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Abstract

The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known
about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes,
such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in
the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in
activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate
analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade
level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation
appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For
spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the
opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients
characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial
guidance for multiple cellular processes and conveys information about the cell size to the nucleus.
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Introduction

Cascades of covalent protein modification cycles convey signals

from cell-surface receptors to target genes in the nucleus. Each

cycle consists of two or more interconvertible protein forms, for

example, a phosphorylated and unphosphorylated protein, and an

active, phosphorylated protein signals down the cascade. In

eukaryotes, post-translational protein modifications include phos-

phorylation of Tyr, Thr and Ser residues, ubiquitylation,

acetylation or sumoylation of Lys, methylation of Arg and Lys,

and other modifications [1]. Every protein modification cycle is

catalyzed by two opposing enzymes, such as a kinase and

phosphatase for (de)phosphorylation cycle, ubiquitin ligase and

deubiquitylating isopeptidase for (de)ubiquitylation, and methyl-

transferase and amine oxidase demethylase for (de)methylation.

Well known examples of signaling cascades include mitogen

activated protein kinase (MAPK) cascades, small GTPase cascades

and coagulation cascades in blood clotting [2–4]. Instructively,

although a MAPK cascade is usually referred to as a 3-tier

pathway, in fact, the cascade encompasses five or more layers,

which sequentially activate each other [5].

While signaling cascades were studied experimentally and

theoretically for more than half a century, most studies disregarded

the spatial aspects of signal propagation, considering one or more

well-mixed compartment(s) with no variation in spatial dimensions.

The stationary and temporal behavior of protein modification

cascades was extensively analyzed, starting from pioneering

numerical simulations by Stadtman and Chock [6] and followed

by a theoretical exploration of steady-state input-output responses for

a signaling cycle by Goldbeter and Koshland, who coined the term

ultrasensitivity [7]. Depending on the degree of saturation of

opposing enzymes in a modification cycle, the response curve for

either interconvertible form varies from a merely hyperbolic to an

extremely steep sigmoidal function [7]. Subsequent work showed

that an increase in the number of layers in a cascade can further

increase the sensitivity of the target to the input signal [8,9].

Although the dynamics of temporal responses of signaling cascades

to a sustained, decaying or pulse-chase stimulation received less

attention, the major types of temporal responses have been

described. Depending on the cascade architecture and kinetic

parameters, the sustained input can evoke sustained, transient

[10,11] or more complex, bistable [12,13] and oscillatory responses

[14–16]. An exponentially decaying input, which approximates the

activity of a receptor after stimulation by a step function, causes a

transient cascade response [17]. Yet, despite important break-

throughs in understanding the input-output relationships and

temporal dynamics of information processing, we currently lack

sufficient theoretical and experimental insights into spatial propaga-

tion of signals generated by protein modification cascades [18,19].

External signals received at the plasma membrane have to

propagate across the cell to reach their targets, and, therefore,

protein diffusion and active transport can change quantitative and
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qualitative aspects of output signaling by protein cascades [20–26]. In

fact, signaling cascades are spatially distributed in living cells. Often,

activating signals are only present on the cell membrane where

activated receptors and small G-proteins (such as Ras and Rap that

activate MAPK cascades) reside, whereas inactivating signals (carried

out by phosphatases in MAPK cascades) are distributed throughout

the cytoplasm. The concept of protein activity gradients that arise

from the spatial separation of opposing enzymes in a protein

modification cycle was proposed fairly recently [27]. For a protein

phosphorylated by a membrane-bound kinase and dephosphorylated

by a cytosolic phosphatase, Brown & Kholodenko predicted that

there can be a gradient of the phosphorylated form, with high

concentration close to the membrane and low within the cell [27].

