and B was entirely based on the results from one high-throughput

experiment. Parameters h, m, and B engaged one additional dataset

of mRNA relative half-lives. The general characteristics of the

parameters are specified in Table 1. The values of parameters for

individual genes are provided in Supplementary Table S1.

The calculated parameters allow to study the process of

translation at the level of individual genes. Figure 1 depicts the

translation process in time on the example of protein YJL173C, a

highly conserved subunit of Replication Protein A (RPA). Similar

schematics may be constructed for the majority of yeast genes.

Correlations with existing data
Next, we checked if our calculations were in agreement with

published data on protein and mRNA abundances. We compared

our results with two previously published studies that provide

information on transcript and protein copy number for numerous

S. cerevisiae genes [13,26], by performing linear regression through

the origin on the log-transformed values. The adjusted R2 values,

as well as the corresponding regression coefficients, were

calculated for six pairs of datasets and the results are presented

in Table 2. Scatter plots are presented in Figure 2. The results

show that our model explains 84% of the variability in mRNA

abundance and 97% of the variability in protein abundance

reported by experimental studies. Such R2 values are reasonably

good, taking into account the differences in the particular yeast

strains and laboratory protocols used, as well as the fact that our

calculations are based on a few simplifications that can disrupt the

final outcome. Moreover, R2 values reported for our model do not

stand out from those calculated for comparisons of two

experimental datasets with each other, suggesting that the

observed differences constitute the internal variability of the

system, not a methodology error. To measure if our results suffer

from systematic shift, we calculated the fold difference values for

transcript and protein abundance comparisons with two experi-

mental datasets (see Supplementary Figure S1). In general, our

calculations slightly overestimate the transcript copy number and

underestimate the protein copy number, in relation to published

data. This is mainly caused by the assumption we made: that one

yeast cell contains, on average, 36,000 transcripts. The transcript

copy number used in both reference studies is originally taken from

older research [27], which quantified the relative mRNA concen-

trations and transformed them into absolute copy number,

assuming 15,000 as the total number of transcripts per cell. This

estimation seems inadequate to us in the light of current discoveries,

which are explained in the Materials and Methods.

Transcript copy number is also problematic due to the wide

discrepancies in mRNA levels reported by different studies [28].

Above mentioned mRNA concentration dataset [27] was obtained

in a serial analysis of gene expression (SAGE) experiment and it is

likely that such concentration estimates have low precision for low

abundance mRNAs [13,26]. On the other hand, it is hypothesized

that SAGE is more accurate for abundant mRNAs when compared

with other widely used technique: high-density oligonucleotide

arrays (HDA) [26,28]. Thus, we decided to compare mRNA

concentrations calculated in our model with results obtained in

genome-wide HDA experiment [29]. We performed linear

regression through the origin on log-transformed data on mRNA

abundance for 3769 genes. Scatter plot and the distribution of fold

difference values are presented in Figure 3. The obtained adjusted

R2 value was 0.30 (see Table 2), meaning that parameter x is able to

explain only one third of the variability in mRNA abundance

reported by this experiment [29]. This discrepancy is probably

caused again by the experimental error. Parameter x reflects

mRNA concentration obtained by means of deep-sequencing,

technique considered to be far more precise in measuring mRNA

levels than other hybridisation or sequence-based approaches [23].

However, it is likely, that it is less precise for low abundance

mRNAs, which may be seen in Figure S1 provided by Ingolia et al.

[22]. This would explain why parameter x better describes

variability in mRNA concentrations obtained from SAGE than

HDA experiments.

Table 1. The translational parameters calculated in the model.

par mean median sd min max description

L 513.3 430.5 365.2 37 4911 Length of the transcript CDS in codons.

x 7.8 2.7 28.9 0.140 591.3 Absolute number of transcripts in a yeast cell.

B 1.0e+4 677 7.7e+4 0.650 2.4e+6 Total amount of protein molecules produced from transcripts of a particular type.

g 1.1 0.8 0.9 0.003 6.6 Ribosome density in number of ribosomes attached to a transcript per 100 codons.

w 5.6 3.1 7.3 0.010 142 The absolute number of ribosomes on a transcript.

P 5.3e-5 3.6e-5 5.4e-5 1.5e-7 6.2e-4 The translation initiation frequency (the inverse of I).

Pz 2.2e-4 7.6e-5 8.0e-4 3.8e-6 1.6e-2 The relative rate of binding of free ribosomes to the 59 end of a transcript.

Ps 1.6e-2 6.4e-3 2.9e-2 5.2e-6 4.3e-1 The relative rate of a successful accomplishment of initiation once the ribosome-mRNA
complex is formed, normalised by the maximal observed value of Ps, reported for gene
YLL040C.

T 2:50 2:20 3:23 0:06 113:08 Total time of translation of one protein molecule from a given transcript (min:sec).

I 0:54 0:28 3:06 0:02 111:54 Total time required for translation initiation (min:sec).

E 1:56 1:36 1:24 0:04 17:54 Total time required for translation elongation of a transcript (min:sec).

mean_E 0.224 0.229 0.031 0.098 0.360 Mean time required for elongation of one codon of a transcript (sec).

h 2:45:51 1:31:44 3:59:18 0:00:19 42:27:31 Estimated half-life of a transcript (h:min:sec).

m 3:59:16 2:12:20 5:45:13 0:00:27 61:15:18 Estimated mean life-time of a transcript (h:min:sec).

Column descriptions: (1) name of the parameter; (2) mean value; (3) median value; (4) standard deviation; (5) minimal observed value; (6) maximal observed value; and
(7) parameter description. For all parameters, except B, h, and m, the columns 2, 3, 4, 5, and 6 were calculated over the entire dataset of 4,470 yeast genes. For
parameters B, h, and m the columns 2, 3, 4, 5, and 6 were calculated over the set of 4,192 genes.
doi:10.1371/journal.pcbi.1000865.t001
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In addition, we estimated that the cell-wide rate of translation

for S. cerevisiae at 300C is 5.5 amino acids (aa) per second, which

corresponds to an average time of translation for one codon of

183 ms. This is in agreement with experimental studies, reporting

rates of 8.8 aa/sec and 5.2 aa/sec for fast-growing and slow-

growing yeast cells, respectively [30]. It is worth noting that the

obtained value is also within the range reported for proteins from

other organisms, namely 6 aa/sec for human apolipoprotein [31],

0.74 aa/sec for rabbit hemoglobin [32], 5 aa/sec for chick

ovalbumin [33], and an average translation rate of 7.3 aa/sec in

cockerel liver [34].

