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Abstract

The transcriptome in a cell is finely regulated by a large number of molecular mechanisms able to control the balance
between mRNA production and degradation. Recent experimental findings have evidenced that fine and specific regulation
of degradation is needed for proper orchestration of a global cell response to environmental conditions. We developed a
computational technique based on stochastic modeling, to infer condition-specific individual mRNA half-lives directly from
gene expression time-courses. Predictions from our method were validated by experimentally measured mRNA decay rates
during the intraerythrocytic developmental cycle of Plasmodium falciparum. We then applied our methodology to publicly
available data on the reproductive and metabolic cycle of budding yeast. Strikingly, our analysis revealed, in all cases, the
presence of periodic changes in decay rates of sequentially induced genes and co-ordination strategies between
transcription and degradation, thus suggesting a general principle for the proper coordination of transcription and
degradation machinery in response to internal and/or external stimuli.
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Introduction

Appropriate and timely changes in gene expression are essential

for cell life. The transcriptome is finely regulated by a large

number of molecular mechanisms able to adjust the balance

between mRNA production and degradation. Every aspect of

transcript life is subject to elaborate control but, traditionally, the

focus of the research has been on transcriptional regulation [1].

However, whereas mRNA abundance results from the dynamic

interplay between transcription and degradation, the speed by

which cells can adjust their mRNA levels is critically dependent on

the rate of mRNA turnover [2]. As a result, small changes in

mRNA stability may dramatically drive rapid variations of

transcript abundance. Efforts to understand the underlying

principles of mRNA decay and transcription co-ordination are

very important since the balance between transcription and decay

influences most, if not all, the cell responses to endogenous and

exogenous signals [3].

The current widespread interest in this topic has been fostered

by the finding of specific regulatory mechanisms of mRNA

stability such as, for example, RNA binding proteins [4,5] and

small RNAs [6]. Regulation of transcript stability cannot be

considered a simple ‘‘disposal system’’ but a sophisticated tool for

the proper orchestration of the global cell response to internal and

external stimuli [6]. Remarkably, a key role of mRNA stability has

been reported in cancer, inflammatory diseases and Alzheimer’s

[7]. In recent years there has been a surge in empirical studies that

measured, on a genome-wide scale in a variety of environmental

conditions, messenger half-lives of many organisms, including

plants [8] mammals [9] and fungi [2]. The discovery of such new

regulatory layer has clarified that, in order to obtain a clear picture

of the underlying regulatory machinery, it is necessary to

complement the traditional time-course experiment measuring

the cell transcriptional response under certain conditions far from

steady state with decay rates data under the same condition [10].

Experimental procedures for the evaluation of mRNA decay

rates are based on measuring gene expression upon inhibition of

transcription [11–13] or on pulse-chase RNA labeling protocols

[2,13–15]. Such protocols are very critical (see Figure 1 for a

comparison among different studies summarized in Table 1), since,

for instance, transcriptional shut-off blocks growth and has a

profound effect on cellular physiology, as well as on mRNA

metabolism [2]. In fact, Wang et al. [11] and Grigull et al. [12]

datasets show a low value of the Pearson correlation (r~0:36), and

no correlation at all can be found (r~0:01) between Munchel et al.

[2] and Wang et al. [11] datasets (see Figure 1A and Figure 1B

respectively). Despite the same experimental conditions (asynchro-

nous growth), the two half-life independent measurements obtained
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by Wang et al. and Munchel et al. are uncorrelated, probably due to

differences in the shut off protocol (pulse chase for [2] and thermal

inactivation for [11]), whereas Grigull et al. and Wang et al. appears

significantly correlated, probably due to the same shut off protocol

used (thermal inactivation).

It has been shown that genes having the same biological

function [11,12] are likely to share similar half-life values.

Consistently, by averaging using functional groups, we found an

increase in correlation between Wang et al. and Grigull et al.

datasets (r~0:64, see Supplementary Figure S1A), and still no

correlation between Munchel et al. and Wang et al. datasets

(r~0:0043, see Supplementary Figure S1B).

Here, we developed a stochastic computational model of the

expression kinetics to identify condition-specific mRNA stabilities

which makes use only of experimental mRNA time profiles. We

also assumed that degradation rates are gene-specific but

approximately constant over the experiment time course. Predic-

tions of our algorithm, termed DRAGON (Decay RAtes from

Gene expressiON), were validated on experimental mRNA

abundance [16] and turnover [17] data, both collected during

the Intraerythrocytic Developmental Cycle (IDC) of Plasmodium

falciparum. The estimations were in line with the experimental

measurements. Remarkably, the DRAGON estimated half-lives

were consistent with the finding of a peculiar pattern of mean half-

life values along the wave of sequentially induced genes in

subsequent stages of P. falciparum development. We also applied

our methodology to public time-series datasets for which half-lives

data, under the same experimental conditions, have not been

experimentally measured. In particular we focused on budding

yeast reproductive [18,19] and metabolic cycle data [20]. In fact,

for the yeast Saccharomyces cerevisiae, only half-life data under

asynchronous growth are publicly available [2,11,12]. Our study

showed the presence of the same periodic pattern of mean half-life

values in all datasets, thus suggesting that such behavior may be a

general feature, not limited to the Plasmodium falciparum IDC.

mRNA kinetics and half-life
Experimental evidence suggest that the majority of mRNAs are

degraded with a first-order decay rate [2,21]. This allows to

characterize mRNA disappearance time profiles by a first-order

rate equation

dx(t)

dt
~P(t){kx(t) ð1Þ

where k is the decay rate (or half-life t1=2, with t1=2~ln(2)=k), x(t)

is the mRNA concentration and P(t) is the promoter activity (the

rate of production of new mRNAs). It is worth noting that, the

degradation rate k cannot be estimated from the concentration

time profile x(t) for a single gene, since the term P(t) is not usually

available in the typical time-course microarray experiment. The

measurement of the promoter activity time profile would require

additional experiments (such as those described in [15]) but, in this

paper, we will assume that only mRNA abundance time-series

Figure 1. Basic comparison statistics among the yeast S. cerevisiae mRNA half-lives during asynchronous growth measured by three
independent laboratories. Three genome-wide studies considered are: Grigull et al. [12], Wang et al. [11] and Munchel et al. [2]. (A) Scatterplot of
Wang et al. and Grigull et al. datasets; (B) Scatterplot of Munchel et al. and Wang et al. datasets.
doi:10.1371/journal.pcbi.1002772.g001