This prediction was confirmed after a few years, when biosensors

based on fluorescence resonance energy transfer enabled the

discovery of activity gradients of the small GTPase Ran [28],

microtubule-binding protein stathmin [29], the yeast MAPK Fus3

[30], and, very recently, the anaphase phosphorylation gradient of

Aurora B kinase, which, as a part of the chromosome passenger

complex controls microtubule attachments to kinetochores and the

late stages of cell division [31].

Precipitous gradients of phosphorylated kinases can impede

information transfer from the plasma membrane to distant cellular

locations, such as the nucleus. In the Ras/Raf/Mek/ERK (MAPK)

cascade, Ras, Raf and, partially, MEK activation is localized to the

plasma membrane, whereas MEK and ERK deactivation by

phosphatases occurs in the cytoplasm. Calculations [32,33] and the

experimental data [30] suggest that gradients of phosphorylated

MEK and ERK can be steep, when the phosphorylated signals are

terminated by phosphatases at the distances of 3–5 mm and greater

from the plasma membrane. Despite recent work on the long-range

signal transfer by phosphoprotein waves [33], the quantitative

understanding of how activity gradients spread in the space by the

subsequent levels of signaling cascades is still lacking. It is not

understood how the spreading of phosphorylation signals depends on

the number of cascade levels (stages) and how the gradients of

phosphoproteins along the cascade are controlled by the kinetic

properties of the kinases and phosphatases. The previous work

suggested that having more layers in a cascade would spread the

phosphorylation signal to span ever increasing distances from the

activation source [14,27]. The present paper shows that this simplistic

view should be improved, and if the ratio of the phosphatase and

kinase activities is above a certain threshold, the propagation of the

phosphorylation signal stalls in the space. We demonstrate that a

signaling cascade can produce a set of steady-state activation profiles

that precipitously decay at different locations for different levels of the

cascade. We determine analytically these locations, relating them

with the kinetics of component reactions in signaling cascades. These

activation profiles provide the localization information, which then

can be used by other signaling pathways to regulate a range of cellular

processes. We determine the features and conditions of the signal

propagation and investigate the effect of saturation of activation and

deactivation reactions on the generation of positional information.

Model

Model of a spatially distributed signaling cascade
Spatial separation of opposing enzymes, such as kinase and

phosphatase, are hallmarks of protein modification cascades,

including MAPK cascades. Here we consider a cascade of protein

modification cycles, where each cycle consists of inactive and active

forms of a signaling protein, and the active form catalyzes the

activation of the protein at the next level down the cascade (Fig. 1).

Although our analysis applies to any kind of protein modification,

for convenience we will use the terminology of protein phosphor-

ylation and dephosphorylation and a cascade of protein kinases as

an example. The initial diffusible kinase in the cascade is activated

exclusively at the plasma membrane by the membrane-bound

receptor or small GTPase, whereas downstream kinases are

phosphorylated in the cytoplasm by an active, diffusible kinase of

the upstream level. A phosphorylated kinase is dephosphorylated in

the cytoplasm by an opposing phosphatase at each cascade level.

A simplified model, which neglects protein sequestration effects

[34,35], describes the signaling system in terms of the concentra-

tions of the phosphorylated protein, Cp
n , and the concentration of

its unphosphorylated form, Cu
n , at each level n of the cascade. The

spatio-temporal dynamics of the phosphorylated kinases are

governed by the following reaction-diffusion equations:

LC
p
1

Lt
~DDC

p
1{v

phosph
1 ;

LCp
n

Lt
~DDCp

nzvkin
n {vphosph

n , n~2, . . . N;

ð1Þ

where D is the diffusion constant, and vkin and vphosph are the

phosphorylation and dephosphorylation rates, catalyzed by kinases

and phosphatases, respectively. The equation for C
p
1 lacks the

phosphorylation rate term, as the first level kinase is phosphor-

ylated solely at the membrane.

