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The Modular Organization of Domain
Structures: Insights into Protein—Protein
Binding

Antonio del Sol*, Pablo Carbonell

Bioinformatics Research Unit, Research and Development Division, Fujirebio, Tokyo, Japan

Domains are the building blocks of proteins and play a crucial role in protein—protein interactions. Here, we propose a
new approach for the analysis and prediction of domain-domain interfaces. Our method, which relies on the
representation of domains as residue-interacting networks, finds an optimal decomposition of domain structures into
modules. The resulting modules comprise highly cooperative residues, which exhibit few connections with other
modules. We found that non-overlapping binding sites in a domain, involved in different domain-domain interactions,
are generally contained in different modules. This observation indicates that our modular decomposition is able to
separate protein domains into regions with specialized functions. Our results show that modules with high modularity
values identify binding site regions, demonstrating the predictive character of modularity. Furthermore, the
combination of modularity with other characteristics, such as sequence conservation or surface patches, was found to
improve our predictions. In an attempt to give a physical interpretation to the modular architecture of domains, we
analyzed in detail six examples of protein domains with available experimental binding data. The modular
configuration of the TEM1-f-lactamase binding site illustrates the energetic independence of hotspots located in
different modules and the cooperativity of those sited within the same modules. The energetic and structural
cooperativity between intramodular residues is also clearly shown in the example of the chymotrypsin inhibitor, where
non-binding site residues have a synergistic effect on binding. Interestingly, the binding site of the T cell receptor
chain variable domain 2.1 is contained in one module, which includes structurally distant hot regions displaying
positive cooperativity. These findings support the idea that modules possess certain functional and energetic
independence. A modular organization of binding sites confers robustness and flexibility to the performance of the
functional activity, and facilitates the evolution of protein interactions.
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teraction networks [4-8]. Although these methods have
provided reliable domain-domain interactions, their predic-
tions are limited by the lack and accuracy of data [9].
Identification of domain-domain interaction sites would
facilitate the prediction of protein-protein interactions and
the understanding of the molecular mechanism of protein
function. A number of studies have examined the character-
istics of protein-protein interaction sites. Structurally con-
served residues at protein-protein interfaces have been
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Here, we propose a different approach to the analysis of
domain-domain binding sites based on the modular decom-
position of protein domains [20]. The study was carried out
on a large structural dataset of domain-domain interactions
based on the protein-protein interaction networks of five
different organisms [4]. Our algorithm relies on the repre-
sentation of domain structures as residue-interacting net-
works and the modular partitioning of such networks using
the edge-betweenness clustering algorithm [21]. Modules,
which can be considered as building blocks of domains, are
characterized by strong intramodular and weak intermodular
residue contacts [20]. Our results revealed that non-over-
lapping binding sites in a domain, involved in different
domain-domain interactions, were mainly located in differ-
ent modules. These findings support the idea that modular
decomposition divides domains into modules, which contain
groups of residues displaying a certain specialization for
protein binding. Perhaps the most important result in our
analysis relates to the fact that a large percentage (72%) of
modules that exhibit high modularity values (highly cooper-
ative modules) contain groups of residues belonging to
binding sites, suggesting that modularity can be used to
identify functional regions. This fact reflects that binding
sites contain groups of residues, which act cooperatively for
the performance of protein-protein interactions. Although
our method relies on single-structure analysis without addi-
tional sequence or physico-chemical information, its pre-
dictive character is comparable to other protein binding site
predictions [22]. Furthermore, the combination of our
approach with other characteristics, such as sequence
conservation or surface patches, improves the prediction of
binding site regions.

Binding sites can be fully contained in one module;
however, it is often the case that several modules share a
binding site. A detailed inspection of six examples of protein
domains (interleukin-4 [IL-4], TEM1-B-lactamase [TEM1], T
cell receptor [TCR] B chain variable domain 2.1 [hVf2.1],
growth hormone receptor [GHbp], chymotrypsin inhibitor
[CI2], and RNase inhibitor [RI]) illustrates the modular
organization of binding sites. Residues within modules
generally display energetic cooperativity to protein binding,