Author Summary

The amount of a given transcript in a cell is determined by
a fine tuned balance of production and degradation in a
complex regulatory network. Regulation of transcription
controls when transcription occurs and how much mRNA
is created, whereas regulation of degradation controls the
rate at which messengers are destroyed. The latter
mechanism has recently gained attention due to the
increasing evidence of its key role in the overall co-
ordination of gene expression. A long lifetime of mRNA
enables a cell to produce more proteins from that mRNA.
By contrast, a short lifetime rapidly alters protein levels in
response to changing needs. Measuring mRNA stability is a
complex and expensive experiment and, given the
condition-specific response of the degradation pathway,
it would be desirable to take advantage of the large variety
of expression experiments stored in public databases. To
this end, we developed a stochastic model to infer each
specific mRNA lifetime from gene expression data.
Predictions were validated using malaria data. We then
applied our methodology to the reproductive and meta-
bolic cycle of budding yeast and found, in all cases, the
presence of a general principle for the proper coordination
of transcription and degradation machinery.

Stochastic Modeling of Messenger Half-Lives
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data are available. At steady-state x~xss and P(t)~�PP are

constant so that
dxss(t)

dt
~0 and, consequently, we obtain

xss~�PP=k ð2Þ

From the above equation, it is clear that at steady-state an increase

(decrease) in mRNA concentration can be produced either by an

increase (decrease) of transcription or by a decreased (increased)

value of the decay rate: the two regulatory strategies have therefore

an equivalent outcome. As a result, from steady-states measure-

ments, it is hopeless to reveal the relative contribution of

transcription and degradation and, most importantly, their co-

ordinated activity as well. By contrast, the whole kinetics of

induction and relaxation, as measured by time-courses experi-

ments, depends on the degradation and production rate in

different ways: increasing (decreasing) the production rate results

in a proportionally increased (decreased) mRNA abundance,

whereas the rise time (i.e. the time required for the response to rise

from 10% to 90% of its final value) is not affected. Increasing the

decay rate results in a faster rise time both in the induction and

relaxation phases, whereas a decrease results in slower rise time

[10]. This key point is illustrated in Figure 2A and in

Supplementary Figures S2A and S2B.

Another important consequence of half-life specificity is the

regulation of the timing of gene induction, as pointed out by Elkon

et al. [22]. In fact, an expression wave, i.e. the sequential activation of

genes, is usually interpreted as resulting from the corresponding

activation of a multi-step transcription factors cascade (as illustrated

in Figure 2B). Whereas such mechanism is certainly very important,

there is also an alternative way to obtain an expression wave by

means of a ‘‘stability gradient’’. As illustrated in Figure 2C, a single

transcription factor may initiate transcription of a set of target genes

and their peak of induction can be modulated by a stability

‘‘gradient’’, i.e. by specifically adjusted decay rates. More precisely,

early induced genes would have short half-lives and late responding

genes would have long half-lives. Clearly, both mechanism may well

act in cells, thus generating a wide spectrum of responses.

Time-courses are a very common design for microarray

analysis, which allows researchers to follow the dynamics of the

cellular response to perturbations [22]. Such data are available for

a very large number of experimental conditions and organisms:

Table 1. Half-lives experimental measurements.

Organism Description Publication

2774 genes, synchronized by sorbitol treatments,

Plasmodium IDC transcriptional shut-off by actinomicin D Shock et al. (2007)

5492 genes, asynchronous growth in 2% glucose, pulse-

Yeast chase labeling protocol Munchel et al. (2011)

4680 genes, asynchronous growth in YPD medium,

Yeast transcriptional shut off by thermal inactivation Wang et al. (2002)

2867 genes, asynchronous growth in YPD medium,

Yeast transcriptional shut off by thermal inactivation Grigull et al. (2002)

doi:10.1371/journal.pcbi.1002772.t001

Figure 2. Kinetics of gene induction. Panel A shows in silico experiments to illustrate some basic features of gene induction kinetics. The ‘‘ON’’
and ‘‘OFF’’ regions correspond to the turning ‘‘ON’’ or ‘‘OFF’’ of the promoter activity. (A) Induction kinetic of transcripts having the same steady-state
concentration, but different half-lives and synthesis rates reaching the same steady state value. The time profile plotted in red corresponds to an
unstable transcript and displays a fast induction and relaxation profile. By contrast, the blue one has an higher half-life value, resulting in a slower
response. (B) Cascade of transcription factors resulting in waves of sequentially induced genes. The timing of expression peaks is modulated by
transcriptional serial regulation. (C) Sequentially induced genes generated by a single transcription factor and a stability ‘‘gradient’’. The timing of
expression peaks is modulated by post-transcriptional regulation. Early induced genes are those with a low half-life value, late induced ones are those
with an high half-life value.
doi:10.1371/journal.pcbi.1002772.g002

Stochastic Modeling of Messenger Half-Lives
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only the Stanford Microarray Database includes to date 1545 time

course data sets. Among the examples later illustrated in the paper,

it is worth mentioning the genome-wide gene expression time-

series obtained during the reproductive cell cycle [18,19], the

metabolic cycle [20] and the P. falciparum IDC [16]. The time-

series datasets used in this paper are summarized in Table 2.

DRAGON–an algorithm for half-life estimation
The goal of the DRAGON methodology is to derive a robust

estimate of each mRNA species half-life starting from all available

gene expression pairs. The rationale for the algorithm mainly

draws on properties of pairs exhibiting a certain degree of

common promoter activity (as in [23]). Besides, DRAGON infers

common promoter activity using a statistical model that simulates

both gene-specific and common effects.