Spherical symmetry simplifies analysis of signaling in three

dimensions, as the protein concentrations become functions of the

radial distance and time only [27]. For simplicity, we neglect

curvature effects and further consider a one-dimensional reaction-

diffusion system with the Cartesian spatial coordinate x and the first

kinase activated at the pole x = 0 (the plasma membrane). For this

kinase, the diffusive flux at the membrane (x = 0) equals the surface

phosphorylation rate, vkin
1 , and zero at the opposite pole, x = L. For

kinases at the subsequent levels, there is no diffusive flux at either

pole, which gives the following boundary conditions for Eq. (1):

D
LC

p
1

Lx

����
x~0

~{vkin
1 , D

LC
p
1

Lx

����
x~L

~0;

D
LCp

n

Lx

����
x~0

~D
LCp

n

Lx

����
x~L

~0, n~2, . . . ,N:

ð2Þ

When diffusivities (D) of the phosphorylated and unpho-

sphorylated forms are equal, and de novo protein synthesis and

Author Summary

Living cells detect environmental cues and propagate
signals into the cell interior employing signaling cascades
of protein modification cycles. A cycle consists of a pair of
opposing enzymes controlling the activation and deactiva-
tion of a protein, where the active form transmits the signal
to the next cascade level. A crucial challenge in cell and
developmental biology is to understand how these
cascades convey signals over large distances and how
spatial information is encoded in these signals. With the
advent of advanced imaging techniques, there has been
emerging interest in understanding signal propagation in
cells and tissues. Based on a simple cascade model, we
determine the conditions for signal propagation and show
how propagating signals generate spatial patterns that can
provide positional information for various cellular processes.
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degradation are negligible on the time scale considered, the total

protein abundance at each cascade level, Ctot
n , is constant across

the cell [19],

Cp
n x,tð ÞzCu

n x,tð Þ~Ctot
n : ð3Þ

Assuming that the kinases and phosphatases follow Michaelis-

Menten kinetics, at each level the phosphatase rate depends on the

phosphorylated form concentration, Cp
n , whereas the kinase rate

depends on the concentration of the unphosphorylated protein,

Cu
n~Ctot

n {Cp
n , and the concentration of the active kinase, C

p
n{1,

at the immediately preceding level,

vphosph
n ~Vphosph

max,n

Cp
n

K
phosph
M,n zC

p
n

, n~1, . . . ,N;

vkin
1 ~Vkin

max,1

Ctot
1 {C

p
1 0,tð Þ

Kkin
M,1zCtot

1 {C
p
1 0,tð Þ

;

vkin
n ~kkin

cat,nC
p
n{1

Ctot
n {Cp

n

Kkin
M,nzCtot

n {C
p
n

, n~2, . . . ,N:

ð4Þ

Here kkin
cat,n, Vkin

max,1, and Vphosph
max,n are the catalytic constant (turnover

number) and the maximal rates. Kkin
M,n and K

phosph
M,n are the

Michaelis constants of the kinase and phosphatase at the n-th level

[14]. Note that, in contrast with downstream levels, the surface

rates vkin
1 and Vkin

max,1 have the same dimension as the diffusion flux

(e.g, m?sec21).

It is convenient to use the normalized protein concentrations

cn~Cp
n

�
Ctot

n . Dividing Eqs. (1)–(4) by Ctot
n , and bearing in mind

that the unphosphorylated fractions are given by cu
n~1{cn, we

simplify the description of the cascade dynamics as follows

Lc1

Lt
~D

L2c1

Lx2
{ki

1

c1

1z c1

mi
1

� � ;

Lcn

Lt
~D

L2cn

Lx2
{ki

n

cn

1z cn

mi
n

� �zka
n

1{cnð Þcn{1

1z 1{cn

ma
n

� � , n~2, . . . ,N;

D
Lc1

Lx

����
x~0

~{ka
1

1{c1

1z 1{c1

ma
1

������
x~0

,

Lc1

Lx

����
x~L

~0;
Lcn

Lx

����
x~0

~
Lcn

Lx

����
x~L

~0, n~2, . . . ,N:

