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Abstract

Cycles involving covalent modification of proteins are key components of the intracellular signaling machinery. Each cycle is
comprised of two interconvertable forms of a particular protein. A classic signaling pathway is structured by a chain or
cascade of basic cycle units in such a way that the activated protein in one cycle promotes the activation of the next protein
in the chain, and so on. Starting from a mechanistic kinetic description and using a careful perturbation analysis, we have
derived, to our knowledge for the first time, a consistent approximation of the chain with one variable per cycle. The model
we derive is distinct from the one that has been in use in the literature for several years, which is a phenomenological
extension of the Goldbeter-Koshland biochemical switch. Even though much has been done regarding the mathematical
modeling of these systems, our contribution fills a gap between existing models and, in doing so, we have unveiled critical
new properties of this type of signaling cascades. A key feature of our new model is that a negative feedback emerges
naturally, exerted between each cycle and its predecessor. Due to this negative feedback, the system displays damped
temporal oscillations under constant stimulation and, most important, propagates perturbations both forwards and
backwards. This last attribute challenges the widespread notion of unidirectionality in signaling cascades. Concrete
examples of applications to MAPK cascades are discussed. All these properties are shared by the complete mechanistic
description and our simplified model, but not by previously derived phenomenological models of signaling cascades.
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Introduction

Covalent modification cycles are one of the major intracellular

signaling mechanisms, both in prokaryotic and eukaryotic

organisms [1]. Complex signaling occurs through networks of

signaling pathways made up of chains or cascades of such cycles, in

which the activated protein in one cycle promotes the activation of

the protein in the next link of the chain. In this way, an input

signal injected at one end of the pathway can propagate traveling

through its building-blocks to elicit one or more effects at a

downstream location.

Examples of covalent modification are methylation-demethyl-

ation, activation-inactivation of GTP-binding proteins and,

probably the most studied process, phosphorylation-dephosphor-

ylation (PD) [1,2]. In such cycles, a signaling protein is activated by

the addition of a chemical group and inactivated by its removal.

This protein is modified in turn by two opposing enzymes, such as

a kinase and a phosphatase for PD cycles. In the absence of

external stimulation, a cycle exists in a steady state in which the

activation and inactivation reactions are balanced. External

stimuli that produces a change in the activity of the converting

enzymes, shifts the activation state of the target protein, creating a

departure from steady state which can propagate through the

cascade.

The advantages of these cascades in signal transduction are

multiple and the conservation of their basic structure throughout

evolution, suggests their usefulness. A reaction cascade may

amplify a weak signal, it may accelerate the speed of signaling, can

steepen the profile of a graded input as it is propagated, filter out

noise in signal reception, introduce time delay, and allow

alternative entry points for differential regulation [3–5].

Intracellular signaling through cascades of biochemical reac-

tions has been the subject of a great number of studies (e.g., [2,6]

for reviews). Theoretical investigations have been motivated by the

increased need for developing an abstract framework to under-

stand the vast amounts of experimental data now available. This

whole field of research is further motivated by the hope of

characterizing pathways that are deregulated in diseases such as

cancer and to define targets to combat these diseases [7].

Since the stimuli a cell receives are varied and complex,

cascades do not operate in isolation, but rather the integration of

stimuli depends on crosstalk between pathways. Another crucial

property of signaling cascades is their ability to integrate

information by transmitting the effects downstream and also

feedback upstream. In spite of a few decades of intense work on

signaling cascades, no models have ever been built that exhibit

crosstalk with backwards and forwards transmission of a lateral

input from another cascade, except when ad hoc feedback is

explicitly added to the cascade model. Our model, built from first

principles, naturally exhibits these characteristics and therefore

inspires novel interpretations of experimental data.

A well studied example of a cascade of activation-inactivation

cycles is the cascade of protein kinases. In this case, the basic

signaling unit is a PD cycle, whose activating kinase is the
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phosphorylated protein of the previous cycle. Many proteins

contain several phosphorylation sites, allowing for great versatility

of regulation. Such is the case, for example, for the mitogen-

activated protein kinase (MAPK) cascade, which is widely involved

in eukaryotic signal transduction [3,8–10]. For the sake of

simplicity, in this article we will mostly consider cascades

composed of simple, 2-state activation-inactivation cycles. How-

ever, the equations corresponding to the MAPK cascade are also

derived and some of their properties compared with those of the

simpler cascades. Even though our results are valid in general, for

covalent modification cycles, we will employ the nomenclature

associated with PD cycles, i.e. the converting enzymes will be

referred to as kinase/phosphatase.

The focus of our study is to refine the mathematical modeling of

cascades of covalent modification cycles, such us the one depicted

in Figure 1. Several mathematical descriptions have been

developed to describe such cascades using ordinary differential

equations. Typically, those descriptions are built up starting with a

model for a single cycle, which is then phenomenologically

incorporated into a cascade of cycles. A well known model for

describing the single cycle was introduced by the pioneering work

of Goldbeter and Koshland (GK) [11]. The GK model considers

the concentration of the target protein to be in large excess over

those of the converting enzymes, thereby reducing the description

to a single equation per cycle. The model obtained in this way was

then phenomenologically extended to a cascade of individual GK

cycles. Here, by the designation ‘‘phenomenological’’ we mean

that, in the cascade, the forward coupling between the GK cycles

is chosen as simply as possible, but not strictly deduced from first

principles. This phenomenological framework extension of the

GK model will be denoted as the GK-like model. The GK-like

model has been used by several authors to describe the dynamics

of signal transduction [9,12–16]. For particular limiting cases, the

GK-like model can be simplified further, which results in a model

where the inter-converting reactions follow linear rate laws with

first-order rate constants. This description was studied in several

key papers [17–19], and we will refer to it as the linear rates model.

The concept of a ‘‘cascade’’ in the study of transduction

pathways is appealing because of its modular structure. What is

especially appealing is the possibility of defining the cascade state

by only one variable per module. As mentioned above, since the

building blocks of the GK-like model are the well-studied GK

cycles, they involve only one equation per cycle. A different

approach however, is to deal with the dynamics of the cascade of

Figure 1 by considering the complete set of biochemical reactions

and by writing the corresponding equations without any upfront

approximations. This was accomplished, for example, for the case

of the MAPK cascade [8]. We will refer to this approach as the

mechanistic model. For the purposes of this paper, we will consider

that the mechanistic model represents a complete description of

the system under study (event though we recognize that, in reality,

it is not a hypothesis-free model).

In this article, starting from the mechanistic description of a

cascade composed of an arbitrary number of cycles, we derive a

consistent approximation under which the cascade is described

with one variable per cycle. It turns out that in this derivation,

referred to as a reduced mechanistic description, the phenomenolog-

ical GK-like model is not recovered. At first sight, our new

approximation differs slightly from the previously derived

description for signaling cascades. However, it involves qualita-

tively different dynamics from the GK-like model, yet it is in very

good agreement with the complete mechanistic description when

the approximation conditions are fulfilled.