The rate of change of mRNA concentration for a generic pair of

genes, say gene j and gene h, is:

dxj(t)

dt
~Pj(t){kjxj(t)

dxh(t)

dt
~Ph(t){khxh(t)

ð3Þ

where the symbols xj(t) and xh(t) represent the mRNA time

profiles of the gene pair j and h, Pj(t) and Ph(t) are the promoters

activity, and kj and kh are the degradation rate of mRNA of gene j

and h, respectively. The terms Pj(t), Ph(t) are not known since we

considered the case in which only mRNA abundance is measured.

We modeled promoter activities as the sum of two terms, the

first one common to the pair and the other one specific for each

gene:

Pj(t) ~bju(t)zwj(t)

Ph(t) ~bhu(t)zwh(t)
ð4Þ

where u(t) is the common part, scaled by constants bj and bh,

whereas wj(t) and wh(t) are gene specific independent stochastic

processes with zero mean, that is wj(t)~sjnxj
(t), wh(t)~shnxh

(t).

Equations (3)–(4) encompass the case of:

i) Pj(t), Ph(t) fully correlated (correlation r~1) for which

bj ,bhw0 and sj~sh~0

ii) Pj(t), Ph(t) partially correlated (correlation rv1) for which

bj ,bhw0 and sj ,shw0

iii) Pj(t), Ph(t) un-correlated (correlation r~0) for which either

bj~0 or bh~0.

Equations (3)–(4) can therefore be written for all available

gene pairs; thus, for a set of N genes, we have N2 pairs to

analyze. For each gene pair DRAGON provides an estimate of

the time profile of u(t), of all the parameters, kj , kh, bj , bh, and

the covariance matrix of the stochastic processes. For each gene

we therefore have N estimates of the decay rate k, one for each

pair containing that gene.

Notice that equations (3)–(4) yield a couple of linear stochastic

differential equations. Since measurements of mRNA concentra-

tions are available only at given time points, it is necessary to

transform (3)–(4) in a couple of discrete stochastic equations. The

exact discretization of (3)–(4) is possible since they are linear [24].

The Kalman filter [25] is used on the resulting discrete equations

and a maximum likelihood algorithm is exploited to generate the

best possible estimate of the parameters.

A complete description of the mathematical model and of the

discretization and parameters estimation procedure is given in the

paragraph Stochastic modeling of expression kinetics and Kalman filtering of

the Materials and Methods section.

Results

Performance evaluation on malaria IDC experimental
data

The IDC is characterized by four morphologic stages: ring,

trophozoite, schizont and late schizont. The cycle begins with the

red cells invasion by merozoites followed by a remodeling of the

host cell in the ring stage [16]. The merozoites then develop into

trophozoites. During the schizont stage, after a period of growth,

the trophozoite undergoes an asexual dividing process and the

parasite is ready for the next round of invasion by new merozoites

(late schizont phase).

Bozdech et al. [16], using microarrays, measured genome-wide

mRNA abundance profiles across 48 h during one cycle of P.

falciparum IDC, collecting one sample per hour. Later on, Shock

et al. [17] measured mRNA half-lives of 2774 transcripts of the

IDC using chemical inhibitors to reach transcriptional shut-off.

The simultaneous availability of gene expression and decay data

during the same biological process (IDC) represents a natural test

bed for the validation of the DRAGON algorithm. Therefore, we

applied DRAGON on Bozdech et al. dataset to obtain mRNA

stability estimations (provided in Supplementary Table S6) to be

compared with Shock et al. measurements for performance

Table 2. Gene expression time-series experimental measurements.

Experiment Description Publication

4488 genes, 1 cycle, 48 time points, 1 sample at 1 hr

Plasmodium IDC interval, synchronized by sorbitol treatments Bozdech et al. (2003)

4775 genes, 2 cycles, 25 time points, 1 sample at 5 min

Yeast cell cycle interval, alpha-factor synchronization Pramila et al. (2006)

1271 genes, 2 cycles, 15 time points, 1 sample at 16 min

Yeast cell cycle interval, synchronized by centrifugal elutriation Orlando et al. (2008)

6441 genes, 3 cycles, 36 time points, 1 sample at 25 min

Yeast metabolic-cycle interval, spontaneous synchronization Tu et al. (2005)

doi:10.1371/journal.pcbi.1002772.t002

Stochastic Modeling of Messenger Half-Lives
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evaluation. The resulting Pearson correlation between in vitro and

in silico measures is r~0:6 (P value 2:4:10{61), and the first

principal component accounts for 82% of the variability, thus

showing a good performance for DRAGON algorithm (see

Figure 3). However, since gene expression and decay data have

been measured by different groups, we can speculate that 18% of

unexplained variability may be partly due to inherent biological

variability and to transcriptional inhibition stress. As further

analysis, we computed average mRNA half-lives in both studies for

functional categories (see Supplementary Figure S3). We found

that the two studies are in better accordance when half-lives are

averaged for all genes within any given functional category

(Pearson correlation r~0:74).

Remarkably, Shock et al. in [17], found progressive stage-

dependent average increases in mRNA stability and suggested

such phenomenon to be a major determinant of mRNA

accumulation (see Figure 4A). The same feature is also found

using DRAGON estimated half-lives (see Figure 4B). To

investigate in further detail the behavior of average half-life of

genes sequentially induced during IDC, we computed for each

gene the time point corresponding to its peak of expression (see the

Data processing paragraph of the Materials and Methods section for

details) and selected 48 groups of genes having peak of expression

at each hourly time points over the 48 hours monitored by Shock

et al. For each gene group we computed half-lives mean and

standard deviation and found a high correlation with the

corresponding curve obtained using experimental data (Pearson

correlation r~0:8, P value 2:1:10{10; see Figure 4C). Early

responding genes are characterized by high instability, whereas

late responders are more stable, as also reported by Elkon et al. in

[22] when studying mammalian cells. A possible explanation for

the presence of stable mRNAs at the schizont stage, suggested by

Shock et al., is that it may be important for the merozoite to receive

a carefully regulated ‘‘starting package’’, that would allow rapid

activation of the IDC following the next round of invasion [17]. By

contrast, the initial low mRNA stability values may be an

indication of the fast dynamic remodeling after merozoite invasion

[17]. To evaluate the probability of obtaining such behavior by

chance, we randomized the gene expression matrix and used

DRAGON to estimate half-lives (see Figure 4D). Consistently, the

estimation of half-lives using random data does not produce any

correlation with experimental data (Pearson correlation

r~{0:17).