ð5Þ

Here ki
n~Vphosph

max,n

.
K

phosph
M,n are the phosphatase activities (known

as the apparent first-order rate constants for a linear kinetic

domain), ka
1~Vkin

max,1

.
Kkin

M,1 and ka
n~Vkin

max,n

.
Kkin

M,n for n = 2, …,

Figure 1. Cascade signaling scheme.
doi:10.1371/journal.pcbi.1000330.g001
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N, are the kinase activities, where the maximal kinase rate is

Vkin
max,n~kkin

cat,nCtot
n{1 for n = 2, …, N. The dimensionless (normal-

ized) Michaelis constants of the phosphatases and kinases are

mi
n~K

phosph
M,n

.
Ctot

n and ma
n~Kkin

M,n

.
Ctot

n , respectively. The en-

zyme activities ka
n and ki

n determine the temporal scale of chemical

reactions, indicating how fast phosphorylation and dephosphory-

lation occur, whereas the normalized Michaelis constants ma
n and

mi
n characterize how far these reactions are from saturation

(unsaturated reactions correspond to ma
n, mi

n&1).

Results

Signaling cascades where reactions are far from
saturation

In this section we study the case when the total concentrations

are small compared to the Michaelis constants, or in terms of the

non-dimensional parameters, mi
n,ma

n&1. From Eq. (5), it follows

that the evolution of the concentration of the active component at

the first level is given by

Ltc1~DL2
xc1{ki

1c,

DLxc1jx~0~{ka
1 1{c1ð Þ

��
x~0

, Lxc1jx~L~0,
ð6Þ

where we used the notation, Lt and Lx, for the partial derivatives

with respect to time t and the spatial coordinate x. The stationary

solution to Eq. (6) reads,

c1 x,t??ð Þ~c1 0ð Þ e
{axze{2aLeax

1zge{2aL
, ð7Þ

where a~ ki
1

�
D

� �1=2
, c1 0ð Þ~ka

1

.
ka

1z ki
1D

� �1=2
h i

, and

g~ ka
1{ ki

1D
� �1=2

h i.
ka

1z ki
1D

� �1=2
h i

. The distance a{1 defines

the characteristic length scale for the gradient of the first kinase

activity. When the spatial domain is large, that is aL&1, the

activation profile of the first kinase decays almost exponentially,

c1 x,t??ð Þ&c1 0ð Þe{ax. Note, that regardless of the particular

kinetics of the activation at the membrane, the steady-state profile

c1 x,t??ð Þ=c1 0,t??ð Þ of the first level kinase always decays nearly

exponentially for large domains [27]. Using typical values of

D = 5 mm2 s21, Vphosph
max,n

.
Ctot~3 s{1 and K

phosph
M,n

.
Ctot~0:7 as in

Ref. [14], the characteristic length scale can be estimated as

a{1&1 mm.

In addition to solving Eq. (5) numerically, we will explore

analytically how the kinase activation profiles spread from the cell

membrane into the cell interior. To simplify the analysis, we will

further assume that the phosphatase activities ki
n for n = 1, …, N

and the kinase activities ka
n for n = 2, …, N do not vary over

different cascade levels (although the values of the maximal rates,

Michaelis constants and the total protein concentrations can be

unique for each individual level). Non-dimensionalizing Eq. (5) by

using the characteristic length scale 1/a, as x0?ax, and the

temporal scale 1=ka, t0?kat, we obtain (omitting primes)

Ltc1~cL2
xc1{cc1;

Ltcn~cL2
xcn{ccnz 1{cnð Þcn{1, n~2,::,N;

Lxc1jx~0~{n 1{c1ð Þjx~0~0,

Lxc1jx~L~0; Lxcnjx~0~Lxcnjx~L~0, n~2, . . . ,N;