@ PLoS Computational Biology | www.ploscompbiol.org

Modular Architecture of Domains

whereas residues belonging to different modules mainly show
energetic additivity. The TEM1-B-lactamase inhibitor protein
(BLIP) binding interface modular decomposition clearly
illustrates that the energetic contributions of hotspot
residues to the complex stability are cooperative within
modules and additive between modules [23,24]. The modular
division of the CI2-binding site shows the energetic and
structural cooperativity existing between intramodular resi-
dues, even if they are not involved in the intermolecular
interactions [25]. Mutagenesis studies revealed that the
hVp2.1-binding surface contains residues within different
hotspot regions separated by more than 20 A, which are
significantly energetically cooperative [26]. Interestingly,
these hot regions are contained in one module, reflecting
the cooperativity of residues within modules. This example
suggests that the modular decomposition of domains, which
considers the overall topology of residue-interacting net-
works rather than local information on interface residue
clusters, identifies global cooperative units for protein
binding.

Our results suggest that the modular architecture of
protein domains confers robustness and flexibility to the
performance of the functional activity. The modular config-
uration of binding interfaces appears to regulate specificity
and binding affinity, and suggests how a given domain may
bind to different partners. The selective use of different
combinations of modules composing a binding site may be an
explanation for domain binding promiscuity, and might be
an important factor for the evolution of domain-domain
interaction networks.

Results

We previously showed that protein domains consist of
modules, which are interconnected by key residues for
information transfer between amino acids. These modules
can be considered subdomains not only from a structural
standpoint, but also in a functional sense. These findings led
us to investigate the role of domain modular architecture in
the context of protein binding. To this end, we compiled a
dataset of 330 protein domains with structurally derived
domain-domain interactions based on the protein-protein
interaction networks of five different organisms [4] (Table
S1). This dataset of domain-domain interactions mediate
protein—protein associations involved in a wide variety of
cellular processes.

To elucidate how modules characterize binding sites
involved in these interactions, we mapped binding sites onto
domains and clustered them using a hierarchical agglomer-
ative clustering algorithm (see Materials and Methods).
Domain structures were represented as residue-interacting
networks [20,27] and decomposed into modules relying on
the edge-betweenness clustering algorithm proposed by
Newman and Girvan [21,28].

Modular Separation of Non-Overlapping Binding Sites
We aimed to study the domain modular division from a
functional standpoint. We addressed the following question:
does the modular decomposition lead to the assignment of
non-overlapping binding sites to different modules? Initially,
we measured the spatial overlap between pairs of binding
sites in a domain by using their relative interfaces. Next, we

December 2007 | Volume 3 | Issue 12 | €239



Figure 1. Similarity in Modular Composition and Relative Interface
Between Binding Sites

The Kringle domain (Pfam ID: PFO0051; PDB ID: 1bht) has been chosen as
an illustrative example of modular separation of binding sites. The two
binding sites A (blue) and B (red) of this domain are represented in
spacefill, with their interface residues depicted in balls and sticks. The
interface between binding sites A (ten residues) and B (eight residues)
involves four and three residues from each binding site, respectively. The
relative interface between these binding sites is C(A,B) = 0.39 (see
Materials and Methods). The domain has been decomposed into five
modules represented by the colored surfaces: 1 (green), 2 (yellow), 3
(olive), 4 (purple), and 5 (cyan). The modular composition of binding sites
A and B are (2,8,0,0,0) and (0,2,3,3,0), respectively. The similarity in
modular composition of these binding sites is M(A,B) = 0.20.
doi:10.1371/journal.pcbi.0030239.g001

compared the relative interface between binding sites with
their modular compositions (see Figure 1 and Materials and
Methods). Our results showed that there was a good
correlation between the relative interface of each pair of
binding sites in a domain and the similarity of their modular
compositions. The larger the percentage of contacting
residues between two binding sites, the more similar their
modular compositions. Conversely, if the interface between
two binding sites is small, these binding sites are more likely
to be located in different modules (Figure 2A). These findings
indicate that the modular division usually assigns non-
overlapping binding sites in a domain to distinct modules.

To evaluate the statistical significance of this result, we
generated random binding sites in all domains (keeping the
same modular decompositions). In this case, there was no
correlation between the relative interface between binding
sites and the similarity of their modular compositions (Figure
2B). The domain modular partitioning does not tend to
allocate randomly generated binding sites into different
modules. Thus, modular decomposition divides domains into
modules comprising groups of residues exhibiting certain
specialization for protein binding.