Half-lives estimation during reproductive cycle in S.
cerevisiae

Gene expression during yeast cell cycle has been recently

measured by Pramila et al. [18] using alpha-factor synchronization

and by Orlando et al. [19] using centrifugal elutriation for

synchronization. We obtained a high consistency of DRAGON

estimations using data for 569 transcripts over replicate datasets

(Pearson correlation r~0:83 for Pramila et al. dataset and Pearson

correlation r~0:92 for the Orlando et al. dataset; see Figure 5A–

B). The larger variability in half-lives estimations may be explained

by the inconsistencies between replicate time-series in the Pramila

et al. dataset with respect to the Orlando et al. dataset (see

Figure 5C). All half-lives estimations obtained with the DRAGON

algorithm are provided in Supplementary Tables S1 and S2

(Pramila) and in Supplementary Tables S3 and S4 (Orlando).

Notwithstanding significant differences in synchronization proce-

dures, we also found a high correlation of DRAGON half-lives

estimations over the two datasets (Pearson correlation r~0:57, P

value 2:1:10{39; see Figure 5D) where the first principal

component accounts for 79% of the overall variability. We can

speculate that 21% of unexplained variability may be partly due to

the different synchronization methods used. In fact, Orlando et al.

obtained a cell cycle duration of about 2 hours, 8 samples per

cycle [19], whereas Pramila et al. obtained a cell cycle duration of

about 1 hour, 12 samples per cycle. Consistently, most of the

transcripts during the slower cycle display higher half-lives when

compared to the fastest cycle (see Figure 5D).

GO annotations of genes with extreme half-lives in S.
cerevisiae

In this paragraph we briefly discuss functional annotations (done

using GOrilla software [26]) of novel predicted half-lives provided

by DRAGON algorithm using yeast reproductive and metabolic

cycle time series. For the yeast cell cycle we normalized the half-

life log-distribution (Z-score), for each dataset, and then computed

the geometric mean to obtain a single half-life value for each gene.

Notably, the averaging has the effect of reducing the impact of the

different synchronization stress response. The list of half-lives

normalized values (geometric mean value equal to 1) for common

genes to all datasets is provided as Supplementary Table S7 in the

Half-life estimation paragraph of the Materials and Methods section.

Unstable genes are enriched with replication fork complex (p-

value 5:95:10{4) and stable genes (histones HA1-2,HB1-2) are

enriched with nucleosome (p-value 7:4:10{4). This is consistent

with the need of producing a large number of histones during

DNA replication process so that stable histone mRNAs contribute

to a higher translation efficiency. Moreover, DNA replication

timing requires first the formation of the replication fork, then the

production of the needed histones for chromatin assembling: such

temporal sequence of events is consistent with a rapid turnover of

the replication complex genes and a slow turnover of the histone

genes (see Supplementary Figure S4). Among unstable genes we

also found the G1/S transition cyclins and among stable ones we

found G2/M transition cyclins (see Supplementary Figure S5). In

this case, the temporal sequence of events is the progression of the

cell cycle from DNA replication to mitosis.

Figure 3. DRAGON algorithm validation using P. falciparum IDC
data. Scatterplot of mRNA half-lives for 616 genes estimated by
DRAGON versus experimentally measured by Shock et al. [17].
doi:10.1371/journal.pcbi.1002772.g003

Stochastic Modeling of Messenger Half-Lives
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For the yeast metabolic cycle (half-lives estimations using

DRAGON algorithm are provided in Supplementary Table S5)

we found many stable mRNA species involved in the organic acid

and arginine metabolism and protein catabolic processes. Among

unstable messengers we found genes involved in DNA repair (p-

value 4:85:10{8), DNA metabolism (p-value 7:5:10{8) and

chromatin silencing (p-value 4:29:10{3).

Discussion

Periodic behavior of average half-lives of sequentially
induced genes

The increasing pattern of average half-life found during P. falciparum

IDC (shown in Figure 4A) motivated us to investigate whether a

periodicity could be found also in other cyclical biological processes.

We focused on the reproductive cell cycle and the metabolic cycle in

Saccharomyces cerevisiae, for which high resolution time series measure-

ments are available on public repositories (see Table 2).

To study if a periodic pattern of average half-life of sequentially

induced genes exists along the cell cycle progression, for each gene

we computed the time points at which maximal expression is

attained (see the Data processing paragraph of the Material and

Methods section for details). Thus, we obtained, for each time point,

the list of genes having expression peak value at that time and

computed the corresponding mean and variance of DRAGON

estimated half-lives values. Indeed, we found a cyclic behavior

along sequentially induced genes in both datasets (see Figure 6A

for the Pramila et al. dataset and Figure 6B for the Orlando et al.

dataset). Synchronization methods, cell cycle duration and

number of samples are different between the two cited studies,

but, reassuringly, the phases of the cell cycle at which mean half-

life is minimal or maximal is consistent. In fact, for both datasets

we observed a cyclical increase of mean half-life from G1 phase to

M phase and a subsequent decrease back to G1. The figure

clarifies that the minimal mean half-life is reached at the G1/S

transition, whereas the maximal value correspond to the M/G2

phase for both cycles and datasets. The latter is consistent with the

observation that, in higher eukaryotes, mitosis is accompanied by

global repression of nuclear RNA synthesis [27], indicating that

mRNAs must be stable to be inherited from daughter cells.

The yeast metabolic cycle has been recently studied by Tu et al.