The main difference between our simplified mechanistic

description and the phenomenological one is the appearance of

an intrinsic feedback from each unit to the preceding one, caused

by the fact that in each cycle there is sequestration of part of the

activated protein of the previous step. The new description of the

cascade predicts the existence of damped oscillations along the

chain, a phenomenon that cannot be observed using the previous

phenomenological description. Interestingly, a corollary of our

Figure 1. Schematic representation of a cascade of covalent
modification cycles. The ith cycle is composed of two states of the
same protein: the inactive and the active states, labeled Yi and Yi

*,
respectively. In each step, the activation is catalyzed by the activated
product of the previous step. The deactivation is performed by another
enzyme, E’i.
doi:10.1371/journal.pcbi.1000041.g001

Author Summary

Cellular signaling is carried out by a complex network of
interactions. A structure that is found commonly in
signaling pathways is a sequence of on-off cycles between
two states of the same protein, referred to as a cascade. By
analyzing and reducing the basic kinetic equations of this
system, we have constructed a new mathematical model
of an intracellular signaling cascade. It is widely accepted
that information travels both outside-in and inside-out in
signaling pathways. Conversely, cascades, even while
being main components of those pathways, have been
so far understood as structures where signal transmission
occurs in a manner analogous to a domino effect: the
information flows in only one direction. Adding explicit
connections linking a particular level with an upstream
location has been the way bidirectional propagation has
been explained so far. In other words, up to now,
unidirectional cascades would allow bidirectional propa-
gation only when embedded in more complicated circuits.
The proposed model shows that a cascade can naturally
exhibit bidirectional propagation without invoking extra
re-wiring. This result inspires novel interpretations of
experimental data; since signaling pathways are usually
reconstructed from such data, this outcome could have
far-reaching implications in the understanding of cell
signaling.

A Hidden Feedback Is Revealed
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model is that if a particular unit in the middle of the chain receives

an input–a common event, given the high degree of crosstalk

between signaling pathways–then our reduced mechanistic

description predicts that this perturbation is able to travel both

forwards and backwards. This ‘‘bicistronic’’ propagation, which

may be critical for effective eukaryotic signaling, is not possible

within the GK-like description either. Our model provides a

suitable framework for future experiments that investigate cross-

talk and bicistronic propagation of signals.

Results

How to Model a Signaling Cascade
A mechanistic description. We consider a cascade of bio-

chemical cycles, as illustrated on Figure 1, in which the two variables

Yi and Yi
* represent two interconvertible forms of one protein, such

as the dephosphorylated and the phosphorylated forms of a kinase;

the activated form Yi
* acts as a catalyst for the next reaction. The

cycle between Yi and Yi
* constitutes the basic module of a signaling

pathway, which comprises n such elements. In this cascade, the

deactivation occurs by means of a phosphatase denoted by E9i.

Since processes involved in the control of production of new

proteins proceed at a much slower timescale than processes that

chemically modify existing proteins, the total quantity YiT is

considered to be constant in time and the variables [Yi] and [Yi
*]

(the square brackets denote concentration) are then linked by a

conservation law. Consequently, only one of the forms, Yi or Yi
*,

will be treated as an independent variable. The first module is

activated by an external input signal, that could be, for example, a

growth factor or a hormone level. The level of the last protein Yn
*

can be thought of as the ‘‘output’’ of the system.

In an ideal situation, the inter-conversion of the ith protein can

be described by the following reactions:

YizY �i{1

ai

di

Ci DCA
ki

Y �i zY �i{1

Y �i zE0i

a0i

d 0
i

C0i DCA
k0i

YizE0i

i~1, . . . ,n,

ð1Þ

where Ci and C9i are intermediate enzyme-substrate complexes.

Here the conservation law for the protein indexed by i is

YiT = [Yi]+[Yi
*]+[Ci]+[C9i ]+[Ci+1]. Notice that it comprises the

complex concentration [Ci+1] formed at the step i+1, since Yi
*

activates the (i+1)th cycle. There is also a conservation equation for

the reverse enzyme (phosphatase) which can be written as

E9iT = [E9i]+[C9i]. The five variables associated with the module

i, [Yi], [Yi
*], [Ci], [C9i ], [E9i], are related by two conservation laws,

leaving in principle three state variables per cycle. In this setting,

the kinetic equations of the cascade can be written using the law of

mass action (see Text S1), resulting in what we will call the

mechanistic model.

Working in the framework of the mechanistic model offers the

advantage that no mathematical approximations are needed (even

though, overall, this is obviously not a hypothesis-free model), and

this could be the optimal choice for comparing experimental data

with numerical simulations of the model. This option was taken,

for example, in the context of the MAPK cascade [8].

On the other hand, more complicated models, although in

principle more realistic, are also less amenable to developing

insights into the transduction pathways. It is appealing then, to

find out under which set of hypotheses can the mechanistic model

be approximated by a simpler one, for example a model with a

single variable per cycle. Arriving to such reduced description is

the main contribution of the present paper. Before providing that

description, we briefly review some approaches followed in the

literature to study signaling cascades by means of only one

equation per cycle (see Text S2 for a summary).

A model with linear rates. One possible simplification of the

chemical reactions in Equation 1 is to neglect the formation of the

complexes Ci and C9i. This can be justified for instance, in the case

where the rates ki and k9i9s are much larger than the other kinetic

constants. Another point of view is to assume that the concentration

of each enzyme-substrate complex is very small compared to the

total concentration of the reaction partners [17]. Neglecting those

complexes in the reactions and then using the law of mass action, one

can write the equations for the chain dynamics as follows:

_yy�i ~aiy
�
i{1yi{biy

�
i ,

i~1, . . . ,n,
ð2Þ

with the definitions yi = [Yi]/YiT and yi
* = [Yi

*]/YiT , YiT denoting the

total available protein. y0
* is the normalized input signal and the

parameters are ai = aiYT and bi = a9iE9i. Equation 2 must be

complemented by the conservation equation yi+yi
* = 1, so here

there is indeed a single degree of freedom in the cycle. The nonlinear

system in Equation 2 has been dealt with by several authors [17–19].

We refer to this model as the linear rates model.

An enzymatic model. The linear rates model does not

account for the fact that the transformations from Yi into Yi
* and

from Yi
* into Yi, are catalyzed by enzymes. This means that an

intermediate enzyme-substrate complex is formed. Therefore, a

second class of equations has been considered in the literature to

model a covalent modification cycle, taking into account explicitly

the enzymatic mechanisms involved. This approach was followed

for the first time in the seminal work of Goldbeter and Koshland

[11]. Starting with a mechanistic model (but just for a single cycle),

one can reduce the description to a single variable by considering

that the concentration YT is in large excess over those of the

converting enzymes. In this way, the enzyme-substrate complexes

can be neglected from the conservation equation and they are

expressed as a function of the substrates only in the kinetic

equations. As usual, this Michaelis-Menten type mechanism is

based on a quasi-steady state assumption for the rate of change of

the complexes. The resulting equation is then:

_yy�~V
y

Kzy
{V 0

y�

K 0zy�
, ð3Þ

where yi+yi
* = 1 and the dimensionless Michaelis-Menten

coefficients are defined by K = (k+d)/(aYT) and K9 = (k9+d9)/

(a9YT). The phenomenological extension of this description for a

cascade like the one in Figure 1 is:

_yy�i ~Viy
�
i{1

yi

Kizyi

{V 0i
y�i

K 0i zy�i
,

i~1, . . . ,n:

ð4Þ

We will refer to this generalization of the model of Goldbeter

and Koshland as the GK-like model. Let us note that in the case

where the coefficients Ki and K9i are much larger than 1, the

system in Equation 4 can be approximated by the simpler model

of Equation 2 introduced before.