An illustrative example of a clear modular separation of
non-overlapping binding sites is the response regulator
receiver domain (Pfam ID: PF00072), which interacts with
itself (Protein Data Bank [PDB] ID: 3tmy) [29], and with the
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sigma-54 interaction domain (Pfam ID: PF00158; PDB ID:
Inyb) [30] through two distinct binding sites located in two
different modules (Table S1).

Modularity and Identification of Binding Site Regions

Following the modular partitioning of domains, we sought
to identify binding site regions by using an intrinsic
characteristic of modules. Modularity compares the percen-
tages of residue contacts within and between modules,
measuring the cooperativity of residue interactions in
modules (see Materials and Methods). A study based on our
dataset of 330 domains indicated that modules with high
modularity values generally contain binding site regions. A
detailed analysis showed that 72% of all modules exhibiting
statistically significant values of modularity (z-score > 2.0)
contain at least 10% of binding site residues (Figure 3A).
Since our goal was to predict binding site regions, rather than
all binding site residues, we inspected a significant number of
observed modules containing binding site residues. Our
results showed that the majority of modules containing
binding site residues comprise up to 30% of these residues.
Moreover, the cutoff value of 10% was found to be optimal,
since it allowed us to analyze a significant number of modules
containing binding site residues (Figure 4). Further analysis
showed that there was no significant decrease in the accuracy
of our method up to a 30% cutoff (see also Figure S1).

A random generation of binding sites for all domains
(maintaining the same modular division) proved the signifi-
cance of our results. High modularity modules do not
characterize these randomly generated binding sites (Figure
3A). Furthermore, the distributions of modules containing
the annotated and randomly generated binding sites differ
significantly in the region of high modularity values (Figure
3B). Our findings indicate that modularity is an informative
property that characterizes residue cooperativity in binding
site regions. Modularity can be used to complement
previously introduced methods for the identification of
binding surfaces. Figure 5 compares the predictive perform-
ance of our method with the predictions of two other
methods—residue conservation and surface patches (see
Materials and Methods). Accuracy and coverage values of
the modularity and surface patch methods are comparable,
whereas they provide greater predictive power than a method
based solely on residue conservation (see also Figure S2).
Furthermore, combining modularity with sequence conser-
vation or surface patches remarkably improves the predictive
performance.

Examples such as Kunitz/bovine pancreatic trypsin inhib-
itor (Pfam ID: PF00014) and ribosomal protein (Pfam ID:
PF00410) domains illustrate our findings. The former
interacts with the trypsin domain (Pfam ID: PF00089; PDB
ID: 3btw) [31] by using a binding site fully contained in a
module with modularity value of 0.172 (z-score = 2.23),
whereas the latter interacts with itself (PDB ID: 1sei) [32]
through a binding site contained in a module with modularity
value of 0.176 (z-score = 2.32).

The Modular Architecture of Domain Binding Sites:
Examples of Energetic Independence and Cooperativity
Based on our results, we observed that domain-binding
sites are frequently divided into several modules (Figure 4). In
an attempt to get some insights on the advantages of a
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Figure 2. Relationship Between Relative Interface and Similarity in Modular Composition and its Statistical Validation

(A) Correlation between relative interface and similarity in modular composition between pairs of domain binding sites. The linear regression line
corresponds to the correlation coefficient r = 0.86 with a statistically significant p = 5.89 X 107>,

(B) Z-score frequency distribution of the correlation coefficient r for all pairs of randomly generated domain binding sites. The correlation coefficients
are mainly distributed around 0, illustrating the independence between these two parameters for the random dataset, whereas the correlation for those
pairs of domain binding sites in the analyzed dataset (indicated with the vertical arrow) has a statistically significant z-score = 6.0.

doi:10.1371/journal.pcbi.0030239.9002

modular organization of binding sites, we carried out a
detailed analysis of six examples of protein domains with
energetic and structural experimental information (IL-4,
TEM1, TCR hVf2.1, GHbp, CI2, and RI).