[20] using a continuous culture system, after a brief starvation period,

the culture spontaneously began persistent respiratory cycles of about

5 hours. In the same study, a genome-wide microarray gene

Figure 4. Periodic behavior of average half-lives of sequentially induced genes in P. falciparum IDC. (A) Histograms of mRNA half-lives for
genes induced at each stage of the P. falciparum IDC as experimentally measured by Shock et al. and (B) estimated by DRAGON algorithm. The inset
panels show mean and standard deviation of half-lives during each stage. Both studies show an increase of average transcript stabilities of sequentially
induced genes during P. falciparum IDC. (C) Average experimental and estimated half-life values (red and blue dots, respectively) corresponding to
genes having the same expression peak timing, indicated on the x-axis. Standard deviations are drawn as pale blue and pale red stripes. The two curves
both show a maximum peak of average half-life value during the schizont stage and a minimal value during the ring stage. A sharp increase of average
half-life occurs during the trophozoite stage. The Person correlation between experimental and DRAGON estimated curve is r~0:8, thus showing a good
agreement between the two studies. (D) Effect of randomizing the gene expression matrix on DRAGON estimated half-lives.
doi:10.1371/journal.pcbi.1002772.g004

Stochastic Modeling of Messenger Half-Lives
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expression measurement was performed. Samples were taken every

25 minutes for 3 consecutive cycles. Using DRAGON algorithm we

estimated half-lives using data of 1043 transcripts. Surprisingly, also

in this case we found a cyclical pattern for mean half-life of

sequentially induced genes. The maximum peak is located at the RC

phase and the minimum peak located at RB phase (see Figure 6C).

Integrated analysis–sequential waves of co-ordinated
transcription and decay

Recently, the appearance of a number of studies has revealed

the fundamental role of stability regulation in shaping appropriate

cell response [1]. A key point has been recently addressed by

Shalem et al. [10], who have shown the dynamic co-ordinated

Figure 5. DRAGON performance over 569 cell cycle regulated genes from the Pramila and Orlando datasets. (A) Scatterplot of the
DRAGON estimated half-lives using two replicates taken from Pramila et al. dataset [18] (denoted by alpha30 and alpha38). (B) Scatterplot of the
DRAGON estimated half-lives using two replicates taken from Orlando et al. dataset [19] (denoted by Orlando wtr1 and Orlando wtr2). (C) Histograms
of the Pearson correlation values between time series relative to each gene in two replicates. Orlando et al. dataset shows a better consistency
between replicates with respect to the Pramila et al. dataset. (D) Scatterplot of the DRAGON estimated half-lives using the Pramila et al. [18] and the
Orlando et al. dataset [19]. The half-lives obtained by replicate datasets have been averaged. The half-lives estimated using Orlando dataset show
slightly higher values with respect to those obtained using Pramila dataset, as shown by the deviation from the bisector line (dashed blue line). This is
consistent with the slower cell cycle in Orlando experiment (2 hours) compared to that of Pramila experiment (1 hour).
doi:10.1371/journal.pcbi.1002772.g005
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interplay between transcription and degradation. They have found

in yeast two basic regulatory strategies in response to stress. More

precisely, they measured changes of mRNA abundance and decay

rates in a yeast population subjected to oxidative and DNA

damage stress. By grouping genes according to the time point at

which the maximal (minimal) fold change is attained and

combining normalized (mean and variance) mRNA abundance

and decay rate data, they constructed a ‘‘stability versus folding’’

(SF) diagram where change in mRNA stability relative to a

reference state (mean value in our case) is plotted against the

maximal fold change. Using yeast expression time-course data

obtained in response to an oxidative stress and a DNA damage,

Figure 6. Periodic behavior of average half-life during the reproductive and metabolic cycle. Average DRAGON estimated messenger
half-life values corresponding to genes having the same expression peak timing, indicated on the x-axis (dark blue points). Standard deviations are
drawn as pale blue stripes. (A) yeast cell cycle using Pramila dataset, (B) yeast cell cycle using Orlando dataset and (C) yeast metabolic cycle. Strikingly,
in all datasets the maximal average half-life is attained for genes induced during G2/M phase, including the metabolic cycle. The minimal average
half-life, in all datasets, is attained at the G1/S transition phase. The bar charts show mean and standard deviation of half-lives during each stage.
doi:10.1371/journal.pcbi.1002772.g006
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they were able to reveal two different strategies: a) a ‘‘counteract-

ing regulation’’ strategy (see Figure 7A), characterized by genes in

which an increase (decrease) in degradation rates counteracts a

increase (decrease) in mRNA abundance, i.e. repressed genes are

stabilized and induced genes are destabilized; b) a ‘‘synergistic

regulation’’ strategy (see Figure 7B), characterized by genes in

which an increase (decrease) in degradation rates is associated with

an decrease (increase) in mRNA abundance, i.e. induced genes are

stabilized and repressed genes are destabilized.

Shalem et al. also found that, progressing from early time points

forward, the negative correlation (counteracting) was replaced with

a positive correlation (synergistic). Such co-ordination strategy

may permit crosstalk between different steps of mRNA biogenesis,

providing a mechanism to control the order and timing of events

[28]. The work of Shalem et al. has shown the importance of

combining expression data with decay rates under the same

experimental condition to reveal the underlying strategy of co-

ordination of the two ‘‘regulatory arms’’, namely transcription and

degradation. Uncovering such relationships is certainly a funda-

mental task, since the underlying reciprocal influences between

mRNA production and degradation are largely unexplored [10].

The DRAGON algorithm, by estimating half-lives directly from

gene expression data under specific conditions, allows the

computational integration of mRNA abundance and decay rates

data, making this powerful combined analysis possible when

experimentally measured half-lives are not available.

We computed SF diagrams for P. falciparum IDC, yeast cell cycle

(Pramila et al. dataset) and metabolic cycle (shown in Figure 8). In

panels A,C and E each blue dot corresponds to a Pearson

correlation of the SF diagram at the peak time point indicated on

the x-axis, for the three datasets. In panels B,D and F the SF

diagrams corresponding to the correlation values indicated by the

arrows in panels A,C and E are displayed. The arrows point to

maximal negative (red dots in panels B,D,F and red arrows in

panels A,C,E) and maximal positive correlation values (green dots

in panels B,D,F and green arrows in panels A,C,E).

Strikingly, in all cases we reached the same conclusions of

Shalem et al., namely we found that early induced genes show

counteracting regulation, whereas late induced genes show a

synergistic regulation.