Equation 3 was first derived by Goldbeter and Koshland, to study

the so-called property of zero-order ultrasensitivity. This means that

A Hidden Feedback Is Revealed
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when the K9s are small (e.g., of the order of 1022) the cycle behaves

like a switch where the steady state for y* passes abruptly from its

lowest to the highest value as a function of the ratio V/V9.

The cascade extensions of the Goldbeter-Koshland model have

been extensively used in several important articles [9,12–16]

covering different contexts, often adding a single negative feedback

loop extending from the last unit of the chain to the first one. It has

been argued however, that the hypotheses leading to the chain

equations (Equation 4) are questionable [3,20]. Blüthgen et al [3]

claim that, in several cases, current experimental data do not

support neglecting the enzyme-substrate complexes from the

conservation equation. If the affinity of kinase Yi
* for the protein

Yi+1 is high, but its catalytic activity is rather slow, then Yi
* will

remain ‘‘sequestered’’ in the complex Ci+1, causing a decrease in

available free Yi
*. This phenomenon has been called ‘‘sequestra-

tion’’ and it was shown that it can strongly reduce the

ultrasensitivity of the chain. If sequestration is important, then

the dynamics predicted by the model of Equation 4 is quite

different from the one shown by the mechanistic model. Similar

arguments are discussed in other work [20]. Moreover, it has been

pointed out that the sequestration of part of the activated enzyme

of one cycle by the next one has the effect of an ‘‘implicit

feedback’’ in the chain [20]. These authors, however, do not carry

out a formal analysis of this intuitive statement or of its

consequences, as we do in the next section.

The importance of sequestration-based feedback in signaling

cascades is thoroughly analyzed in the recent work by Legewie et

al [21], where a positive feedback mechanism that emerges from

sequestration effects is shown to bring about bistability in the

cascade. In that study, sequestration is caused by stable

heterodimers formed by the non-phosphorylated protein Yi and

the next substrate Yi+1 in the cascade. Dissociation of this

heterodimer is supposed to be induced by the (doubly) phosphor-

ylated protein in cycle i+1, entailing a ‘‘relief-from-inhibition’’

positive feedback. In our study however, we point out for the first

time a sequestration-based feedback that has been so far

overlooked: it exists in the basic model for the MAPK cascade,

without invoking any additional mechanism.

A New Description for Signaling Cascades
In Text S1 we derive in detail the new class of model equations

obtained as an approximation of the mechanistic model. The goal

of our approach is to reduce the number of variables in the

complete system by bringing into play hypothesis that allow us to

use the quasi-steady state approximation. Three key dimensionless

parameters are defined to facilitate the analysis:

ei~
E0iT
YiT

, gi~
Yi{1,T

YiT

, mi~
ki

k0i
: ð5Þ

ei and gi are ratios of total amounts of proteins. ei is the ratio of

total phosphatase over total targeted protein. gi is defined as the

total targeted protein in one cycle over the corresponding amount

in the next cycle in the cascade, or, equivalently, the ratio of total

kinase over total targeted protein. The parameter mi is the ratio of

the kinetic rates of product formation in both the activation and

the inactivation reactions (see reactions in Equation 1).

Using a standard singular perturbation analysis, we have found

that the state of each biochemical cycle can be described by a

single variable defined as xi = yi
*+ci+1, which is the natural slow

variable describing the total kinase i available at a given time for

the phosphorylation in cycle i+1. This reduction is only valid if the

total phosphatase in the cycle is much lower than the total targeted

protein, i.e., in the limit ei«1. The other parameters must satisfy mi

gi,ei. The dynamics of xi is described by the differential equation:

_xxi~Vixi{1

yi

Kizyi

{V 0i
xi

K 0i 1z
yiz1

Kiz1

� �
zxi

,

i~1, . . . ,n,

ð6Þ

with the following conservation equation from which yi has to be

extracted:

xizyizgixi{1
yi

Kizyi

zO(ei)~1: ð7Þ

x0 = S is the normalized input signal and yn+1 = 0. In Equation 6,

Vi = (k9i mi gi)/(e k9) and V9i = (ei k9i) /(e k9), where e k9 is a typical

number representing the set of ei k9i (i = 1, … ,n), e.g. the

arithmetical or the geometrical average over this set. In the

conservation equation (Equation 7), the notation O(ei) is just a

reminder that this equation is written in the lowest order in ei, as is

also the case for the differential equation for xi. In Text S1, we

discuss an improvement of this conservation equation which takes

into account the first correction in ei. Although this extension does

not alter the new properties discussed below, its numerical

integration is easy and it increases the accuracy of the

approximation.

The reduced system given by Equations 6–7 seems to be, in

principle, equivalent to the GK-like model given by Equation 4.

However, two main features make it significantly different. First, in

our novel system, termed the reduced mechanistic model, the

conservation equation depends on the variable of the previous

cycle. Second and more interesting, the denominator of the

negative term in Equation 6 is now a function of the next variable

yi+1, in contrast to the GK-like model. This function has the

appearance of an effective Michaelis-Menten coefficient K9eff,i = K9i

(1+yi+1/Ki+1), which is a typical way to indicate competitive

inhibition in enzyme kinetics [22]. In the context of activation-

inactivation cycles, a similar type of equation was obtained by

Salazar and Höfer in the systematic study of a single cycle taking

into account the competition between kinase and phosphatase to

bind the same target protein [23]. In that case, an effective

Michaelis-Menten coefficient appears also in the negative term of

Equation 4, but with the form K9eff,i = (1+yi/Ki). In our study,

however, the competition is induced by the next substrate yi+1, and

this precisely describes a negative feedback from cycle i+1 on cycle

i: the higher the level of xi+1, the smaller yi+1 and, therefore, the

larger the value of the negative term in Equation 6. This modified

denominator reflects the influence of the downstream step on the

state variables of one given cycle. It is not a detail of the formalism.

It has consequences upon the dynamics and on the properties of

the signaling pathway, as it will be demonstrated in the following

sections. Moreover, we will see that, since our system arises from a

controlled approximation of the mechanistic model, the dynamics

of both models can be made comparable.