Furthermore, it is reported in independent studies that the total

amount of protein in a yeast cell varies from 4:9|10{12 g [16] to

6:4|10{12 g [35]. Based on known protein sequences and the

molecular mass of particular amino acids, we can calculate the

mass of each yeast protein. By multiplying this by the protein copy

number B and summing over all expressed yeast proteins, we

estimated that the total mass of proteins in a yeast cell is around

2:2|10{12 g. Although this number is smaller than values

reported previously, it is still consistent taking into account the

fact that we excluded from the calculations all transcripts with

ribosome density gw10, as our model cannot operate on such

elevated values of this parameter. Most likely, gw10 results in very

high level of translation, meaning that excluded transcripts would

have large B values, if they could be counted by our model. Thus,

excluding these transcripts strongly affects the final mass of

proteins in a yeast cell, diminishing it noticeably. Moreover, we

must not forget that calculated values of the parameter B reflect

only the total amount of proteins produced from a given

transcript, whereas the cell contains many other proteins produced

in the past that are still present in the cell.

General features of the yeast gene expression system
Based on our results, we can draw the following conclusions

concerning gene expression in S. cerevisiae:

First, half of the genes produce less than 2.73 transcripts per cell.

The distribution of the transcript copy number is skewed with a

long right tail: only 55 genes have more than 100 mRNA copies.

Unsurprisingly, the top 20 genes with the highest x values turned

out to be either ribosomal proteins (18 genes) or enzymes engaged

in glycolysis (genes YKL060C and YKL152C). One mRNA

molecule is translated from 0.14 to 40,110 times, and the median is

257.9. Typically, one gene produces 677 protein copies; however,

the most active genes may generate more than 2 million protein

copies. Only six genes are common for the sets of the top 20 genes

with the highest transcript levels and protein abundance. Among

the 20 most highly produced proteins, there are 14 ribosomal

proteins, two genes engaged in glycolysis (YCR012W, YKL060C),

a highly expressed mitochondrial aminotransferase (YHR208W),

alcohol dehydrogenase (YOL086C), and two cell wall proteins

(YLR110C, YKL096W-A). There is only partial correlation

between transcript and protein copy number and protein

production does not necessarily follow the concentration of

mRNA molecules (see Figure 4). We compared mRNA (x) and

protein (B) abundance calculated in our model, by performing

linear regression through the origin on log transformed data.

Adjusted R2 value calculated over the entire dataset (4192 genes

with known B) was 0.59. This means that over 40% (in log space)

of the variation in protein abundance cannot be explained by

variation in mRNA abundance, suggesting some additional,

posttranscriptional mechanisms of gene expression regulation.

Next, we analysed yeast genes for expression strategies applied

to produce the highest number of protein molecules. We prepared

two datasets: 200 genes with the highest B values (Bw24000) and

200 genes with the lowest B values (Bv36:14). We compared the

rest of the translation parameters between these two sets,

performing a two-sided Mann-Whitney test. The mean value of

most parameters differs between the two datasets in an intuitive

manner: genes coding for highly abundant proteins usually

produce more transcripts, which have a shorter time of translation

(both E and I ), as well as stronger resilience to degradation and

are occupied by more ribosomes per 100 codons. All differences

are statistically significant with p-value v0:001 (data not shown).

Only one parameter appeared not to affect the number of proteins

produced: the relative rate Ps of initiating translation once the

ribosome attaches to the free 59 end of an mRNA molecule

Figure 1. Translation model of YJL173C. The bottom plot shows all of the translation initiation events during the mean lifetime of one mRNA
molecule. Translation initiations are marked with ribosome-shaped symbols. The orange line indicates the mean lifetime of YJL173C mRNA. The
broken curves’ slope depicts the rate of polypeptide chain growth measured at particular codons. The number of curves indicates the number of
protein molecules (here 46) produced from one mRNA during its lifetime. The top-right plot shows, in magnitude, the translation of the first protein
molecule (darkbrown curve). The time is measured since the transcript becomes accessible to the translation machinery. The first seconds are spent
on translation initiation; elongation begins after about 10 sec. Red dots mark ribosome positions in time (dotted blue lines) and space (dashed blue
lines) when the following ribosomes attach to the mRNA molecule. The histogram on the left shows the mean translation times of particular codons
of the YJL173C sequence. The dashed black line is the mean time of translation of one codon of the YJL173C mRNA sequence.
doi:10.1371/journal.pcbi.1000865.g001

Table 2. Model determined mRNA and protein abundances versus experimental studies.

compared datasets mRNA abundances protein abundances

common genes adj. R2 b common genes adj. R2 b

our dataset vs Gygi et al. 67 0.84 1.25 69 0.97 1.01

our dataset vs Futcher et al. 28 0.84 1.24 26 0.98 0.92

Gygi et al. vs Futcher et al. 25 0.97 1.04 27 0.99 0.91

our dataset vs Holstege et al. 3769 0.30 0.75

The comparison of mRNA and protein abundances obtained in the model (reflected by parameters x and B) with values reported by three independent experimental
studies [13,26,29]. We performed a simple linear regression through the origin on the log-transformed values. Column descriptions: (common genes), number of
common genes in two compared datasets; (adj. R2), adjusted R2 values for the linear regression model; and (b), regression coefficient. The third row is the comparison
of the two experimental studies with each other. All coefficients were statistically significant (F-statistic p-values v0:001).
doi:10.1371/journal.pcbi.1000865.t002

A Quantitative, Genome-Wide Model of Translation

PLoS Computational Biology | www.ploscompbiol.org 5 July 2010 | Volume 6 | Issue 7 | e1000865



(p-value~0:07). Moreover, the Spearman’s correlation coefficient

between parameters B and Ps for the entire dataset is very weak

(rs~0:09, p-value v0:001).

Analogously, we analysed two datasets of 200 genes with the

highest and lowest g values (gw3:09 and gƒ0:169, respectively).

According to the Mann-Whitney test, transcripts of higher

ribosome density typically produce more protein molecules and

have shorter times of translation (both E and I ). All differences are

statistically significant with p-value v0:001 (data not shown). In

contrast to the result mentioned above, the shorter time I for genes

of the highest ribosome density is here caused mainly by elevated

Ps, while Pz has little influence, but the difference in Pz is still

statistically significant (p-value v0:001). Nevertheless, no signif-

icant correlation was observed between the parameters �g and Pz
measured over the entire dataset (p-value~0:17). The roles of Ps
and Pz in modifying values of B and g are detailed in

Supplementary Figure S2.