Advantages and disadvantages of the method
The main advantage of the DRAGON algorithm consists in the

estimation of the mRNA half-lives directly from gene expression

time-course during condition-specific experiments. Moreover it

estimates the correlation among promoter activities between pairs

of genes. Another advantage of the algorithm lies in its robustness.

Specifically, we observed that even if the accuracy of the absolute

values of the estimated half-lives can be influenced by many factors

(such as the number of points in the time series, the accuracy of the

measurements, the time interval between samples, the choice of

the thresholds for the outliers, etc.), the ranking of half-lives is

insensitive to the factors mentioned above.

The main disadvantages are the following: DRAGON can work

only with time-series under the same experimental condition and

cannot handle steady-state values under different conditions. As a

general rule a reliable estimate requires at least 10–12 time samples, i.e.

a number significantly larger than the number of parameters to be

estimated (this rule is not obviously always applicable as the required

number of points depends strongly on the signal to noise ratio) and a

sampling time not larger than the expected average half-life. If no

information is available about the correlation of promoter activities, as

a rule of thumb, a set of at least 50–100 time series must be processed

together in order to have reliable half-lives estimates. One basic

hypothesis is that the half-life of a transcript is approximately constant

during the time course of the experiment, thus a substantial change of

Figure 7. Illustration of the counteracting and synergistic regulatory strategy. The stability/folding diagrams (SF), introduced by Shalem et al.
in [10], show the change in mRNA stability relative to the average value plotted against the maximal fold change. (A) Counteracting strategy
(negative correlation): induced genes are destabilized and repressed genes are stabilized. (B) Synergistic strategy (positive correlation): induced genes
are stabilized and repressed genes are destabilized.
doi:10.1371/journal.pcbi.1002772.g007
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its value would yield an unreliable estimate. These problems can be

handled by performing more measurements using a shorter sample time,

or by considering moving time windows. The computational overhead

can be significant: for a sample of 1000 time series there are 106 pairs to

analyze, requiring a computation of about 150 hours on a medium-

speed single-processor machine capable of analyzing 2 pairs per second.

Conclusion
Our analysis supports and strengthens Shalem et al. conclusions

about the coordination of transcriptional and mRNA degradation

in the cell in response to stress. We have demonstrated that during

periodic processes, such as the P. falciparum IDC, the reproductive

cell cycle and the metabolic cycle, the alternative interplays

between changes in mRNA stability and changes in mRNA

abundance are activated by periodically switching from a

counteracting to a synergistic regulation. In light of these results,

the classical vision of periodic processes as the result of serial

transcription factor sequential activation, should be re-considered

from a broader point of view by including post-transcriptional

regulation and coordination.

Figure 8. Temporal progress on the stability/folding (SF) diagrams. In all cases under study, we found a progressive shift from an inverse
(counteracting) to a direct (synergistic) relationship. (A) Plasmodium falciparum IDC, (C) yeast cell cycle (Pramila et al. dataset) and (E) yeast metabolic
cycle. In panels A,C and E each blue dot corresponds to a Pearson correlation of the SF diagram at the peak time point indicated on the x-axis, for the
three datasets. In panels B,D and F the SF diagrams corresponding to the correlation values indicated by arrows in panels A,C and E are displayed. The
arrows point to maximal negative (red dots in panels B,D,F and red arrows in panels A,C,E) and maximal positive correlation values (green dots in
panels B,D,F and corresponding green arrows in panels A,C,E).
doi:10.1371/journal.pcbi.1002772.g008
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Materials and Methods

Stochastic modeling of expression kinetics and Kalman
filtering

We defined as xi(t) the time profile of the expression of gene i at

time t. The underlying conservation equation simply stems from

the observation that the rate of change of xi(t) with time, i.e. its

time derivative _xxi(t), must equal the difference between the

production and degradation term. Based on experimental

evidence [2], the degradation is well described by a first order

term. The dynamics of the i-th transcript is therefore described by

_xxi tð Þ~{kixi tð ÞzPi(t) ð5Þ

where ki is the mRNA decay rate of i-th messenger. This value is

linked to the half-life hi of the transcript by the relation

hi~ln(2)=ki. Pi(t) is the i-th gene promoter activity regulated

by transcription factors. Such regulation occurs by triggering or

suppressing the transcription of the i-th gene, thus we have

Pi(t)§0. Moreover, the observed measure yi tð Þ is also a noisy

time-series, thus we have

yi tð Þ~xi tð Þzsyi
nyi

tð Þ ð6Þ

where syi
is the standard deviation of measurements white noise

nyi
(see supplementary material Text S1 for an example of the

identification procedure). We considered a generic pair of

expression time profiles characterized by the presence of two

terms: a stochastically correlated promoter activity u(t) and a

gene-specific term nxi
(t). We then considered the case:

Pi(t)~biu(t)zsxi
nxi

(t), ð7Þ

where bi is a scaling factor accounting for the relative contribution

to the overall promoter activity regarding gene i. The term sxi
nxi

models the part of the promoter activity which is not common to

the pair. We model this part by means of a noise term, nxi
which is

assumed to be a white noise. The common part u(t) is modeled as

a Wiener process:

_uu(t)~sunu(t) ð8Þ

where nu tð Þ is white noise. Thus u(t)~u(0)z
Ð t

0
sunu(t)dt. The

complete mathematical dynamic model for two transcripts j and h,

together with their respective measurement equations, is

_xxj tð Þ~{kjxj tð Þzbju tð Þzsxj
nxj

tð Þ
_xxh tð Þ~{khxh tð Þzbhu tð Þzsxh

nxh
tð Þ

_uu(t)~sunu(t)

yj tð Þ~xj tð Þzsynyj
tð Þ

yh tð Þ~xh tð Þzsynyh
tð Þ

8>>>>>><
>>>>>>:

ð9Þ

We can rewrite the linear dynamic system (9) using a compact

matrix notation

_xx tð Þ~Ax tð ÞzF Nx tð Þ
y tð Þ~C x tð ÞzG Ny tð Þ

�
ð10Þ

where

x tð Þ~

xj tð Þ

xh tð Þ

u tð Þ

2
664

3
775, y tð Þ~

yj tð Þ

yh tð Þ

" #
,

Nx tð Þ~

nxj
tð Þ

nxh
tð Þ

nu tð Þ

2
664

3
775, Ny tð Þ~

nyj
tð Þ

nyh
tð Þ

" #

and

A~

{kj 0 bj

0 {kh bh

0 0 0

2
64

3
75, F~

sxj
0 0

0 sxh
0

0 0 su

2
64

3
75

C~
1 0 0

0 1 0

� �
, G~

sy 0

0 sy

� �

Since the dynamic system (10) is linear, it can be exactly

discretized (see [24]) for a given time interval D, corresponding

to the time interval between two consecutive measurements. The

k-th measurements corresponds to t~kD, thus in the discretized

system we can use k in place of kD, to keep the notation simple.