In the limit gi,ei «1, one retrieves the simple conservation law

xi+yi<1. However, we note that even in that limit and due to K9eff,i,

our resulting system is not equivalent to the GK-like model. Notice

that gi,ei «1 is the closest we can be to the hypothesis behind the

GK-like model, where it is considered that the concentration of the

targeted protein is in large excess over those of the converting

enzymes. In our description, the converting enzymes for unit i are

E9iT (phosphatase) and Yi21,T (kinase). Taking the limit gi «1

together with the fact that the targeted protein of each cycle is the

A Hidden Feedback Is Revealed
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activating protein of the next one, results in increasing protein

concentrations as the cascade proceeds. Even though this is not the

usual condition in signaling cascades, examples could arise where

this limit is suitable. As a possible relevant example, the

concentrations reported for the MAPK cascade go from nM in

the first unit to mM in the second and third ones [8].

In addition to the limit gi,ei «1, our perturbation scheme

encompasses situations where the total protein does not necessarily

increase along the cascade. We then allow gi,1, for all or for

some index i, as long as mi gi,ei, which results in the limit

mi,ei «1. Since mi = ki/k9i, this limit requires that the phosphatase

of that cycle be much more active that the corresponding kinase.

In this limit however, the conservation law remains as expressed in

Equation 7 and no further simplification can be made. As a result,

in this limiting case, the first term in Equation 6 depends on the

variable describing the previous step in a different (and more

complicated) way compared to Equation 4.

Finally, we notice that our description enables a reduction of the

cascade equations with mixed hypothesis concerning the enzy-

matic reactions. For example, we could have m1,e1 and g1,1 for

the first cycle, m2,1 and g2,e2 for the second cycle, etc. Or even

mi,ei
K and gi,ei

K for all or for some index i.

In Text S3, we present the extension of the reduced mechanistic

model for a cascade involving double-phosphorylation. Notwith-

standing that these equations are more complicated than

Equations 6–7, the distinguishing feature is maintained: each

level in the cascade is subject to influence from the following level

which, in the appropriate xi variable, can be identified as a

negative feedback. In the current study we analyze mostly static

properties of these more complicated equations and compare them

to those of Equations 6–7, while a more exhaustive characteriza-

tion will be presented in a future article.

Characterizing the New Model
In this section we report on dynamic and static properties of the

new chain equations (Equations 6–7), when studied by numerical

simulations, and compare them to those of previous cascade

models. We will consider both short (n = 3) and long chains (n = 10,

or 15), respectively. In all the figures we plot yi
*, the level of active

protein, obtained from xi in Equations 6–7 (see Text S4 for a

comparison between variables xi and yi
* ). In this section, each

parameter in the reduced mechanistic model is considered to be

homogeneous throughout the chain, i.e., the parameters do not

depend on the index i characterizing the position of a particular

unit in the chain.

The homogeneity assumption implies that Vi;V = mg/e and

V9i;V9 = 1. Parameter S indicates the level of input stimulation the

chain receives. The parameter K9 is chosen by considering the

relation K9 = K/m. We have performed numerical simulations with

other parameter relationships and the properties reported below are

not critically dependent upon that choice. The control parameters

are, then, V, K, m, and g. Since V9 = 1, the range of V values of

interest lies around 1. The initial condition for all the numerical

simulations considered is, at t = 0, xi = 0 (and yi = 1) for every i.

Performance of the new approximation. In Figure 2 we

present an initial exploration of the dynamics that the reduced

mechanistic model is able to display and how well it approximates

the mechanistic model. As an example, a 10-unit chain was

considered. The temporal evolution of the variable describing the

first unit, y1
*, is plotted. For each choice of g= e (or m = e), the

output of the novel reduced mechanistic model is displayed in

dashed lines and the predictions of the mechanistic model are

depicted in filled lines. The differences between the two

descriptions become more noticeable as e increases, as expected.

Measuring those differences with the L1-norm, meaning that we

compare the curves by computing the difference in the areas under

these curves, we find that the reduced model deviates from the

complete one less than 0.5%, 4.7%, and 10.6%, for e of 0.01, 0.1

and 0.5, respectively, in Figure 2A. The corresponding values for

the percent difference in Figure 2B are 0.9%, 8.3%, and 18%.

We have also computed the errors for less extreme conditions,

such as 1) e= 0.1, g= m = 0.5; 2) e= 0.1, g= 0.5, and m = 1; and 3)

e= 0.1, g= 1, and m = 0.5 (notice that gm,2.5 e for 1) and gm,5

e for both 2) and 3)). The respective errors are 4.3%, 3.5%, and

5% (data not shown). The errors in the prediction of the steady

states are lower than 0.0001% in all the mentioned cases,

indicating the high accuracy of the reduced mechanistic model

to study static features of the cascade. This property is due to the

conservation equation, Equation 7, taking into account the first

correction in ei (see Text S1).

Appearance of damped temporal oscillations. Interest-

ingly, the temporal evolution of activated protein depicted in

Figure 2 exhibits damped oscillations. This feature is displayed by

both the mechanistic model and the novel reduced description

introduced here. However, such behavior is not attainable within

the other available descriptions for signaling cascades models, i.e.

Equations 2 and 4. Our simplified new description reveals this

attribute of the complete (mechanistic) model, that has remained

(to our knowledge) hidden until now.

The existence of damped oscillations has been corroborated by

a numerical study of stability of the steady state of Equation 6,

which is a stable focus. The spectrum of the Jacobian matrix of this

system computed at steady-state indeed possesses several eigen-

values with nonzero imaginary parts. The real parts however, are

always negative (as observed, e.g., by continuation in S parameter)

and therefore we cannot obtain sustained oscillations in this chain.

A more detailed mathematical study of the spectrum of stability of

the chain is beyond the scope of this paper and will be the object of

future work. Damped oscillations are not possible without a

negative feedback between the cycles [24] and thus reflects the

new feature of our model of cascades.

Figure 3 contains a representative characterization of the

model’s temporal dynamics. To simplify the description, we

consider two control parameters: V = mg/e and g, while the other

parameters are set as e= 0.01, K = 0.01 and K9 = K/m. The input

stimulation is turned on at time 0 from S = 0 to S = 1. Figure 3A

displays the parameter space g2V. In every panel of Figure 3B,

the temporal evolution yi
* for three of the units in the chain are

plotted. In some of the plots, the yi
*9s display damped oscillations

before reaching their stationary states. Moving parameter V down

over each one of the selected curves, i.e. from 1.2 to 1 and then to

0.5, enhances the dampening through the chain.

Amplified ‘‘pathway’’ oscillations. Another interesting

and surprising feature revealed by our new model is that, even

though the parameters are homogeneous through the chain, the

steady states of variables yi
* do not always exhibit a monotonous

trend with respect to the unit index i. This property is evident, for

example, in Figure 3B, case B3 (n = 10) where y4
* begins to rise at a

later time, but reaches a higher asymptotic value than y1
*. To

study this phenomenon further, in Figure 3C, we plot the steady-

state value achieved by each unit in a chain with n = 10, versus the

unit index, for the cases A1, A3, B1 and B3. The positional

organization throughout the chain is what we have called

‘‘pathway’’. Thus, in this sense, B3 illustrates ‘‘pathway

oscillations’’ that are being amplified along the cascade. The

other three examples, when examined in detail, exhibit similar

behavior but with less prominent amplification. Notice that for this

particular figure we have plotted the variable xi to better explain

A Hidden Feedback Is Revealed

PLoS Computational Biology | www.ploscompbiol.org 5 2008 | Volume 4 | Issue 3 | e1000041



the origin of the pathway oscillations in terms of Equations 6–7.