ð8Þ

where c~ki=ka is a key parameter equal to the ratio of the

phosphatase and kinase activities (the ratio of deactivation and

activation rates for a general case). The parameter

n~ka
1

.
kiDð Þ1=2

indicates the strength of the membrane signal

that determines the phosphorylation level of the first kinase at the

membrane, as c1 0ð Þ~n= 1znð Þ.
We will first examine numerical solutions of Eq. (8) with the

initial conditions cn x,t~0ð Þ~0, n = 1,…,N on a domain of size

L = 100 and n~1. These numerical solutions are shown in Fig. 2

for six consecutive cascade levels. Note that the initial conditions

and the signal strength n do not affect the qualitative behavior of

solutions (see the supporting information, Figs. S1 and S2). For

c= 0.1, the concentration profiles propagate into the domain,

moving to the right, until stationary profiles are attained (Fig. 2D).

The stationary concentration profiles propagate more deeply into

the spatial domain as n increases, i.e. at higher levels of the

cascade. A similar behavior is found for other values of c,1.

For c.1 we find a different scenario (see Fig. S3). In this case,

the concentration profiles remain localized to the region near the

left boundary, and their amplitudes decay dramatically for the

consecutive levels. Thus, in this case the signal does not propagate

through the domain and does not reach the right boundary.

Examples of the asymptotic, steady state solutions are shown in

Fig. 3 for a range of the ratios c of the phosphatase and kinase

activities. When c,1, the width of the profiles increases for smaller

c, while for c.1 larger values of c result in a faster decay with the

concentration profiles localized to the left boundary. Note that the

stationary solution for the first level is independent of c.

In general, there is no simple analytical expression for the

stationary solutions of Eq. (8), but we can gain some insight

considering the behavior of these solutions within a range where

cn%1. This approximation is always valid for the tail of the spatial

distribution, that is for sufficiently large x, but when c.1, it can be

satisfied over the whole domain. In this case, we can rewrite Eq. (8)

in the stationary state as

cL2
xcn{ccnzcn{1~0: ð9Þ

This is a system of second order linear differential equations,

which can be solved successively to obtain cn~Q
n{1ð Þ

n xð Þe{x

where Q
n{1ð Þ

n is a polynomial of order n{1 (explicit expressions

are given in Text S1). Figs. 3C and 3D (dashed lines) illustrate that

for c.1 the analytical solution of Eq. (9) agrees well with the

numerical results.

Importantly, for c substantially less than 1, we can determine

the propagation length for successive activation profiles by using

Eq. (9) near the tail of the distribution. Since the approximation

cn%1 is not valid near the boundary x = 0, the coefficients of the

polynomial Q
n{1ð Þ

n xð Þ cannot be exactly calculated (Text S1).

However for small values of c, when the activation signal spreads

far enough x&1 for the tail region, the dominant contribution to

the solution comes from the largest order term in Q
n{1ð Þ

n xð Þ which

can be exactly obtained (see Text S1),

cn xð Þ& c1 0ð Þ
n{1ð Þ! 2cð Þn{1

xn{1e{x: ð10Þ

These solutions are shown (dotted lines) in Fig. 3A and B for

different values of c. Thus Eq. (10) gives a simple analytical

approximation to describe the tail of each stationary profile. We

will use this approximation to obtain the propagation length of the

activation profile at different levels of the cascade. We formally

define the propagation length of the steady state solution, Ln, as

Positional Information by Signaling Cascades
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the coordinate x where the concentration falls below a certain

threshold e. Using Eq. (10) we have cn x~Lnð Þ~e, which gives an

implicit equation for the length, Ln, that can be expressed by the

Lambert W function [36] (or simply solved numerically),

Ln~{ n{1ð ÞW{1
{2c

n{1ð Þ
n{1ð Þ!e
c1 0ð Þ

� �1= n{1ð Þ
 !