IL-4. Human IL-4 is a pleiotropic cytokine that plays a
crucial regulatory role in the immune system. IL-4, together
with IL-13, elicits various responses in target cells upon
binding to a receptor complex consisting of the IL-4Ro and
IL-13Ral chains. Previous studies have emphasized the
modular nature of the IL-4 interaction with its high-affinity
receptor subunit IL-4Ra, involving three energetically in-
dependent clusters [33]. The high-affinity binding of IL-4 to
its receptor is mainly determined by two of these clusters,
which contain the hotspots of binding free energy Glu9 and
Arg88, respectively [33] (Figure 6A). Interestingly, the
modular division of the IL-4 (PDB ID: 2b8u, chain A)
illustrates that the three aforementioned clusters are located
in three different modules (Figure 6A). Experimental results
show that residues belonging to different clusters act
independently on the binding free energy. Mutations of
amino acids Thr13 (cluster I) and Phe82 (cluster III) do not
display cooperativity. In addition, hotspots Glu9 (cluster I)
and Arg88 (cluster II) contribute to the binding free energy
independently [33]. These two hotspots are used to generate
binding affinity and specificity. Thus, in this example we find
that modules separate the binding site into regions contri-
buting independently to the binding free energy.

TEM1. TEMI1 confers antibiotic resistance to Escherichia coli
through enzymatic cleavage of cephalosporins and penicil-
lins. This enzyme is bound and inhibited by BLIP [34].
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Experimental results provided by Reichmann et al. [23]
indicate that clusters of residues at the TEM1-BLIP interface
function as energetically independent binding units. Their
analysis leads to the conclusion that interactions are
cooperative within clusters and additive between them.
Indeed, an extensive mutagenesis study based on two of these
clusters shows that in spite of being in structural proximity,
they are energetically independent. The modular decom-
position of TEM1 (PDB ID: 1jtg, chain A) revealed that these
two clusters, which comprise two distinct hotspot regions, are
located in different modules (Figure 6B). As in the example of
IL-4, the modular organization of the TEMI1 binding site
illustrates the energetic independence of hotspot regions that
may contribute to the evolution of binding affinity and
specificity.

TCR hVp2.1. Affinity maturation variants of the human
TCR hVB2.1 bind the superantigen toxic shock syndrome
toxic 1 (TSST-1) with high affinity [35]. It has been shown that
variant residues at positions 51, 52a, 53, and 61, and wild-type
residue at position 62, are hotspots of binding free energy for
the interaction with TSST-1 [26]. Residues 51, 52a, and 53
form a cluster at the CDR2 loop, whereas residues 61 and 62
are clustered at the end of turn within FR3 (Figure 6C).
Experimental results show that amino acids within these two
hot regions, which are separated by more than 20 ;\, are
significantly cooperative. Furthermore, cooperativity be-
tween these hot regions is greater than within them [26].
Residues 51 and 53, located at the CDR2 loop, display a level
of positive cooperativity with respect to each other, and with
residue 61 in the FR3 region. Here, it is clearly illustrated that
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Figure 3. Modularity Distribution of Functional Modules and the Signal-to-Noise Ratio

(A) Comparison between modularity distributions for functional modules (including at least 10% of binding site residues) in the analyzed dataset and in
the set of randomly generated binding sites. In the analyzed dataset, a large percentage (72%) of modules exhibiting statistically significant values of
modularity (z-score > 2.0) correspond to functional modules, whereas this tendency is not observed in the random case.

(B) Ratio between modularity distributions for the analyzed dataset and the random dataset. The ratio is significantly greater than one where z-score
values are greater or equal than 2.0.

doi:10.1371/journal.pcbi.0030239.9g003
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Figure 4. Distribution of Binding Site Residues in Modules

Percentages of modules (y-axis) containing at least the fraction of binding site residues indicated on the x-axis. In the dataset, more than 75% of
modules contain at least 10% of binding site residues.

doi:10.1371/journal.pcbi.0030239.g004
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Accuracy and coverage values calculated for the functionally predicted modules based on modularity, sequence conservation, and surface patches.
These values are also represented for the combination of modularity with sequence conservation and surface patches.