The variable yi
* was included only for the case B3 (dashed-dotted

line without symbols). A comprehensive explanation of this

phenomenon is included in Text S5.

Further characterization of the negative feedback

between units. Let us consider a chain that is in equilibrium,

i.e., a cascade in which every unit has achieved steady-state. We

then perturb a single variable xi, as indicated in Figure 4. The

nature of our new description, that couples each unit with both the

previous and the following one, makes it possible to transduce the

localized perturbation in both directions, forward and backward.

Figure 4A and 4B, which correspond to parameters A3 and B3

respectively, illustrate cases where the propagation occurs mainly

forward or mainly backward. However, propagation in both

directions simultaneously is also possible. We observe that

Figure 4B, where the propagation occurs mainly backwards, has

stronger feedback than Figure 4A since K/K9 has a value of 10 for

B and 2 for A.

Stimulus-response curves. We now study the time-

independent features of our model (Equations 6–7), and

compare them with those of the system described by Equation 4

for the same set of parameters. The stimulus-response curve is

defined, as customary, by the steady-state values of the variables as

a function of the input stimulus S (recall that in Equation 6, x0 = S,

which is assumed to be constant in time). Figure 5 shows the

stimulus-response curves obtained with Equation 6 (filled lines) for

condition A1 from Figure 3A, except for the dotted line that was

calculated with the GK-like model (Equation 4). We observe that

with the parameters so assigned, the computations performed with

the reduced model deviate by less than 0.0001% from the (non

approximated) mechanistic model. The results were obtained with

a chain of three units, as an example.

In Figure 5, the variables yi
* display sigmoidal responses. The

low level of activation for units 1 and 2 is due to the fact that the

proteins are indeed partially sequestered in the enzyme-substrate

complexes. However, y3
*, having no possible sequestration,

achieves then a much higher steady state than the other units,

and this steady-state is comparable to the one predicted by the

GK-like model. In contrast, the predictions of the GK-like model

for units 1 and 2 diverge significantly from those of our new model

(data not shown). y3
* in the GK-like model responds in a steep

manner due to the characteristic ultrasensitivity of this model. The

same variable computed with our equations responds in a less

steep way, this disparity could be interpreted, as suggested in the

work of Blüthgen et. al. [3], by the fact that our approximated

model, Equations 6–7, which gives the same output as the full

system, takes into account the sequestration phenomenon. These

ideas are expanded in the following section.

The New Model Applied to a Known Pathway:
Comparison with Experimental Data

In this section we apply the reduced mechanistic model to a

well-known signaling pathway, the mitogen-activated protein

kinase (MAPK) one [3,8–10,25,26]. We first base our description

on a particular published set of parameters for this pathway [8].

Importantly, the results obtained are not qualitatively modified by

variations of the selected values in the ranges suggested in the

literature [8]. Moreover, they are not modified by choosing

different sets of parameters [9,25,26], as described in the Text S6.

It is well know that the MAPK cascade consists of three levels,

the second and the third ones involving a double-phosphorylation

mechanism. In this section we consider both the MAPK cascade

and a simpler case, a 3-unit chain where each unit is a 2-state

cycle.

Starting with the published set of parameters (see [8] and also

[10], for a summary), we have computed the parameters involved

in the reduced mechanistic description and listed them in Table 1.

As described in Text S6, there are some extra parameters for the

case involving double-phosphorylation, that are designated n, K*,

and K0 and take the values of 1, 0.25, and 0.25, respectively.

According to Table 1, the conditions under which the reduced

model is valid are only partially satisfied, gm,e for the first unit

but gm,10 e for the second and third ones. Even for these

conditions and since the focus of this section is in steady states, the

reduced mechanistic model provides a description that is in

excellent agreement with the complete mechanistic one.

In Figure 6 we plot the normalized stimulus-response curves for

a 3-unit chain, either with single-phosphorylation in all the units

(A) or with single-phosphorylation in unit 1 and double-

phosphorylation in units 2 and 3 (B), i.e., the case corresponding

Figure 2. Performance of the new model compared to the mechanistic one. Temporal evolution of the first unit in a chain of 10 units. (A)
g= e= 0.01, 0.1, 0.5 and m = 1. (B) m = e= 0.01, 0.1, 0.5 and g= 1. Other parameters are K = 0.01, K’ = K/m, and S = 1. Dashed lines: output of the new
model; filled lines: output of the complete mechanistic description.
doi:10.1371/journal.pcbi.1000041.g002
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to the MAPK cascade. Both cases are characterized by the

parameters in Table 1. The input stimulus was taken to be the

concentration of E1T , the total amount of kinase for the first unit

in the cascade (corresponding to MAPK kinase kinase in B). E1T,

related to the parameter S we have used as input in the previous

section, was varied over a wide range. The outcomes were

obtained by both the complete mechanistic and the reduced

mechanistic models and the results are indistinguishable for the

scales of the figure (black, blue, and red filled lines for y1
*, y2

*, and

y3
*, respectively). For completeness, we are also including the

corresponding outcomes obtained by the GK-like model (dotted

lines).

In order to compare the steepness in the responses, we have

computed the apparent Hill coefficient nH ([8]) for each curve, as

indicated in the legend. As expected, nH increases through the

chain. Moreover, nH is also considerably reduced when comparing

GK-like model’s predictions with the predictions of both

mechanistic and reduced mechanistic models (which are, as

already mentioned, undistinguishable). As explained in the section

dealing with stimulus-response curves, these differences could be

due to the fact that both the mechanistic and the reduced

mechanistic descriptions take into account ‘‘sequestration’’ in the

enzymatic reactions [3].

We have mentioned that the good agreement between the

mechanistic and reduced mechanistic descriptions regarding the

prediction of steady states is due to the conservation law,

Equation 7, taking into account the first correction in ei (see Text

S1). If that correction is not considered, differences could appear

in the steady states predicted by the mechanistic model and the

reduced mechanistic one. However, and for the parameters in

Figure 6, the predicted values of nH are not modified by removing

the ei correction in the conservation law or, even by, removing the

Figure 3. Characterization of the new model’s temporal dynamics. (A) Parameter space, g on the horizontal axis, V = mg/e on the vertical axis
(notice that the axes are interrupted). The curves g= e and m = e are indicated, and three pairs of values (g,V) over each of them were selected to
show the temporal behavior of the chain. When g= e, parameter V = m was chosen as 1.2 (A1), 1.0 (A2), and 0.5 (A3), respectively. In the same way,
when m = e, parameter V =g was chosen as 1.2 (B1), 1.0 (B2), and 0.5 (B3), respectively. (B) Temporal dynamics for the selected pairs depicted in (A).
e= 0.01, K = 0.01, K’ = K/m, and S = 1 for all the panels. The number of units in the chain, n, is 10, except for cases A3 and B3, where both n = 10 and n = 3
results are shown. In every case, time is plotted in arbitrary units along the horizontal axis and the temporal evolution yi

* for three of the units in the
chain are shown: y1

* (black), y4
* (blue), and y7

* (red). For the case n = 3, the same color pattern is used for y1
*, y2

* and y3
*, respectively. (C) Steady-state

achieved by each unit in a chain with n = 10, plotted versus the unit number, for the cases A1, A3, B1, and B3. For cases A1, A3, and B1, only the results
in variable xi are displayed. Both xi and yi

*are plotted for parameters B3 (dashed-dotted lines with and without stars, respectively.)
doi:10.1371/journal.pcbi.1000041.g003
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gi correction as well (i.e., using a conservation law of the form

xi+yi = 1). These results strongly indicate the robustness of the new

equations regarding the ‘‘ultrasensitivity’’ characteristics of the

cascade.