Furthermore, we studied, in detail, 20 genes from the set of 200

genes producing the highest number of proteins but with low

transcriptional activity (xv4:33 for all of them). Interestingly, these

genes are involved in many distinct biological processes, with the

notable exception of ribosome formation. The mechanism of their

regulation, deduced from the values of the translational parameters,

is almost the same for all genes. For instance, two parameters seem

to play the main role in sustaining the high protein synthesis rate:

relatively long mean life-time of the mRNA molecule, reaching up

Figure 2. Model results vs experimental studies. The plots show the comparison of model parameters x (left) and B (right) with experimentally
determined mRNA and protein abundances by two independent studies [13,26]. The axes were log transformed. Calculated R2 values are presented
in Table 2. The distribution of the log-fold differences of the mRNA and protein concentrations reported by the model and reference studies are
presented in Supplementary Figure S1.
doi:10.1371/journal.pcbi.1000865.g002
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to several dozens hours (the maximal observed mean lifetime of a

yeast transcript is 61 hours), and about four times shorter time of

translation initiation, caused mainly by relatively high Ps values. On

average, the observed Ps is one order of magnitude higher than

the median Ps for all yeast genes. The shorter pause between

subsequent initiations results in elevated ribosome density g and

increased protein production rate. On the other hand, the total time

of translation, as well as the mean elongation time, are unexpectedly

long (i.e., slightly above the median value of all yeast genes (see

Table 3)). This indicated that in cases of long-lived mRNAs, high

transcriptional rates and usage of frequent codons are not required

to achieve a high rate of protein synthesis. This strategy of

expression constitutes an interesting but still inscrutable example of

translation regulation, and further research should be carried out.

Figure 4. Correlation of mRNA and protein expression levels.
The plot shows the correlation between mRNA abundance (parameter
x) and the number of protein molecules produced from a given gene
(parameter B). We performed linear regression through the origin on
log transformed data. Adjusted R2 value calculated over the entire
dataset (4192 genes of known B) was 0.59. This means that over 40% (in
log space) of the variation in protein abundance cannot be explained
by variation in mRNA abundance, suggesting some additional,
posttranscriptional mechanisms of gene expression regulation.
doi:10.1371/journal.pcbi.1000865.g004

Table 3. Translational parameters of 20 genes of low
transcriptional activity and high protein production rate.

parameter median min max

L 753.5 205 1877

x 3.38 1.61 4.30

B 37794 25263 97900

g 3.22 1.35 4.86

w 20.05 8.32 63.25

P 1.7e-4 6.9e-5 3.3e-4

Pz 9.4e-5 4.5e-5 1.2e-4

Ps 2.9e-2 1.0e-2 8.3e-2

T 2:28 0:28 5:31

I 0:06 0:03 0:15

E 2:23 0:25 5:26

mean_E 0.193 0.124 0.213

m 24:09:05 8:18:33 56:26:44

The distribution of translational parameter values for the set of 20 genes having
high protein production rates (Bw25000) and relatively low transcriptional
activity (xv4:33). Column descriptions: (1) name of the parameter; (2) median
value; (3) minimal observed value; and (4) maximal observed value. The units
are the same as those presented in Table 1.
doi:10.1371/journal.pcbi.1000865.t003

Figure 3. Calculated transcript abundance vs experimental studies. Left plot: the comparison of model parameter x with mRNA abundances
determined by high-density oligonucleotide array (HDA) experiment [29]. The axes were log transformed. Calculated R2 value for the comparison is
presented in Table 2. Right plot: distribution of the log-fold differences of the mRNA concentrations reported by the model and reference study.
doi:10.1371/journal.pcbi.1000865.g003
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Translation times and codon bias
In Supplementary Table S2 we present times of translation of

individual yeast codons at 300C. We compared these values with

codon optimality Copt calculated by [36]. The value of Copt

measures whether the codon is preferred in highly expressed genes

compared with all other codons encoding the same amino acid.

Copt is calculated as the odds ratio of codon usage between highly

and lowly expressed genes. Figure 5 shows that there is negative

correlation between Copt value and translation time of a codon.

However, while optimal codons have only short times of

translation, non-optimal codons may be translated at both high

and low rates. Linear regression model through the origin on log

transformed values confirmed this conclusion: the obtained

adjusted R2 is only 0.15. This indicates, that translation speed

may be the one, but not the only criterium for selection on codon

bias. This is in agreement with other reports, discussed widely in

the recent review [37]. Also, it has been shown that codon usage

bias in yeast is associated with translation accuracy [38] and

protein structure [36].

Translational parameters and protein interactions
Interacting proteins are often precisely co-expressed, presum-

ably to maintain proper stoichiometry among interacting compo-

nents [39]. For instance, it was shown that functionally associated

proteins exhibit correlated mRNA expression profiles over a set of

environmental conditions [40,41]. Other studies report the co-

evolution of codon usage of functionally linked genes [39,42] and

show that codon usage is a strong predictor of protein-protein

interactions [43]. Our model provides far more information on

translation regulation than mRNA expression profiles or codon

usage alone, thus we decided to examine calculated parameters in

a set of well-known interacting proteins.

As a model, we chose the 20S proteasome complex, built of 28

proteins. There are 14 genes in the yeast genome coding for

proteasome subunits a1–a7 and b1–b7, and each subunit is

present in the complex in two copies [44]. Only subunit a3 is

nonessential for the functionality of the complex and may be

replaced by the a4 subunit under stress conditions to create a more

active proteasomal isoform [45].

The analysis of the translational parameters (see Supplementa-

ry, Table S3) shows that the mean translation time (mean E) of all

proteins is similar and ranges from 194 to 259 ms. As all

interacting proteins are of similar length, the total time of

elongation does not vary much; the biggest observed difference

between two proteins was *24 s. However, the level of

transcription is more variable and ranges from 3.99 to 22.61

transcripts per cell. There is a considerable divergence of ribosome

density g (from 0.61 to 4.32), but regulation at the level of

translation initiation (similar values of Pz and variability of Ps
reaching two orders of magnitude) keeps the initiation time I at

the same level for all 14 proteins. The biggest observed difference

of I between two proteins equals *31 s. This results in congruent

total times of translation T , the difference between maximal and

minimal values is only two-fold with a mean value of *73 s.