, ð11Þ

where the index 21 denotes the solution branch of the Lambert

function corresponding to the values of Ln§1. In the original

dimensional units this length corresponds to D=kið Þ1=2
Ln, hence

the spatial spread of signaling by each phosphorylated kinase is

well characterized by the propagation length Ln. Figure 4 shows

that if the concentration profiles for the successive cascade levels

are shifted to the left by the distance Ln given by Eq. (11) with

e~10{3, the resulting profiles cn x{Lnð Þ converge to a single

curve. Thus, Fig. 4 demonstrates that the steady state profiles have

flat plateaus, which start from the left boundary. The length of

each plateau, where the concentration is almost constant, increases

with the cascade level, n. The plateau is followed by a transition

region where the concentration decreases to zero. The shape of the

curve corresponding to the transition region is asymptotically

independent of n, with faster convergence to this asymptotic form

for smaller values of c.

We can also determine the maximum active concentration

(termed the maximal signaling amplitude) cn 0ð Þ for n~2 . . . N
that corresponds to the plateau region. Since the concentration

field in the plateau region is flat, the second derivative can be

neglected. Assuming that n is sufficiently large, cn 0ð Þ~c 0ð Þ is

Figure 2. Active form concentration profiles, cn xð Þ, obtained by numerical integration of Eq. (8) with c = 0.1 at different times: (A)
t = 1; (B) t = 10; (C) t = 50; (D) t~104.
doi:10.1371/journal.pcbi.1000330.g002
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independent of n, and using Eq. (8), we obtain,

{cc 0ð Þz 1{c 0ð Þ½ �c 0ð Þ~0: Hence, c 0ð Þ~1{c~1: ð12Þ

Note that a positive solution for c 0ð Þ only exists for c,1, that is

consistent with the observation that the signal cannot propagate

into the spatial domain when c.1.

Assuming the same profile shape for the different levels, we can

use Eqs. (11) and (12) to estimate the total amount of active

component cn for small values of c. The cn value presents the

stationary cascade activation response integrated over the space.

At each level this spatial integral response should be proportional

to the propagation length of the signal, cn!c 0ð ÞLn~ 1{cð ÞLn.

The asymptotic expansion of Ln is proportional to ln 1=cð Þ n{1ð Þ,
thus the total active component of the different cascade levels

depends on c according to the functional form

cn! 1{cð Þln 1=cð Þ n{1ð Þ. This indicates that the difference in

the total activated concentration at consecutive levels is

cn{cn{1! 1{cð Þln 1=cð Þ, hence there is a constant step size

between consecutive levels proportional to 1{cð Þln 1=cð Þ which

agrees with the numerical results shown in Fig. S4.

Signaling cascades with saturable enzymes
In this section we consider a more general case given by Eqs. (5)

that allows for saturation kinetics. Following the rescaling as in the

previous section, the dynamics of the concentrations is described

Figure 3. Stationary concentration profiles, cn xð Þ, for different values of c: (A) c = 0.05; (B) c = 0.25; (C) c = 4; (D) c = 50. The dotted lines
in Fig. (A) and (B) are given by Eq. (10). Dashed lines in Figs. (C) and (D) are the exact solutions to Eq. (9) given in the supporting information by Eq.
(A2).
doi:10.1371/journal.pcbi.1000330.g003
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as follows,

Ltc1~cL2
xc1{c

c1

1z c1

mi
1

;

Ltcn~cL2
xcn{c

cn

1z cn

mi
n

� �z
1{cnð Þcn{1

1z 1{cn

ma
n

� � , n~2,::,N;

Lxc1jx~0~{n
1{c1

1z 1{c1

ma
1

������
x~0

~0,

Lxc1jx~L~0; Lxcnjx~0~Lxcnjx~L~0, n~2, . . . ,N:

ð13Þ

For large values of mi
n&1 and ma

n&1, Eq. (13) reduces to Eq. (8).

As in the previous section, we consider a cascade with similar

properties for all levels and assume mi
n~mi, ma

n~ma. Note, that in

contrast with the unsaturated case, we now make an additional

assumption that the degrees of saturation of kinases and

phosphatases do not depend on the cascade level, which implies

that the corresponding Michaelis constants should change nearly

proportionally to the total protein concentrations at each level.