doi:10.1371/journal.pcbi.0030239.g005

hotspot regions are not necessarily energetically independ-
ent. Interestingly, the modular decomposition of hVp2.1
(PDB ID: 1ktk, chain E) shows that its TSST-1 binding site is
contained within one module (Figure 6C). The analysis of this
example suggests that our modular decomposition, which
considers the overall topology of domains, rather than local
information of their binding sites, can identify structurally
distant cooperative regions.

hGHbp. Human growth hormone binds to its cognate
receptor to initiate a signaling process, which continues with
the recruitment of a second receptor to form the active
signaling complex [36]. The extracellular domain of hGHbp
contains seven B-strands, organized in a B-sandwich. The
hormone-binding site of the receptor contains a central
hydrophobic patch of 11 residues (functional epitope), which
makes a significant contribution to the binding energy. The
functional epitope is surrounded by a hydrophilic periphery,
which affects the binding affinity. Mutations of periphery
clusters of two to six residues demonstrated that most of
clustered mutants improved the binding affinity [37]. Resi-
dues within clusters contributed cooperatively to the affinity
improvement, whereas combinations of mutated clusters
were largely additive [37]. The modular decomposition of
the hGHbp (PDB ID: 3hhr, chain B) assigned the three main
clusters of the periphery to different modules (Figure 6D),
illustrating the cooperativity between residues within mod-
ules and the additivity between modules.

CI2. This serine proteinase inhibitor binds very tightly and
inhibits subtilisin Novo. CI2 consists of a single domain
formed by a four-stranded mixed parallel and antiparallel B-
sheet against which an a-helix packs to form a hydrophobic
core [38]. This inhibitor docks to the protease via a very rigid
extended loop, forming several specific interactions with the
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active site of the protease. Mutation of hotspot Tyr61 causes
significant loss of binding energy, mainly due to loss of
packing interaction with subtilisin. Residues Arg65 and
Arg67, which are not in contact with subtilisin, provide
rigidity to the extended loop by hydrogen bonding and
electrostatic interactions with Thr58 and Glu60. Site-directed
mutagenesis, including double-mutant cycles, revealed that
amino acids Arg65 and Arg67 constitute hotspots of binding
free energy, and are energetically coupled [25]. These
residues, which are not part of the binding interface,
contribute substantially to the binding free energy in an
indirect way. The modular decomposition of CI2 (PDB ID:
2sni, chain I) shows that residues Thr58, Glu60, Tyr61, Arg65,
and Arg67 are located within one module (Figure 6E). This
fact illustrates the structural and energetic cooperativity
existing between intramodular residues.

RI. RI binds diverse mammalian RNases with extraordinary
high affinity and specificity [39]. RI exhibits a “horseshoe”
shape, formed by symmetrical arrangement of 16 homologous
tandem units, which facilitates the engulfment of its target.
The energetic contribution of different residues of the RI-
angiogenin binding interface has been examined using site-
directed mutagenesis [40]. The contact region, containing RI
434-438 residues, constitutes a hotspot, with many single-
residue replacements producing significant losses of binding
energy. Effects of mutations of combinations of hotspot
residues proved the existence of a negative cooperativity
among these amino acids. Another important region of the
binding interface is the Trp-rich area of RI, including Trp261,
Trp263, Trp318, and Trp375. Although individual residue
mutations in the Trp-rich area cause small or moderate
binding energy loss, multiple substitutions are substantially
greater than additive. The modular division of the RI (PDB
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Figure 6. Examples of Modular Configuration of Domain Binding Sites

(A) Modular decomposition of the IL-4 domain binding site. The modular decomposition of the IL-4 domain is represented by the colored surface. The
binding site of the interaction with its receptor subunit IL-4Ra. is configured by three clusters that contribute independently to the binding free energy.
The three clusters are respectively located in three different modules. (1) Cluster | is in the green module (15, T6, E9, K12, T13); (2) cluster Il is in the blue
module (R53, Y56, R88); and (3) cluster Il is in the olive module (Q78, R81, F82). Residues E9 and R88 are the two main hotspots of binding free energy.
PDB ID: 2b8u, chain A.

(B) Modular decomposition of the TEM1 domain binding site. The ribbon representation is color-coded according to the modular decomposition of the
TEM1 domain. The binding site of the interaction with its inhibitor BLIP contains two independent hot regions of binding free energy, which are located
in two different modules: (1) red module (S130, K234, S235, R243); and (2) blue module (E104, Y105). PDB ID: 1jtg, chain A.