Nevertheless, the observed differences in the mean lifetimes of

mRNA molecules are huge, reaching up to 278 min. In

consequence, the number of protein molecules produced is

strongly variable, ranging from 318 to 11,185 molecules per cell,

and this is surprising as the stoichiometry of the 20S proteasome

would rather suggest equal amounts of all subunits. Indeed, for

four proteasome proteins, the value of the B parameter is almost

the same, about 2,600 subunits of b2, b3, b4, and b5 per cell.

Similar values, which do not exceed the range 2,600+1,000, were

reported for subunits a1, a7, b6, and b7. Subunits a3, a4, a5, and

a6 are produced to less than 1,100 copies, while the rate of protein

synthesis of subunits a2 and b1 is 5,481 and 11,185 molecules per

cell, respectively. To maintain the number of different subunits at

the same level, the high translation rates of a2 and b1 may be

balanced by post-translational regulation, presumably by elevated

protein degradation. Conversely, the reduced translation rate of

a3, a4, a5, and a6 may be compensated at the level of

transcription, for instance by more frequent transcription

initiations. In addition, the limited number of these subunits, as

well as the relatively short life-time of their mRNAs, makes them

ideal candidates for regulators of the abundance of proteasome

complexes.

Discussion

The main advantage of the proposed model is that basing it on

only few datasets and general assumptions allows the calculation of

many important translational parameters, which are extremely

difficult to measure experimentally. As a result, the majority of

yeast genes may be attributed with quantitative rates of expression

and protein synthesis. These data may be used to study both the

general characteristics of the process of translation in yeast and the

rates of protein production of individual genes. The model itself is

general and universal and can be applied to other organisms if all

of the necessary input datasets are available.

However, as with any theoretical model, this one also has some

drawbacks. The quality of our calculations strongly depends on the

quality of the input data. To study the example of S. cerevisiae, we

carefully chose the dataset of ribosome profiles and made sure that

data on mRNA abundance and ribosome footprints were obtained

under the same experimental conditions. Similarly, all global

parameters, such as the overall number of transcripts and

Figure 5. Codon optimality vs translation time. The plot shows
the coparison of translation times in 300C of individual yeast codons
with codon optimality values Copt calculated by [36]. There is negative
correlation between Copt value and translation time of a codon.
However, while optimal codons (high Copt values) have only short times
of translation, non-optimal codons may be translated at both high and
low rates. Adjusted R2 value obtained in linear regression model
through the origin on log transformed values indicates, that translation
speed may explain only 15% of variability in Copt values.
doi:10.1371/journal.pcbi.1000865.g005
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ribosomes in a cell, were determined with care and attention, after

insightful analysis of the literature. To extend our model to the

number of proteins produced, we decided to use an additional

dataset of mRNA half-lives. The assumption that lies at the basis of

mRNA half-life calculation is that in the steady state of mRNA

turnover, the time required to synthesise an mRNA molecule

equals the time to degrade it. Obviously, this is not true for many

transcripts, as the cell cycle and environmental stimuli force

changes in mRNA turnover. Additionally, we must not forget that

the parameter B, calculated based on mRNA half-life, reflects only

the total amount of protein molecules produced by the transcripts

of a given gene. The protein degradation rate is not taken into

account, and therefore, especially in case of short-lived proteins,

the observed protein concentration will be smaller than estimated

in this paper. This may be the cause of some of the discrepancies

between the estimated protein abundances and those previously

reported.

The true meaning of the B parameter is also important when

analysing the set of 20 genes characterised by low levels of

transcription and high levels of protein production rate. As their

transcripts may be sustained in a cell for up to a few dozen hours,

they may produce a large amount of protein in their lifetime, even

if the translation is not very efficient. However, this does not

necessarily indicate that all synthesised proteins are aggregated in

a cell, and their number is constantly increasing. It is more likely

that these proteins are systematically degraded and replaced by

new ones produced from the same mRNA. Interestingly, genes

regulated thusly would not be classified as highly expressed by any

standard methods, as their transcripts are not present in the cell in

many copies, and their mean time of elongation is about average,

so no codon bias is suspected.

In addition, our model revealed some interesting aspects of

global translation characteristics. In many studies ribosome density

is used as the only measure of translational activity [6]. We have

shown that high ribosome density is caused mainly by the elevated

relative rate of translation initiation after forming of the ribosome-

mRNA complex – Ps. In contrast, another measure of translation

efficiency, protein production rate B, is affected mostly by the

relative rate of finding an mRNA molecule by a free ribosome Pz,

while the influence of Ps in this case is negligible. These results

reflect the complexity of translation regulation, suggesting that any

translational parameter, when considered separately, is not

sufficient to fully characterise the process.

It has been stated before [46] that the regulation of gene

expression is controlled at multiple stages, and no general rule

exists describing how it works. In fact, the regulation of expression

is different for each gene, and its main role is to produce the

required amount of a given protein at the proper time. In contrast

to the typically used methods of quantifying translation (i.e., codon

bias and transcript abundance measurements), the proposed

model does not concentrate only on one parameter of translation.

In fact, it allows one to study, in depth, many strategies of gene

expression, showing which parameters play the main role in which

type of control.

Furthermore, the model opens the prospect for new analysis of

mRNA molecules. As mentioned before, the translation initiation

rate depends on mRNA abundance and intrinsic features of the

transcript. The calculated parameter Ps measures the relative

efficiency of translation initiation, excluding the influence of

mRNA concentration. Thus, for the first time, it provides a

quantitative way to compare mRNA sequences from the same

organism with respect to initial codon context, 59UTR secondary

structure, mORF presence, and other mRNA features responsible

for the efficiency of translation initiation.

Another possible application of the model is the analysis of the

calculated translational parameters in the context of protein

complexes, where proper stoichiometry among interacting compo-

nents is maintained. As exemplified by the study of the yeast 20S

proteasome, such analysis enables one to draw some interesting

conclusions about the regulation of the individual proteins, as well as

the entire complex. Moreover, we have shown that some

parameters, in particular translation times I , E and T , are similar

for all proteins of the complex. Possibly, the calculated model

parameters, if properly integrated, could become a strong predictor

of protein-protein interactions. It would be interesting to carry out a

similar search for proteins participating in the same metabolic

pathway, as functionally related proteins are usually co-expressed.

In such a case, the analysis of the translational parameters pattern

could become useful for the functional annotation of genes.

The model can also be used to study the elongation process in

the context of ribosome queuing. It provides all the necessary tools

to deeply analyse the strategies developed by living cells to avoid

ribosome stacking on a translated mRNA molecule.