In Figure 6B, the mechanistic and reduced mechanistic models’

outcomes and corresponding Hill coefficients recover published

results [8]. Comparing figures A and B, we also confirm that the

chain involving double-phosphorylation responds in a steeper

manner than the one with only single-phosphorylation, as

expected from previous work [27].

In Figure 7 we show the outcome of stimulating the 3-unit chain

as indicated in the schemes close to each panel: the input stimulus

to the cascade was taken to be the concentration of E93T , the total

amount of phosphatase for the last unit in the cascade

(corresponding to MAPK in B). E93T was varied over its suggested

range of variation [8]. Increasing the amount of phosphatase

produces a decrease in the response curve y3
* (red filled line), as

expected. Interestingly, our new reduced model (Equations 6–7),

as well as the complete mechanistic description, predict that this

perturbation on the third level of the chain is propagated

backwards: the variation in y2
* is actually a decrease due to a

higher sequestration of free y2
* by the next step in the chain

caused, in turn, by the increased demand of y3. This result is

exhibited by both cascades in Figure 7 (the one involving only

single-phosphorylation and the one with double-phosphorylation

in units 2 and 3) and we call it ‘‘reverse’’ stimulus-response curves.

As stated before, this result is obtained with both the mechanistic

and the reduced mechanistic descriptions, with realistic parame-

ters associated with a well studied signaling pathway, such as

MAPK.

The insets in both figures indicate that is not necessary to vary

parameter E93T over a wide range to observe this property, rather

it is clearly seen by changing it only by a factor 5 around its

suggested concentration (0.12 mM), where a 20% variation in y2
* is

observed, a value that is high enough to be detected experimen-

tally (meaning that it is most likely not contained within the error

of the experiment). Due to the parameters characterizing this

particular pathway, the effect is not propagated to y1
* (black filled

line), but this fact does not have to be generalized (see Text S6).

The dotted horizontal lines in Figures 7A and 7B are the GK-like

prediction for the response curve y2
*: within that phenomenolog-

ical description, a particular level in the cascade is not at all

influenced by what happens in a downstream unit. However, this

well known property of unidirectional influence in a signaling

chain, which is embodied by the appellation of ‘‘cascade’’, is

shown here not to be guaranteed in general signaling cascades.

Figure 4. Lateral input is propagated forwards and backwards in the new model. yi
* is plotted as a function of the index of the unit in the

chain, for a chain of 15 units. The status of the chain at t = 21 (in arbitrary units) is indicated with the symbol +, and it corresponds to the steady-state
situation. At t = 0, the indicated unit (see asterisk on the horizontal axis) receives a perturbation Dx, which is then propagated to other units. Times 1
to 10 are plotted in dotted lines. The parameters are (A) g= e= 0.01 and m = 0.5, (B) m = e= 0.01 and g= 0.5. The remaining parameters are K = 0.01,
K’ = K/m, and S = 1 in both (A) and (B).
doi:10.1371/journal.pcbi.1000041.g004

Figure 5. Stimulus-response curves. Stimulus-response curves
corresponding to parameters A1 in Figure 3, for a chain with three
units. The stimulus strength is the value of S and the response is yi

*.
Variables associated with units 1, 2, and 3 are plotted in filled black,
blue, and red lines, respectively. The stimulus-response curve y3

* for the
GK-like model is superimposed in red dotted lines.
doi:10.1371/journal.pcbi.1000041.g005

Table 1. Parameters involved in the reduced mechanistic
description corresponding to the set of parameters published
in [8] for the MAPK cascade.

Unit e g m K K’

1 0.1 0.1 1 100 100

2 0.00025 0.0025 1 0.25 0.25

3 0.1 1 1 0.25 0.25

doi:10.1371/journal.pcbi.1000041.t001
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In Text S6 we extend the results in this section concerning

‘‘reverse’’ stimulus-response curves, for different sets of published

parameters on the MAPK cascade.

Modular Response Analysis of the Cascade
A modular response analysis (MRA) [28] was applied to

determine the network architecture of the cascade in the context of

the new model equations (Equations 6-7). MRA has recently been

proposed as a tool to characterize the interactions between

‘‘modules’’ in a cellular regulatory network, having the advantage

of allowing direct experimental implementation.

As a matter of fact, the negative sign of the Jacobian element

hẋi/hxi+1 indicates that the (i+1)th level of the cascade exerts a

negative effect in what concerns variable xi. This effect (what we

have called ‘‘negative feedback’’) is intrinsic, as opposed to

‘‘explicit’’ negative feedback which is sometimes considered in

models of signaling pathways [9,12,13]. MRA is, then, an

appropriate approach to test this bidirectional structure and to

estimate the relative strength of the backward interaction, as

compared with the forward coupling in a signaling cascade.

As a result of applying MRA, a matrix of local response coefficients

r is obtained. An element rij in this matrix describes how the state of

Figure 6. Stimulus-response curves for a 3-unit chain. Stimulus-response curves for a 3-unit chain involving only single phosphorylation (A) or
with double phosphorylation in units 2 and 3, representing the MAPK cascade (B). The parameters are those indicated in Table 1. The responses were
obtained by both the mechanistic and the reduced mechanistic descriptions, which are in perfect agreement. The input stimulus is given by E1T , the
total amount of kinase for the first unit. y1

*, y2
*, and y3

* are plotted with black, blue, and red filled lines, respectively. GK-like model predictions are
also included (dotted lines). The Hill coefficients characterizing each curve are listed in the legend.
doi:10.1371/journal.pcbi.1000041.g006
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the variable associated with module j directly influences the state of

the variable associated with module i. More precisely, a response

coefficient rij lower/greater than 1 means that a relative change in

module j is attenuated/amplified in module i by a factor rij (i.e., Dxi/

xi = rij Dxj/xj). A zero response coefficient indicates no direct effect

between the involved modules, whereas a negative response

coefficient means inhibition. In this way, the matrix r provides an

interaction map to characterize the type and strength of the

interactions between the modules in a cellular regulatory network.