The solution of the linear dynamic system (10) is

x tð Þ~eA t{t0ð Þx t0ð Þz
ð t

t0

eA t{tð ÞF tð ÞNx tð Þdt ð11Þ

and its discretized form is

x(kz1)~Ad x(k)zY
1
2 Nx(k)

y(k)~C x(k)zG Ny(k)

(
ð12Þ

where

Ad~eAD,

and Y is the covariance matrix defined by

Y~

ðD
0

eAh F FT eAT hdh: ð13Þ

The unknown parameters of the model to be estimated are ki, bi,

sxi
, with i~1,2, su and sy. The state variables of the system are

xj(t), xh(t) and u(t). For each given choice of the parameters we

used the Kalman filter [25] to estimate of the state variables.

The Kalman filter equation uses a feedback control strategy. It

contains a prediction term for projecting forward (in time) the current

state to obtain the a priori estimate, and a correcting term for

incorporating a new measurement into the a priori estimate to

obtain an improved a posteriori estimate

x̂x(kz1)~Adx̂x kð ÞzKP(h)½y(kz1){CAd x̂x(k{1)� ð14Þ

where KP(h) is the prediction Kalman gain that depends on the

parameters h of the stochastic equation.
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For each choice of h we run the Kalman filter. A probability

value is associated to the resulting estimation. These values

measures the probability that the current parametrization of

the model generates the measured time series. Denoting by

no(k)~y(k){CAdx̂x(k{1) the innovation of the stochastic

process, no(k) is a sequence of independent gaussian random

variables with covariance Yn~ CA{1
d KPzI

� �
G2. The optimal

set h of parameters if therefore chosen according to a maximum

likelihood criterion as the choice corresponding to the maxi-

mum of the a priori probability density of the innovation

sequence. This corresponds to the minimum of the likelihood

function

J hð Þ~n ln det Ynð Þð Þz
Xn

k~1

nT
o (k)Y{1

n no(k):

where n is the number of samples. We are interested in the half

life hi~ln(2)=ki of the i-th messenger. To use all the available

information and make the method robust with respect to

measurement and estimation errors, we have designed the

following algorithm (see Supplementary Figure S6):

1. Given a set of N mRNA time profiles, perform the maximum

likelihood estimation for every pair (i,j) and compute the

corresponding ki and kj .

2. For each pair (i,j) compute the ratio matrix M whose elements

are the ratios between the half-lives of gene i and gene j. The

matrix M is generally not symmetric due to the presence of

outliers and numerical sensitivity. Thus we defined the ratio

estimation by row as mr
i,j ~ hr

j=hr
i and by column as

mc
j,i~ hc

i =hc
j . The matrix M contains all the ratios hr

j=hr
i on

the i-th row, and all the ratios hc
i =hc

j on the i-th column. Let us

denote Sr
i the sum of the ith row, Sc

i the sum of the i column,

and v w the mean operator, that is,

Sr
i ~
XN

j~1

hr
j

hr
i

~
1

hr
i

XN

j~1

hr
j , Sc

i ~
XN

j~1

hc
i

hc
j

~hc
i

XN

j~1

1

hc
j

, ð15Þ

v

1

Sr
i

w~
1

N

XN

i~1

hr
iPN

j~1 hr
j

~�hh
1PN

j~1 hr
j

, ð16Þ

vSc
i w~

1

N

XN

i~1

XN

j~1

hc
i

hc
j

~�hh
XN

j~1

1

hc
j

ð17Þ

3. Given M, delete outliers to obtain a final matrix M�. First,

compute the probability density (using a smoothing kernel

approach) of all the entries mi,j and delete those values below a

probability of 10{3 of occurring in the distribution. Second,

since ideally mr
i,j
:mc

j,i~1, we considered as outliers those pairs

such that mr
i,j
:mc

j,i =[ ½
1

2
, 2�.

4. On the resulting M� matrix compute for each transcript i two

estimates of its half-life ĥhr
i and ĥhc

i , using equations (15), (16)and

(17). We obtained

ĥhr
i ~

�hh

1

Sr
i

v

1

Sr
i

w

ð18Þ

ĥhc
i ~

�hh
Sc

i

vSc
i w

: ð19Þ

This computation requires the value of �hh. When this value is

known for the group of transcripts under analysis the measured

value can be used. Otherwise, letting �hh~1 one can obtain half-

life values that are relative to the average half-life of the group.

However, we have followed a third approach. All the results

reported in this paper have been obtained by replacing �hh with

the geometric mean of ĥhr
i and ĥhc

i , that is

�̂hh�hh~ P
N

i~1
ĥhr

i P
N

i~1
ĥhc

i

� � 1
2N
: ð20Þ

The final estimate of the half-life ĥhi for the i-th gene is

computed as the weighted average of ĥhr
i and ĥhc

i using as weights

the respective variances s2
ĥhr

and s2
ĥhc

as follows

ĥhi~
ĥhr

i

s2
ĥhr

z
ĥhc

i

s2
ĥhc

 !
: 1

s2
ĥhr

z
1

s2
ĥhc

 !{1

ð21Þ

where sĥhr
and sĥhc

are the standard deviation of the ĥhr
i and ĥhc

i ,

respectively.