Additionally, clustered codons that pair to low-abundance

tRNA isoacceptors cause local slow-down of the elongation rate. It

has been hypothesised, that such slow-down might facilitate the

co-translational folding of defined protein segments, by temporally

separating their synthesis [47]. Recently, it has been proposed that

discontinuous elongation of the peptide chain can control the

efficiency and accuracy of the translation process [48]. Our model

provides the measure of yeast codon elongation rates that may be

used to better examine the co-translational folding. In contrast to

the measure used in the aforementioned study, it is quantitative

and more precise, as it takes into account the delay caused by

near- and non-cognate aa-tRNAs.

Finally, the crucial coefficients of the model, i.e., the time of

insertion of cognate aa-tRNAs and time delays caused by near-

and non-cognate aa-tRNAs binding, can be calculated with

respect to different temperatures. This provides the possibility to

study the excess to which the temperature affects the efficiency of

translation, provided that the ribosome footprints and mRNA

concentrations are also measured at a few different temperatures.

In conclusion, although experimental confirmation is still

required, this model constitutes an important tool for understand-

ing the process of protein synthesis.

Materials and Methods

Theoretical model of translation
The molecular mechanism of translation was well characterised

previously [49]. However, for the purpose of this research, we

must consider the process both at the single transcript and

genome-wide levels. Quantifying the process of protein biosyn-

thesis engages vast array of data, some of which is incomplete or

missing. Thus, the following assumptions and simplifications must

be made: (i) the pools of all molecules participating in translation

(mRNA, tRNA, ribosomes, translation factors, and so on) are

constant, and molecules diffuse without restraint; (ii) all transcripts

derived from the same gene have identical sequence, i.e., there is

no alternative splicing and/or posttranscriptional modification;

and (iii) the elongation process is never interrupted, and it always

ends by producing a full-length protein molecule (note, that

experimentally estimated procesivity of translation in yeast was

99.8–99.9% [50]). When these assumptions are satisfied, the

model is as follows:

Let X be the set of all transcripts present in the yeast cell at the

moment of observation. We can make a partition of the set X into

n subsets, each containing transcripts of identical sequence. Thus,
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n denotes the number of transcriptionally active genes in the cell.

To each gene (subset), we attribute the index i~f1,2,3:::g and

define xi as the number of transcripts in the ith subset. The

variable x is reflected though by the transcriptional activity of a

gene.

Let Ti be the total observed time of synthesis of one protein

molecule from a transcript belonging to the ith subset. We define it

as:

Ti~IizEi ð1Þ

where Ii denotes the time required for translation initiation, and Ei

is the total time of the elongation process.

We define Ii as the time interval from the point when the free 59

end of a transcript becomes available for ribosomes to the moment

when a ribosome finds the initiator AUG codon and the entire

complex enters into the elongation phase. The inverse of the

initiation time Ii is initiation frequency Pi:

Pi~
1

Ii

: ð2Þ

If these frequencies are multiplied by a brief time interval dt, one

obtains the probabilities that the initiation process will occur

during time interval dt. We assume that the initiation of

translation follows the scanning model [51], which postulates that

the small ribosomal subunit enters at the 59 end of the mRNA and

moves linearly, searching for the initiator AUG codon; once it

finds it, the elongation process begins. We define Pzi as the relative

binding rate of free ribosomes to the 59 end of the ith transcript,

and assume it is proportional to the concentration of the transcript

(see Eq.10). This means, that in our model the binding constants of

ribosomes are the same for all mRNAs. Contrary, the process of

59UTR scanning by the ribosome is not straightforward, as there

are many intrinsic features of mRNA molecules that can

considerably delay or hasten the start of elongation (for review,

see [1]). Sometimes, the ribosome detaches from the mRNA

molecule before reaching the initial AUG, and the process must

return to the point when a ribosome binds at the 59 end. To

describe the efficiency of the scanning process by one numerical

parameter, we normalised Pi by the rate of binding of free

ribosomes Pzi:

Psi~
Pi

Pzi

ð3Þ

The calculated parameter Psi describes the rate of successful

accomplishment of initiation on the ith transcript once the

ribosome-mRNA complex is formed. Its value reflects the relative

capability of an mRNA molecule to be translated, regardless its

expression level. The rates Ps and Pz are calculated in relation to

all studied transcripts, thus they can only be compared within one

particular analysis.

The time Ei (see Eq.1) is defined as a time interval from the

recognition of the initiator AUG codon by the ribosome to the

moment when the last peptide bond of a protein molecule is

formed. Each elongation event consists of two main steps: (i)

finding the correct tRNA molecule, and (ii) formation of the

peptide bond and translocation. The time required for the first

event is much larger than for the second. In fact, the second step is

almost instantaneous [52]; thus, the times needed for transpepti-

dase and translocation reactions can be neglected, and time E may

be simplified to:

Ei~
Xj~Li

j~1

ej ð4Þ

where ej is the time of translation of the jth codon, and Li is the

number of codons in the coding sequence of the ith transcript.

Translation times for all yeast codons, as well as the values of E
and Pz, can be calculated on the basis of existing data (see below).

These values can also be used to calculate times I and the rest of

the model parameters T , P, and Ps, if the numbers of ribosomes

attached to the mRNA molecules are known. Here, the reasoning

is as follows:

Let wi be the number of ribosomes attached to the ith transcript.

We introduce the measure of ribosome density g, defined as the

number of ribosomes attached to the transcript per 100 codons:

gi~
wi
:100

Li
: ð5Þ

One ribosome occupies ten codons of a mRNA molecule [53], and

the E site of one ribosome can be immediately adjacent to the A site

of another ribosome [54]. This means that the maximum possible

value is g~10. Next, the attachment of a ribosome to the 59 end is

possible only if it is not occupied by other ribosomes. Thus, the most

efficient mRNA sequences should have g&10. Nevertheless, the

majority of observed g values are much smaller, meaning that there

are usually gaps of varying length between attached ribosomes. As

the exact positions of ribosomes on a particular transcript cannot be

deduced from the data, we must operate on the averaged gap

lengths, defined as the quotient of the transcript length L and

number of attached ribosomes w. The length of a gap measured in

codons is meaningless, as each type of codon has a different

translation time. However, the gap can be calculated as the sum of

translation times of these codons, becoming an adequate measure of

the time interval between individual translation initiation events on

a given mRNA molecule. This time is actually a delay from the best

possible initiation frequency and reflects the efficiency of the

initiation process. In principle, this is the time I (see Eq. 1) expressed

in the same time units as the translation times of particular codons:

Ii~
Li

wi

:

Pj~Li

j~1 ej

Li

~
Ei

wi

ð6Þ

Note that due to unknown ribosome positions on a transcript, both

the gap length and time of its translation are averaged. The rest of

the parameters (T , P, and Ps) can be calculated based on I , as

shown in Eq. 1, 2, and 3.