(C) Distant cooperative hot regions within the same module in TCR hV2.1. Surface of TCR hVB2.1 is colored according to its modular decomposition.
The two distant cooperative hot regions of binding free energy for the interactions with the superantigen TSST-1 are located in CDR2 (E51, S52a, K53)
and FR3 (E61, K62). Both regions are located in the same module (green). PDB ID: 1ktk, chain E.

(D) Modular decomposition of hGHbp. Color-coded backbone representation of the modular decomposition of hGHbp. The three clusters in the
hydrophilic periphery of the functional epitope, which contribute independently to the binding free energy, are located in three different modules: (1)
E120, K121; (2) S98, S102; and (3) Q166, K167, V171. PDB ID: 3hhr, chain B.

(E) Modular decomposition of CI2. Representation of the Cl2-subtisilin Novo complex. The modular decomposition of CI2 is depicted by color-coded
ribbons. Residues R65, R67, T58, E60, and Y61, which display structural and energetic cooperativity, are located within the red module. PDB ID: 2sni,
chain I.

(F) Modular decomposition of RI. The modular decomposition of Rl is represented by the colored surface. Cooperative residues W261, W263, and W318
of the Trp-rich area are contained in the green module, whereas W375, whose contribution to the binding energy is additive with respect to the other
tryptophans, belongs to the yellow module. The hotspot region 434-438 is located within the cyan module. PDB ID: 1a4y, chain D.
doi:10.1371/journal.pcbi.0030239.g006

ID: lady, chain D) clearly shows that the hotspot region and
Trp-rich area are fully contained in two different modules
(Figure 6F). Interestingly, although Trp375 belongs to the
Trp-rich area, its contribution to the binding energy is
additive with respect to the contribution of the other three
tryptophans (3W). The modular decomposition locates
Trp375 and 3W in different modules, reflecting their
energetic independence (Figure 6F).

Discussion

Protein domains play a key role in protein-protein
interactions. Domains can bind other domains or small
peptides by using the same or different binding sites. Here,
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we propose a new approach to the analysis and identification
of domain-domain binding sites, which emphasizes the role
of domain modular configuration in domain-domain associ-
ations. Domain structures were represented as residue-
interacting networks and decomposed into modules by
considering their overall topology. The resulting modules
exhibit many within-module residue contacts and as few as
possible between-module contacts. An extensive study of
protein domains revealed that non-overlapping binding sites
in a domain, which are involved in different domain-domain
interactions, are mainly contained in different modules. This
finding shows that domains can be decomposed into modules
that comprise groups of residues exhibiting certain special-
ization for protein binding.
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In this study, we used the modularity parameter as a
measure of residue cooperativity within a module. Highly
cooperative modules, characterized by large modularity
values, are composed of residues, which are highly connected
among themselves and poorly linked to other modules. Our
main result demonstrates that a large percentage (72%) of all
modules with high modularity values contain groups of
binding site residues, indicating that modularity can be used
to predict binding surfaces. Further analysis showed that a
combination of modularity and sequence conservation or
surface patches improved our predictions. Thus, we suggest
that our approach not only complements other methods for
predicting domain-domain binding interfaces, but also leads
to a deeper understanding of the relationship between
protein structure and function.

The analysis of six examples of protein domains disclosed
that domain-binding sites often display a modular architec-
ture. Modules are energetically independent from each other,
whereas cooperativity is found within each module. Exam-
ples, such as IL-4 and TEMI, exemplify the modular
configuration of binding sites with distinct hotspot regions
located in different modules. Experimental results confirmed
the energetic independence of these hotspot regions and the
cooperativity of residues within modules. The cooperativity
between residues within modules is clearly illustrated with the
example of CI2, where non-binding site residues belonging to
the same module as binding site residues exert a significant
influence on the binding affinity. An interesting example is
TCR hV2.1, where the modular decomposition unveiled that
its binding site, which includes two distant hot regions (more
than 20 A apart), is contained in one module. Mutagenesis
studies corroborated a high degree of cooperativity existing
between these two distant hot regions. This example
illustrates that our approach of modular decomposition
considers the overall topology of structures and therefore
contains information about cooperativity between groups of
structurally distant residues.