5. We considered as a quality index for each estimated half-life ĥhi

the following:

Ci~
1

N

XN

j~1

Yijffiffiffiffiffiffiffiffiffiffiffiffiffi
YiiYjj

p
where Yii, Yjj are noise variances of the discrete system (12)

and Yij (see equation (13)) is the mutual covariance of the state

noise between time series xj and xh. Thus, high values of Ci

imply the presence of a correlation between Pj(t) and Ph(t) in

equation (9). We removed the half-lives having a Ci value

smaller than the 10th percentile of its distribution.

Datasets
Public experimental data used throughout the paper are described

in Table 1 (experimental half-lives measurements) and in Table 2

(gene expression time series). Pramila et al. in [18] and Orlando et al. in

[19] experimentally measured genome-wide gene expression data

during the reproductive cell cycle. We considered the ranking

provided by the combined test developed by de Lichtenberg et al. [29]

for each replicate for the two datasets and, among the list of 1000

genes with highest ranking, we selected those common to all datasets.

We ended up with a list of 569 genes that we used for half-life

estimation. Tu et al. in [20] experimentally measured genome-wide

gene expression data during the metabolic cell cycle. We selected

1000 genes with the best periodicity score according to [20]. Of the

1000 genes, DRAGON estimated half-lives are 939.
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Data processing
Half-lives determination of genes induced during each

stage of P. falciparum IDC. Shock et al. in [17] experimentally

measured genome-wide values of decay rates for each gene in each

of the four stages of the IDC. To obtain a single half-life value for

each messenger, we performed a k-means clustering of microarray

gene expression data [16] by considering 5 stages (according to

[16]: early ring, ring, trophozoite, schizont and late schizont).

Then, we merged the early ring cluster with the ring cluster to

obtain the same stages as in Shock et al.. Among the 4488 genes in

[16] we chose 1000 genes with the best periodicity score (power

signal/power total ratio) according to [16]. Of the 1000 genes,

DRAGON estimated half-lives are 967, available experimental

half-lives are 675. Both data are available over a set of 616 genes.

Expression peak timing estimation
To estimate peak timing, for a given noisy gene expression time

profile, we preliminary performed the smoothing algorithm presented

by Bar-Joseph et al. in [30]. The algorithm employs two parameters:

grid g (number of spline curves) and classes c (number of classes to use

for clustering). In particular, for Pramila datasets we used g~4 and

c~2, for Orlando datasets we used g~8 and c~2, for Tu dataset we

used g~10 and c~5, for Malaria dataset we used g~10 and c~4.

Half-life estimations
DRAGON estimated half-lives are provided as supplementary

materials Tables S1, S2, S3, S4, S5, S6, S7, described Supporting

Information section.

Matlab code will be provided upon request.

Additional data and information can be found at web site

http://www.dis.uniroma1.it/,farina/dragon.

Supporting Information

Figure S1 Functional categories analysis in yeast S.
cerevisiae during asynchronous growth measured by
three laboratories. Three genome-wide studies are considered:

Grigull et al., Wang et al. and Munchel et al. (A) Average mRNA

half-lives in both studies Wang et al. and the Grigull et al. datasets

for 111 functional categories from the yeast GO Biological Process

database (http://www.geneontology.org) that are represented in

the set of 2863 transcripts by 5 or more members. (B) compare, in

the same way, the Munchel et al. and the Wang et al. datasets.

(TIF)

Figure S2 Kinetics of gene induction. Panels A–B show in

silico experiments to illustrate some basic features of gene induction

kinetics. The reference time profile with unity steady-state is plotted in

black. The ‘‘ON’’ and ‘‘OFF’’ regions correspond to the turning ‘‘ON’’

or ‘‘OFF’’ of the promoter activity. (A) Induction kinetic of transcripts

having the same half-life value and, as a consequence, the same speed of

response. The higher (or lower) steady-state value of the red and blue

time profiles is due only to an increased (or decreased) transcription rate.

(B) Induction kinetic of transcripts having different half-lives. The time

profile plotted in red corresponds to an unstable transcript. It has a faster

induction and relaxation profile but a lower steady-state value. By

contrast, the blue one has an higher half-life value, resulting in a higher

steady state value but a slower response. The example illustrates that, to

obtain both a fast response and an high steady-state value, the

regulatory strategy must destabilize transcriptionally up-regulated genes.

(TIF)

Figure S3 Functional categories analysis for DRAGON
estimations using P. falciparum IDC data. Average mRNA

half-lives in both studies, DRAGON iestimations versus and

experimentally measured by Shock et al. half-lives, for 12

functional categories from the P. falciparum GO annotation

database (http://www.geneontology.org) that are represented in

the set of 616 transcripts by 5 or more members.

(TIF)

Figure S4 GO annotations of genes with extreme half-
lives in S. cerevisiae DNA replication timing requires first the

formation of the replication fork, then the production of the needed

histones for chromatin assembling: such temporal sequence of

events is consistent with a rapid turnover of the replication complex

genes and a slow turnover of the histone genes.

(TIF)

Figure S5 GO annotations of genes with extreme half-
lives in S. cerevisiae Among unstable genes we also found the

G1/S transition cyclins and among stable ones we found G2/M

transition cyclins. In this case, the temporal sequence of events is

the progression of the cell cycle from DNA replication to mitosis.

(TIF)

Figure S6 DRAGON algorithm pipeline.
(TIF)

Table S1 DRAGON estimated half-lives using alpha30
dataset.
(XLSX)

Table S2 DRAGON estimated half-lives using alpha38
dataset.
(XLSX)

Table S3 DRAGON estimated half-lives using Orlando
replicate 1 dataset.
(XLSX)

Table S4 DRAGON estimated half-lives using Orlando
replicate 2 dataset.
(XLSX)

Table S5 DRAGON estimated half-lives using metabolic
cycle dataset.
(XLSX)

Table S6 DRAGON estimated half-lives using P. falci-
parum dataset.
(XLSX)

Table S7 DRAGON estimated normalized half-lives
using all yeast datasets.
(XLSX)

Text S1 Example of parameter estimation through the
Kalman filter.
(PDF)
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