Calculating model parameters
The S. cerevisiae coding sequences used in our calculations were

downloaded from the Saccharomyces Genome Database [55]

(accessed 25th June 2009). For each gene, we determined the

values of T , I , E, P, Pz, and Ps on the basis of the recent research

of Ingolia et al. [22], quantifying simultaneously mRNA

abundance and ribosome footprints by means of deep sequencing.

The study was done for the yeast strain BY4741 grown in YEPD

at 300C. In the first step Ingolia et al. performed deep sequencing

on a DNA library that was generated from fragmented total

mRNA in order to measure abundance of different yeast

transcripts. Next, they applied a new ribosome-profiling strategy

based on the deep sequencing of ribosome-protected fragments.

This resulted in a dataset of 4,648 reliable transcripts (for the

definition of ‘‘reliability’’, see Supplementary Materials of [22])
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that was used as an input in our research. For each transcript in

the dataset, the following values were attributed: c, raw count of

mRNA-seq reads aligned to transcript coding sequence (CDS); C,

density of mRNA-seq reads in reads per kilobase per million CDS-

aligned reads (RPKM); f , raw count of ribosome CDS-aligned

footprints; and F , density of ribosome footprints in reads per

kilobase per million CDS-aligned reads. Next, the relative

numbers of reads counted in RPKM were transformed into the

transcript copy numbers. Normally, for each transcript i, Ci is

defined as:

Ci~
109:ci

Nc:Li
:3

ð7Þ

where Li is the length of the transcript CDS in codons, and Nc is

the sum of all mappable reads c [56]. Assuming uniform

distribution of the mappable reads across the transcriptome

coding sequences, the probability of observing ci reads on the ith

transcript CDS of length Li in Nc attempts corresponds to the

fraction of the transcriptome composed of the ith transcript:

ci

Nc
~

xi
:Li
:3

M
, ð8Þ

where M is the sum of all CDS of the transcriptome in base pairs.

The meaning of x was explained in the previous section. We can

substitute final RPKMs to get:

xi~
ci
:M

Nc:Li
:3

~
Ci
:M

109
ð9Þ

Although the length of the entire transcriptome was estimated as

7|107 nucleotides [57], deriving M is more problematic, as little

is known about the accurate boundaries of non-coding elements in

transcript sequences [9]. There were some attempts to determine

the length of UTRs on a global scale in yeast [58,59], but the

results show that even the length of transcripts derived from the

same gene of the same yeast strain cultured in the same growing

conditions may vary considerably. This causes the discrepancies

between reported transcript lengths by these two studies, making

the analysis at the level of individual genes difficult and inaccurate.

To overcome this problem we use Pz, the relative rate of

binding of free ribosomes to the 59end of a given transcript (see

Eq.3). This rate corresponds to the fraction of transcript i in the set

of all transcripts. By substituting x as shown in Eq. 9, we obtained

the following relation:

Pzi~
xi

X
~

Ci

NC
, ð10Þ

where NC is the sum of all densities Ci of mRNA-seq reads. Thus:

xi~
Ci
:X

NC
: ð11Þ

The next step was to calculate wi (the absolute number of

translationally active ribosomes attached to the ith transcript), and

gi (the measure of ribosome density, as defined in Eq.5). The

dataset used provides information only on ribosome footprints

aligned to the coding sequences. However, in practice, there were

some exceptions to this rule, caused mostly by the presence of

mORFs in the 59UTR sequences [22]. Due to the lack of data and

aforementioned difficulties in determining exact transcript length,

this fact is not taken into account in our analysis. Furthermore, we

defined W as the number of all ribosomes in a yeast cell and p as

the fraction of ribosomes participating in the process of translation

at the moment of observation. In contrast to raw mRNA-seq

reads, the distribution of ribosome footprints is not uniform across

the transcriptome, due to differences in genes translational activity.

Thus, the probability of observing a ribosome attached to the ith

transcript corresponds to the fraction of all ribosome footprints Nf

composed of the raw footprints in the ith transcript, fi. This

probability is equal to the ratio of all ribosomes engaged in

translation of transcripts of type i and the number of all occupied

ribosomes in the cell:

fi
Nf

~
wi
:xi

W :p
~

gi
:Li
:xi

100:W :p
: ð12Þ

Thus, ribosome density for the ith transcript can be calculated as:

gi~
fi:100:W :p

Nf :Li
:xi

ð13Þ

Global parameters estimation
Three parameters must be estimated to transform relative

numbers of transcripts and ribosomes attached to them into

absolute measures. These parameters are X , the total number of

mRNA transcripts in a yeast cell; W , the total number of ribosomes

in a yeast cell; and p, the fraction of ribosomes participating in the

translation process at the moment of observation. There are many

studies concerning the quantitative measurement of yeast cells, and

we used the Bionumbers database [60] to extract these data.

Two reports provide an independent, yet coherent, estimation of

the total number of ribosomes: 187,000+56,000 [9] and 200,000

[57] molecules per cell. In this study, we decided to set W to

200,000. The value of 85% was established for the parameter p, as

stated in experimental studies [61,62]. The number of all transcripts

in a cell is more problematic. Many contemporary studies assume

that a yeast cell contains 15,000 mRNAs per cell on average [27,63],

which is based on estimations done over 30 years ago [64]. Current

research, based on more up-to-date techniques (e.g., in situ

hybridisation or GATC-PCR) argues that the number should be

at least doubled [65] or even quadrupled [62]. We decided to use

the value of X situated between these estimates and equal to 36,000.

This number was also confirmed by other studies [65].

Assuming W~200,000, p~0:85, and X~36,000, we obtained

the mean ribosome density equal to 1.66 ribosomes per 100

codons. This is in agreement with experimental analysis, which

reports that, on average, there is one ribosome per 156

nucleotides, corresponding to a density of 1.92 ribosomes per

100 codons [61]. Moreover, it was estimated that mRNA

constitutes 5% of the total amount of RNA present in a cell,

and the RNA:DNA ratio is 50:1 [57]. Assuming the yeast genome

size of 2:8|107 nucleotides, the expected length of the entire

transcriptome would be 7|107 nucleotides. Thus, the length of all

transcribed coding sequences LCDS can be defined as:

LCDS~
Xi~X

i~1

Li
:xi: ð14Þ
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The meanings of X , L, and x are explained above. Thus, the

calculated length of all coding sequences equals 3|107 nucleo-

tides. This would suggest that non-coding elements constitute, on

average, more than 50% of a transcript. In conclusion, it seems

that the chosen parameter values generate reasonable measures of

the global characteristics of the yeast cell.