To conclude, modules are the basic units of domains, which
characterize functional regions. The modular architecture of
protein domains provides a deeper insight into the perform-
ance of the functional activity, and confers robustness to
protein structures against mutational events. Functional
specificity and regulation relies on the communication
between modules. Highly cooperative regions, whose residues
are energetically linked, form domain-domain binding
interfaces. The modular composition of binding surfaces
may generate high binding affinity and specificity, and
facilitate the appearance of new domain binding partners.
This advantageous organization of protein structures has
been conserved by evolution and may be used to design an
effective drug strategy.

Materials and Methods

Dataset. We compiled a dataset of 330 protein domains involving
370 domain-domain interactions from the database provided by
Itzhaki et al. [4] This database was obtained by mapping structurally
derived domain-domain interactions onto the cellular protein-
protein interaction network of five different organisms (Escherichia
coli, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogast-
er, and Homo sapiens). Our initial dataset contained all single-chain
domains with representative structures of domain-domain interac-
tions in the iPfam database [41]. Using multiple sequence alignments
provided by iPfam, we mapped all the binding sites of each domain
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onto its representative structure (Table S1). We selected only binding
sites containing at least 80% of their residues within the representa-
tive domain structures. All structure images were created using DS
ViewerPro 6.0 [42].

Network analysis of domain structures. Residues i and j were
considered to be in contact if at least one atom corresponding to
residue ¢ was at a distance of less than or equal to 5 A from an atom
from residue j. This value approximates the upper limit for attractive
London-van der Waals forces [43]. We modeled the PDB structures of
the representative domains as graphs, with residues corresponding to
vertices, and their contacts to edges. These networks were sub-
sequently decomposed into modules using the edge-betweenness
clustering algorithm proposed by Girvan and Newman [21,28], based
on the iterative removal of edges with the highest number of paths
running through it (see also Figure S3). We used the parallel
implementation PEBC (parallel edge-betweenness clustering) [44] of
the algorithm.

We used the previously introduced expression for the modularity

of each module m [20]:
m — 7 — |57 1
Q=7 <2L) M

where L is the number of edges in the network, [, is the number of
edges between nodes in module m, and d,, is the sum of the degrees of
nodes in module m. Modules with higher Q,, contain many within-
module edges, whereas random partitions of the network have an
expected value of Q,, = 0.

Binding site analysis. Binding site clustering. In order to detect
whether a domain is interacting with different domains using non-
overlapping binding sites, we clustered the list of binding sites
corresponding to each domain in the dataset. First, we defined a
distance matrix for all pairs of binding sites as:

C(ij) :% {%ﬁf—d (2)

where n; and n; are the number of residues in binding sites i and j that
have contacts with the other binding sites j and 7, respectively. N; and
Nj are the total number of residues belonging to each binding site.
Two binding sites i and j were considered as non-overlapping if C(i, j)
<0.7.

Our clustering protocol was based on the hierarchical agglomer-
ative clustering algorithm (see also Figure S4), defined as follows: (1)
find the closest pair of binding sites in the distance matrix; (2) merge
these two binding sites into a new single binding site if the distance
between them is C(i, j) < 0.7; and (3) compute the distance matrix for
the new reduced list of binding sites. The clustering process
terminates when the distances between all pairs of binding sites are
above the threshold, obtaining a set of mutually non-overlapping
binding sites in the domain.

Relative interface between binding sites. We defined the relative
interface between two binding sites as in Equation 2. This parameter
represents the averaged proportion of binding site contacting
residues, and is a measure of closeness between these binding sites.
C(i, j) varies from 0 to 1. Values close to 0 imply a small relative
interface, indicating a clear structural separation between both
binding sites, whereas values close to 1 appear when almost all
residues in both binding sites are on the interface, illustrating their
proximity.

Similarity of binding site modular compositions. We defined for each
binding site j a vector m; representing its modular composition as
follows:

m; = (my;, mjg, ..., mypr) (3)

where my, is the number of residues of binding site j in module k; and
M is the total number of modules in which the domain has been
decomposed.