Indeed, if the rate of change of variable xi is denoted by the

function fi, it easily can be shown that:

rij~{ xj
Lfi

Lxj

� �.
xi

Lfi

Lxi

� �
, ð8Þ

meaning that rij corresponds to a scaled version of the Jacobian

matrix hfi/hxj (evaluated in the steady state). Moreover, it was

proven that the local response matrix r can be obtained from

another matrix named global response matrix, Rp, that has the

advantage of being accessible experimentally [28]. For example,

the element (i, j) of this matrix can be obtained by perturbing a

parameter pj affecting only module j and computing the relative

changes induced on the steady state of xi, namely (Dxi/xi)/Dpj. For

more details about the broad scope of the method, we refer the

reader to the cited reference and references therein.

Using notations and concepts from the literature [28], we apply

the MRA method to a 3-unit cascade involving only single-

phosphorylation and characterized by the parameters in Table 1

[8]. There are three modules in this network as described by

Equations 6-7, each of them corresponding to the three successive

levels in the cascade and characterized by a single variable xi.

Figure 8A contains the matrix of local response coefficients r. This

matrix was obtained both by direct computation of the scaled

Figure 7. ‘‘Reverse’’ stimulus-response curves. ‘‘Reverse’’ stimulus-response curves for a 3-unit chain involving only single phosphorylation (A)
or with double phosphorylation in units 2 and 3, representing the MAPK cascade (B). The parameters are those indicated in Table 1. The responses
were obtained by both the mechanistic and the reduced mechanistic descriptions, which are in perfect agreement. The input stimulus is given by
E’3T, which is the total amount of phosphatase for the last unit. y1

*, y2
*, and y3

* are plotted with black, blue, and red filled lines, respectively. GK-like
model predictions are also included (dotted lines). Insets show details of the figures.
doi:10.1371/journal.pcbi.1000041.g007
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Figure 8. Modular response analysis (MRA). Modular response analysis (MRA) applied to the new model for signaling cascades. MRA was
applied to a 3-unit cascade involving only single phosphorylation and characterized by the parameters in Table 1. (A) Interaction map and
reconstructed network topology regarding variables xi. (B) Local response coefficients (regarding xi) versus parameter E1T. Black, blue, red, and green
for r12, r21, r23, and r32, respectively. The asterisks over each curve indicate the values of the matrix in (A), corresponding to E1T = 361024 mM. (C)
Interaction map and reconstructed network topology regarding variables yi

*.
doi:10.1371/journal.pcbi.1000041.g008
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Jacobian matrix (Equation 8) and by simulating experimental

perturbations to the cascade, then computing the global response

matrix, Rp, and finally obtaining r, as described previously [28]

(details of second calculation not shown). Using MRA, the

‘‘theoretical’’ and ‘‘experimental’’ outputs were in perfect

agreement and the results are displayed in Figure 8A.

The structure of matrix r is tridiagonal, meaning that the first

level in the cascade does not directly influence the third one

(r31 = 0), and viceversa (r13 = 0). Coefficients r21 and r32 are

positive, representing the positive effect of each level in the

cascade to the subsequent one. Interestingly, r12 and r23 are both

negative, indicating an inhibitory effect from unit (i+1) to unit i.

The resulting connections between the units in the cascade are

summarized in the scheme in Figure 8A.

To understand these results in more depth, we have studied how

the coefficients in the matrix in Figure 8A depend on the

parameters characterizing the cascade. For example, Figure 8B

shows coefficients r21, r32, r12, and r23 versus the parameter E1T. r31

and r13 are zero (data not shown), r21 and r32 are positive, and r12

and r23 are negative, throughout the range where E1T was varied.

Depending on the value of E1T, each of the nonzero rij could be

less or greater than 1 and the relative strength of the backward and

forward couplings for a given pair of modules, e.g. |r12/r21|, could

exhibit large variations. Similar curves have been reported in the

literature for signaling cascades [29], but lacking the information

about r12 and r23, which have always been considered to be zero in

previous papers.

Studies like the one in Figure 8B help us understand and also

predict the degree of backwards coupling as a function of the

parameters in the model. One utility of this work is as a starting

point of a more systematic study on how to enhance or attenuate

that coupling in the cascade, the subject of our ongoing work.

Interestingly, the interaction map characterizing the connectiv-

ities between variables xi (matrix r(xi) in Figure 8A) shows strong

differences when compared to the one computed for the ‘‘free’’

enzyme variables yi
* (matrix r(yi

*) in Figure 8C. Although an

explicit set of differential equations is not written for the variables

yi
*, the matrix r(yi

*) can be calculated using the ‘‘experimental’’’

method described in the literature [28]. The result in Figure 8C is

the average of four outputs and the corresponding error (standard

error of the mean) is lower than 4%. As indicated in the

reconstructed topology close to the matrix, r12 and r23 are now

positive (as are r21 and r32), r31 is zero, and r13 is negative,

indicating an inhibitory coupling from variable y3
* to variable y1

*.

The matrix r(yi
*) is consistent with the results in Figure 7A (and

also those in Text S6): in other words, the response in y2
* goes in

the same direction as the one in y3
* (whereas plotting variables xi

indicates a decrease in x3 and an increase in x2, data not shown).

Experimental data concerning the application of MRA to the

MAPK cascade are now available in the literature [30], showing

non zero r21 and r32 coefficients (and also non zero r31 and r13

coefficients). The interpretation of non zero r31 and r13 was

proposed in terms of the usual ‘‘explicit’’ positive or negative

feedbacks which are sometimes considered in models of signaling

pathways [9,12,13]. From this perspective, the explanation for the

non zero r12 and r23 coefficients was, at least regarding r23 and

based on experimental evidence, that not only is y2
* able to

phosphorylate y3, but y3
*can phosphorylate y2 as well [30,31]. Our

results however, suggest that the non vanishing backward

coefficients (r12, r13, r23) can be accounted for, at least partly, by

the natural ‘‘implicit’’ feedback which can exist in a signaling

cascade. A quantitative correlation between these recent experi-

mental results and our predictions is not possible at this time. In

the published experiments, the MAPK cascade is not isolated but

embedded in the complex cellular machinery; therefore, the

measured connectivities could involve proteins external to the

cascade itself and it would be premature to establish the

connection with our simplified model. Nevertheless, the work in

[30] suggests a direction for the type of experiments that could

validate our results.

Discussion

The main contribution of this work is to propose a new one-

variable per cycle model for signaling cascades of covalent

modification cycles, consistent with a mechanistic complete

description. Our model reveals new and biologically relevant

properties of such cascades. These properties are characterized

completely for the case of single-phosphorylated cascades.

Furthermore, single and doubly-phosphorylated cases are com-

pared regarding their stimulus-response curves, while a more

exhaustive characterization of the scheme involving double

phosphorylation will be presented in a future article.

The scheme in Figure 1, which has been employed by many

groups, is suggestive of the concept of a ‘‘cascade’’. From a systemic

point of view, a cascade is a system composed of units, the output of

which is successively an input to the next unit. Based on this

structure, powerful concepts from control theory can be applied

successfully to the study of signaling cascades [14]. Although these

concepts have proven its utility in many contexts, this kind of

schematic representation implicitly conveys the idea that a signaling

cascade is only a feed-forward chain in which signal transmission is

analogous to a domino effect [32,33]. Our study sheds a different

light on this system, showing that this schematic representation can

be misleading, since it turns out that each unit is actually coupled not

only to the following one but also to the previous one, and interesting

dynamics can arise from these interactions.