Determining absolute times of translation
In the previous section, we calculated the values of L, x, w, g,

and Pz for each gene. To determine the absolute times of

translation I , E, and T , we need to know the times of translation

for individual codons. To achieve this goal, we adapted a model

proposed for Escherichia coli [66] to the yeast system. Here, we

briefly present the model and all of the necessary changes we

made. For a description of the derivation, see the original paper.

The transport mechanism in the cytoplasm is diffusion, thus the

aa-tRNAs act as a random walker, and the ribosomes on mRNAs

with vacant A sites are the targets. We assume a yeast cytoplasm

volume V~42|10{18 m3 [67]. We divide it into N walker

occupation sites, where:

N~
V

l3
ð15Þ

and l is a measure of the walker size. The values of l used

previously [66] were determined separately for individual E. coli

aa-tRNA molecules [68]. As we are not aware of any similar

reports for S. cerevisiae, we decided to use l~14:5|10{9 m for all

yeast codons, which is the mean of the E. coli l values. The average

time that elapses before the arrival of a walker j is defined as:

tj~
tj

pj

ð16Þ

where tj is the characteristic time of the jth walker, associated with

its transition from one cellular occupation site to the other. It

depends on the size of the walker l and its diffusion coefficient Dj :

tj~
l2

6:Dj

ð17Þ

The measures of Dj were taken directly from [66]. As this value

depends only on the accepted amino acid, we assumed that the

difference in size between yeast and E.coli tRNA molecules is

negligible. In Eq.16, pj stands for the probability that a tRNA-aa

molecule of type j arrives at an open A site in the time interval tj

and is proportional to the number of walker occupation sites

containing the jth walker:

pj~
nj

N
ð18Þ

We assume that the number of the molecules of the jth walker nj is

proportional to the number of corresponding tRNA genes of type

j, which is reasonable, as it was shown that in yeast the

concentration of the various tRNA species is largely determined

by tRNA gene copy number [69]. In particular, the calculated

correlation coefficient between tRNA gene copy number and

experimentally determined tRNA abundance for a subset of 21

tRNA species equaled 0.91. According to [57], the RNA-DNA

ratio is 50:1 and tRNA constitutes 15% of the total amount of

RNA in a yeast cell. Assuming a genome size of 2:8|107

nucleotides, the total cellular tRNA size is 2:1|108 nucleotides.

When divided by the average tRNA molecule size (74.5 nt) we

obtain the number of tRNA molecules in a cell equal to 2,818,792.

Next, this number was multiplied by the fraction of all tRNA genes

composed of the tRNA genes of type j, yielding the absolute

amount of particular tRNA molecules in a cell. Gene copy number

and predicted decoding specificities of yeast tRNAs were taken

from Table 1 of [69]. The values of all presented parameters for

individual tRNAs are gathered in Supplementary Table S4.

All 61 codons that code for the 20 amino acids have one or

more aa-tRNAs and varying numbers of near-cognates. Near-

cognates are defined as having a single mismatch in the codon-

anticodon loop in either the 2nd or 3rd position. Since some

cognate tRNAs have a mismatch in the 3rd position, these tRNAs

are excluded from the set of near-cognates [70]. The theoretical

background of the model is based on the observation that the

translation rate of a codon reflects the competition between its

non-cognate, near-cognate and cognate aa-tRNAs [71], and that

such nonspecific binding of the tRNAs to the ribosomal A site is

rate-limiting to the elongation cycle for every codon [72]. The

model of Fluitt et al [66] introduces two competition measures, Cj

and Rj , being the quotients of the sum of arrival frequencies of

near-cognates vs. cognates and non-cognates vs. cognates,

respectively. For each codon, we determined its cognates, near-,

and non-cognates (based on [69]) and calculated the competition

measures Cj and Rj (see Supplementary Table S2).

According to [66], the average time to add an amino acid coded

by the jth codon to the nascent peptide chain can be calculated as:

ej~Dcognz1:445|(Dnear
:CjzDnonc

:Rj) (in ms) ð19Þ

where Dcogn is the average time to insert an amino acid from a

cognate aa-tRNA, and Dnear and Dnonc are the average time delays

caused by the binding attempts of near- and non-cognate tRNAs,

respectively. Based on existing data and assumption that the

activation energies for the various reactions do not vary much,

Fluitt et al [66] showed how to calculate the values of Dcogn, Dnear

and Dnonc at any given temperature. Table 4 contains these values

for S. cerevisiae at 20, 24, 30, and 370C. Next, we calculated

translation rates e for all yeast codons at the four different

temperatures (see Supplementary Table S2). However, as the main

part of our analysis is based on the ribosome footprints measured

at 300C, in further calculations we use only the values of e

estimated at this temperature. The last step was to calculate times

E for individual S:cerevisiae genes, as described in Eq.4.

Table 4. Time of tRNAs insertions at four different
temperatures.

temp Dcogn Dnear Dnonc

200C 40.0 46.3 02.2

240C 26.6 30.7 01.5

300C 16.1 18.7 00.9

370C 09.1 10.5 00.5

Values of Dcogn , Dnear , and Dnonc coefficients at four different temperatures.
Dcogn is the average time to insert an amino acid from a cognate aa-tRNA, Dnear

and Dnonc are the average time delays caused by the binding attempts by near-
and non-cognate tRNA, respectively. All times are in ms.
doi:10.1371/journal.pcbi.1000865.t004
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Ribosome queuing
It has been found that subsequent ribosomes are loaded onto

the transcript sufficiently fast to make them interfere with each

other, leading to ribosome queuing [73]. This phenomenon is

usually caused by the presence of rare codons clusters in CDS,

although other sequence features may also be very important [74].

Such elongation pauses may have distinct consequences, for

instance ORF shifting or ribosome dissociation, often followed by

decay of the mRNA and partly completed protein products [75].