The modular composition similarity between two binding sites ¢
and j is defined as the uncentered Pearson correlation coefficient
between their respective vectors of modular composition:

M
§ M M
k=1

M(ij) =1L
(l]) |ml||mj‘

(4)

M Mo .
where |m;| = Y30, m3, and [m;| = >, mfk are the Euclidean norms
of vector 7 and j, respectively.
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M(, j) varies from 0 to 1. Values close to 0 show significant
differences in the modular compositions of each binding site,
whereas values close to 1 correspond to binding sites with almost
identical modular compositions.

Evaluation of performance. Random generation of binding sites. To test
the statistical significance of our studies, we generated a list of
random binding sites for each domain, keeping the same number and
size of the original binding sites. The random binding sites were
generated in the following way: (1) we randomly selected one of the
residues in each binding site as the seed residue for the new binding
site; and (2) we iteratively added more random neighbors to the new
binding site until the number of residues on it equaled the size of the
original binding site. In the case of domains with more than one
binding site, we checked that all pairs of binding sites in the
corresponding list verified C(, j) < 0.7; otherwise, the random
generation of binding sites for this domain was repeated until such
condition was reached. We generated 500 random realizations for
each binding site of each domain of our dataset.

Accuracy and coverage. The accuracy and coverage for the prediction
methods were defined as:

TP
accuracy = ———— (5)
TP+ FP
TP
oV - 6
coverage =z (6)

where TP, FP, and FN are the number of true positives, false positives,
and false negatives, respectively.

Conservation analysis. Residue conservation scores were determined
for each representative domain structure from the ConSurf-HSSP
database [45]. A residue was considered as conserved if its score was
greater or equal to 9.

Patch analysis. Predictions of surface patches for the representative
domain structures were determined from the SHARP? server [46]. We
considered the best three predicted overlapping patches.

Supporting Information
Figure S1. Accuracy Values for Different Percentages of Binding Site
Residues within a Module

Accuracy values for different ratios of binding site residues located in
the functional modules. Accuracy is around 72% for low-detection
values under 20% of binding site residues.

Found at doi:10.1371/journal.pcbi.0030239.sg001 (2.4 MB TIF).

Figure S2.
Modules

Sequence conservation distribution for functional modules (includ-

Sequence Conservation Distribution for Functional
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ing at least 10% of binding site residues) in the analyzed set. There is
no clear tendency for functional modules to exhibit statistically
significant values of sequence conservation (z-score > 2.0).

Found at doi:10.1371/journal.pcbi.0030239.sg002 (2.5 MB TIF).

Figure S3. Edge-Betweenness Clustering Algorithm

The modular partition of the residue interacting network of domain
structures is based on the edge-betweenness clustering algorithm,
which is illustrated.

(1) Initially in (A), the betweenness is computed for all edges in the
network (number of shortest paths between pairs of vertices that run
along it). The edge with the highest betweenness is depicted in red.
(2) In (B), the edge with the highest betweenness is removed.

(3) Next, recalculate betweennesses for the remaining edges.

(4) Repeat (2) until no edges remain.

As shown (C) and (D), the network has been partitioned into two
modules. In (E), the network has been partitioned into three modules.
The optimal partition algorithm stops when the maximum value of
the network modularity is reached.

Found at doi:10.1371/journal.pcbi.0030239.sg003 (6.8 MB TIF).

Figure S4. Clustering of the Set of Binding Sites for Each Domain

In this example, a domain interacts with five different domains using
binding sites B1 to B5. However, pairs of binding sites (B1, B2), and
(B3, B4), have significant numbers of residues in contact, and
therefore their relative interfaces are C(, j) < 0.7. After the clusterin:
procedure, (B1, B2) and (B3, B4) are merged into binding sites B1°
and B2", respectively, while B5 is assigned to B3", obtaining a set of
three mutually non-overlapping binding sites in the domain.

Found at doi:10.1371/journal.pcbi.0030239.sg004 (6.8 MB TIF).

Table S1. List of Domain-Domain Interactions

This table contains the Pfam ID codes corresponding to the 370
domain-domain interactions compiled for this study. The PDB ID
code of the structure used as template for each domain is also given.

Found at doi:10.1371/journal.pcbi.0030239.5t001 (77 KB XLS).
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