Our initial motivation for developing a new one-variable

description of signaling cascades, was the following observation.

The main assumption underlying the GK description of a single

cycle is that the concentration of the target protein is in large

excess compared to those of the converting enzymes. Holding the

same assumption over a cascade of units would mean that the

target proteins are in higher and higher concentration as the

cascade progresses, since they act as the transforming enzyme for

the following cycle. To our knowledge, this important issue has not

been remarked upon in the literature, except for a brief comment

in the work of Millat et. al. ([20], page 11).

In order to get more insight into this point, we have sought

special limiting cases for which the mechanistic and the GK-like

model are in good agreement. However, it turns out that the

dynamics of the signaling cascade described by the mechanistic

and the GK-like models cannot be compared consistently. The

fundamental reason for this mismatch is that a careful perturba-

tion analysis applied to the mechanistic model provides a different

set of equations.

We note that in search for an adequate set of hypothesis leading

from the mechanistic equations to the model given by Equations 4,

we have studied an alternative scheme in which the modified

protein Yi
* is not directly the kinase of the next reaction. Instead,

we studied the case where Yi
* activates that kinase. This scheme

was suggested by the work of Goldbeter [12]. The resulting

equation (see Text S7) is fundamentally different from the GK-like

model. In reality, no set of assumptions can give rise to the GK-

like model as a limiting case of our model.

Our mathematical method relies on the standard quasi-steady

state assumption (QSSA), which can be applied under well defined

conditions to elicit a clear separation between the slow and fast
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dynamics of the mechanistic model. Under this standard QSSA

framework, our analysis shows that a good slow variable for which

evolution equations can be written is the sum of the free activated

enzyme which is available in the ith cycle plus the amount of this

protein which is captured by the next inter-converting cycle. The

idea of working with a mixed variable xi can be further generalized

by considering the ‘‘total’’ variable corresponding to the total

amount of activated enzyme found not only as free molecules or

bound to the next substrate, but also complexed with the reverse

enzyme E9i. In fact, this choice is the key ingredient of the method

called the ‘‘total’’ quasi-steady state approximation (tQSSA) which

has been proved to be a simple but most efficient extension of the

standard QSSA [34]. The application of this extended framework

to the description of the signaling cascade of Figure 1 is concerned

with our current research. In the same context, other authors have

recently applied the tQSSA method to the study of small networks

of GK cycles [35]. These systems do not form cascades, but

involve a more complicated coupling between the units.

Nevertheless, their results show that indeed the tQSSA method

is successful in obtaining a reduced set of equations, with one

variable per cycle, which faithfully reproduces the dynamics of the

network for a large range of system parameters.

Even in the less extended QSSA framework, the conditions

under which the model is valid are made clear. Under such

conditions, our new model is indeed in perfect agreement with the

complete mechanistic model (Figure 2). Those conditions are

expressed in terms of three key parameters (Equation 5) we have

defined to simplify the study. Even though the phenomenological

equations, Equation 4, are appealing because of their simpler form

and modular nature, we could not find any set of assumptions that

would enable us to recover those descriptions. Our simplified

model reveals properties of signaling cascades that were either

hidden by the complex structure of the complete mechanistic

model or lost in the simplified phenomenological descriptions.

It was stated that the reduced mechanistic model is valid

whenever these two conditions are satisfied: ei «1 and mi gi,ei. The

study of the performance of the new approximation (Figure 2 and

the corresponding computed errors) makes it clear that even when

those conditions are satisfied only moderately, the new model is

still robust in approximating the complete description. As an

example, we have computed a 5% error for e= 0.1, g= 1, and

m = 0.5 (meaning mg,5e). Moreover, we have observed that the

steady state predictions of the reduced model are highly accurate.

Therefore the properties of signaling cascades we are unveiling

thanks to the new reduced model, are not restricted by a tight

relationship between concentrations and reaction rates hard to

achieve in in vivo or in vitro conditions.

All the novel properties of a signaling cascade reported in this

paper are linked, as previously mentioned, to the negative

feedback from each unit to the previous one. This backward

negative feedback can produce damped temporal oscillations in

the chain, or it can create amplified ‘‘pathway’’ oscillations in the

steady states of the cascade. Interestingly, it can also transduce a

signal both forward and backwards. Given the multi-branched

complex nature of many signal transduction pathways, this finding

could have wide implications and can help focus further

experimental investigation.

It has recently been reported that the 3-level MAPK cascade has

autonomous oscillations without any kind of added explicit feedback

[36]. Following a systematic numerical exploration of the corre-

sponding mechanistic model [8], the authors provide a qualitative

description of the mechanism responsible for these sustained

oscillations. Their explanation strongly suggests the necessity of a

bistable behavior at the second or third levels of the cascade, thus

requiring double-phosphorylation at these stages [37]. Consistent

with their findings, we have observed only damped oscillations in the

dynamics of the single-phosphorylated cascade (Equations 6–7),

which has been the main focus of the present work. Interestingly,

preliminary numerical simulations of our reduced doubly-phosphor-

ylated cascade model (Text S3), indicates that these autonomous

oscillations are recovered in the simplified description.

The stimulus-response curves of the new model were also

investigated (Figure 5). They have the usual sigmoidal shape

characteristic of ultrasensitive responses; however, they exhibit lower

steepness when compared with the output of the GK-like model.

This result corroborates the conclusions stated in the work of

Blüthgen et al. [3], where an analysis of the effect of sequestration

was conducted. This effect is partially mitigated by double-

phosphorylation (Figure 6), as expected from the literature [27].

To further characterize the new model within realistic

conditions, we have studied it subject to different sets of published

parameters corresponding to a well-known signaling pathway,

such as the MAPK one (Figures 6 and 7, and Text S6). We have

found that the ability of the model to transduce a signal both

forward and backwards is widespread and that the effect is of

enough magnitude to allow experimental verification.

Finally, we have applied a modular response analysis to determine

the network architecture of the cascade described by the new model

equations (Figure 8). This well-known approach enables not only to

test the bidirectional structure of the cascade, but also to estimate the

relative strength of the backward interaction.

In summary, our findings do not at all weaken the importance

of previous models like the GK-like models and those with linear

rates. To the contrary, the results of our model provide a different

approach to deal with a simple one-variable per cycle model to

describe signaling cascades. We hope that our contribution will

help in the understanding of existing models for signaling cascades,

will improve the description of available data, and will inspire both

theoretical and experimental investigation.

Methods

All the ODEs were integrated in MATLAB 7 (Mathworks,

Natick, MA). The stimulus-response curves were obtained using

MATCONT, a MATLAB package for numerical bifurcation

analysis of ODEs. The symbolic calculations were done using the

Symbolic Math Toolbox in MATLAB.
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