Moreover, stalled ribosomes generate a false picture of a transcript

translational activity, elevating the observed ribosome density in

relation to the actual frequency of translation initiation events. For

these reasons, we decided to reduce the dataset to the transcripts

on which ribosome queuing does not occur. We wrote a simple

program that simulates the ribosomes translocation along a

transcript sequence. A ribosome moves from one codon to

another only if it has spent a required amount of time for

translation of the current codon (taken from Supplementary Table

S2) and the subsequent codon is vacant. The successive ribosome

attempts to attach to the initial AUG codon after the elapse of time

interval I , calculated as shown in Eq.6. The cumulative time of the

movement is calculated for each ribosome separately. If this time is

identical for each ribosome, translation is believed to pass without

ribosome queuing. If the time is different, namely, the first

ribosome moves faster than the rest, it means that some sequence

features allow ribosome stacking under the assumed conditions

(i.e., temperature and translational parameters). If the attachment

of subsequent ribosomes is prevented by very slow translation of

the first few codons, we consider it a particular case of ribosome

queuing and reject all such transcripts.

Calculation of protein abundances
To enrich our dataset, we estimated the total number of

proteins produced from a given transcript. Considering the

mRNA molecules as a decaying quantity, we defined mi as the

mean lifetime of the ith transcript expressed in time units:

mi~
hi

ln 2
ð20Þ

where hi is the half-life of the ith transcript. Assuming that each

translation event happens independently, we calculated the

abundance of the ith protein as the number of translation initiation

events that happen during the life-time of the ith transcript

multiplied by the its copy number:

Bi~
mi

Ii

:xi: ð21Þ

The dataset of mRNA relative half-lives is provided in the

Supplementary Materials of [25]. In our calculations, we used the

times t0 measured at exponential growth in YPD medium for

5,718 ORFs. It was determined experimentally by independent

studies that the absolute mRNA half-life of the yeast gene

YOR202W (HIS3) ranges from 7 (at 240C) [76] to 11 min (at

300C) [77]. Assuming the mean value of 9 min for this gene, we

can quantify the half-lives for the rest of the genes in the dataset, as

well as the values of m and B.

Calculations summary
Based on the presented reasoning, we calculated translational

parameters for the majority of yeast genes. In particular,

parameter L was calculated on the basis of yeast coding sequences

downloaded from [55]. Parameter x was obtained from Eq.11,

where values of C and NC were taken from the experimental

study [22], and X was set to 36,000, as estimated by [65].

Parameter g was obtained from Eq.13, where values of f , Nf were

taken from [22], W was set to 200,000, based on [57], and p was

set to 0.85 as stated in [61,62]. Parameter w was calculated from

Eq.5. Parameter E was calculated from Eq.4, based on yeast

coding sequences downloaded from [55] and the values of

translation times of codons e, calculated as shown in Eq.19. The

values of Dcogn, Dnear and Dnonc (at 300C) used in Eq.19 were

calculated as shown in [66], and the values of Cj and Rj were

calculated separately for each codon as shown in [66], by

substituing the number of its cognates, near-, and non-cognates

tRNAs determined on the basis of [69]. Parameter Ii was obtained

from Eq.6, and P from Eq.2. Parameter Pz was obtained from

Eq.10, where values of C and NC were taken from the

experimental study [22]. Parameter Ps was obtained from Eq.3

and then normalised by its maximal value reported for the gene

YLL040C. Total time of translation T was calculated as stated in

Eq.1. Mean time required for elongation of one codon of the ith

transcript (mean E) was calculated by dividing elongation time E
by the length of this transcript in codons L. Parameter h was

obtained on the basis of relative half-lives for yeast transcripts

reported by [25] and mRNA half-life of the yeast gene

YOR202W, assumed to be on average 9 min [76,77]. Parameter

m was obtained from Eq.20, and B from Eq.21. The meaning of

all variables was presented at the beginning of this section.

Supporting Information

Figure S1 The comparison of model parameters x and B with

experimentally determined mRNA and protein abundances.

Found at: doi:10.1371/journal.pcbi.1000865.s001 (0.26 MB PDF)

Figure S2 The comparison of translational parameters between

genes of high and low protein abundance, as well as between genes

of high and low ribosome density.

Found at: doi:10.1371/journal.pcbi.1000865.s002 (0.23 MB PDF)

Table S1 A separate csv file containing calculated quantitative

measures of translation for 4,621 yeast genes. There are 151 genes

for which ribosome queuing was reported (parameter queue ! = 0,

see below); the values of translational parameters of these genes

may be irrelevant. Column descriptions: (gene) the systematic

name of the yeast gene taken from Saccharomyces Genome

Database; (L) length of the transcript CDS in codons; (x) absolute

number of gene transcripts in a yeast cell; (b) absolute number of

proteins produced from one molecule of a transcript during its

lifespan; (B) total amount of protein molecules produced from

transcripts of a particular type (B = b * x); (g) ribosome density in

number of ribosomes attached to a transcript per 100 codons

(g, = 10); (w) absolute number of ribosomes attached to one

transcript; (P) translation initiation frequency (the inverse of I); (Pz)

relative rate of binding of free ribosomes to the 59 end of a

transcript; (Ps) relative rate of successful accomplishment of

initiation once the ribosome-mRNA complex is formed; for

clarity, normalised by the maximal observed value of Ps

(65.88365), reported for gene YLL040C; (T) total time of

translation of one protein molecule from a given transcript in ms

(T = I + E); (I) total time (in ms) required for translation initiation,

defined as a temporal interval from the point when the free 59 end

of a transcript becomes available for ribosomes to the moment

when a ribosome finds the initiation AUG codon and the entire

complex starts the phase of elongation; (E) total time required for

translation elongation of a transcript in ms; (mean_E) mean time
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required for elongation of one codon of a transcript in ms; (h)

estimated half-life of a transcript in ms; (m) estimated mean

lifetime of a transcript in ms; and (queue) ribosome queuing index

estimated at 30 Celcius degree: value ‘‘0’’ - no ribosome queuing

was observed for a transcript, value ‘‘1’’ - ribosome queuing was

observed for a transcript, and value ‘‘2’’ the translation at the 59

end of a transcript is slow enough to delay the attachment of the

successive ribosomes to the mRNA molecule.

Found at: doi:10.1371/journal.pcbi.1000865.s003 (0.58 MB CSV)

Table S2 The list of codons and their properties.

Found at: doi:10.1371/journal.pcbi.1000865.s004 (0.02 MB PDF)

Table S3 The translational parameters calculated for 14 genes

coding proteins of the 20S yeast proteasome.

Found at: doi:10.1371/journal.pcbi.1000865.s005 (0.02 MB PDF)

Table S4 Decoding specificities of yeast tRNAs and calculated

values of the model parameters for particular codons.

Found at: doi:10.1371/journal.pcbi.1000865.s006 (0.02 MB PDF)
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