Simulations show that for saturable kinetics, the final steady

states are not affected by the initial conditions, similarly as above

(Fig. S5). Although the behavior of the phosphorylation profiles is

found to be qualitatively similar to the case of non-saturable

kinetics, it depends not only on the phosphatase/kinase activity

ratios (c), but also on the degree of saturation. For fixed values of

mi and ma, depending on the ratio c, the stationary concentration

profiles down the cascade either decay with n, or propagate into

the spatial domain covering increasing distance with an increase in

n. However, in contrast to the previous section where mi
n,ma

n&1,

the threshold value separating these two different behaviors is

different from unity and depends on the Michaelis constants mi

and ma. Figs. 5 and 6 show examples of the steady state activation

profiles for c= 0.1 and c= 10 for different values of ma and mi.

Note, that when deactivation reactions saturate at low values mi,

whereas activation reactions have higher values ma, the signal may

propagate even for c greater than 1, whereas it can decay for c
much less than 1, for the opposite relation between the Michaelis

constants.

To illustrate the threshold behavior of the signal propagation in

the parameter space, we consider two cases of large mi and large

ma separately, each corresponding to systems where one of the

opposing reactions is far from saturation. Fig. 7 shows phase

diagrams of the system indicating the boundary between the

decaying and propagating signals on the c, ma plane for a fixed

value of mi~100, and on the c, mi plane for ma~100,

respectively.

For mi~100, Fig. 7A shows that for large values of ma, the

threshold between propagating and decaying signals is c= 1 in

agreement with the linear case discussed in the previous section,

but for ma
v1, much lower values of c are necessary for the

propagation. On the other hand, if ma~100 (Fig. 7B), we obtain

Figure 4. Concentration profiles as in Fig. 3A shifted to the left
by a distance Ln given by Eq. (11) with e~10{3.
doi:10.1371/journal.pcbi.1000330.g004

Figure 5. Stationary concentration profiles, cn xð Þ, obtained by numerical integration of Eqs. (13) with c = 0.1 for different values of
mi and ma: (A) mi~0:01, ma~100; (B) mi~100, ma~0:01.
doi:10.1371/journal.pcbi.1000330.g005
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propagation for all c,1, however the saturation of the inactivating

reaction extends the threshold to larger values of c when mi is

small.

To obtain an analytical approximation for the boundary

between the two regimes of decaying or propagating signals, as

in the previous section, we assume that a propagating signal

produces a set of stationary concentration profiles with a flat

plateau region on the left side of the domain and the concentration

cn 0ð Þ converges to a constant for large n. The existence of non-

zero asymptotic concentration, c 0ð Þ, is a prerequisite for the

efficient signal propagation. Neglecting the second derivative at

x = 0 from Eq. (13) we obtain

0~{
cc 0ð Þ

1z
c 0ð Þ
mi

� �z
1{c 0ð Þð Þc 0ð Þ
1z

1{c 0ð Þ
ma

� � : ð14Þ

We will first assume that the phosphatases are far from

saturation, mi&1, whereas the kinases can be saturable. Since

0ƒc 0ð Þƒ1, we can simplify Eq. (14) to obtain

Figure 6. Stationary concentration profiles, cn xð Þ, obtained by numerical integration of Eqs. (13) with c = 10 for different values of mi

and ma: (A) mi~0:01, ma~100; (B) mi~100, ma~0:01.
doi:10.1371/journal.pcbi.1000330.g006

Figure 7. Parameter regions corresponding to propagating (red crosses) and decaying signals (blue circles) as a function of c and
ma or mi for: (A) mi~100, and (B) ma~100. Dashed lines in Fig A and B are given by the Eqs. (16) and (18), respectively.
doi:10.1371/journal.pcbi.1000330.g007
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c 1z
1{c 0ð Þ

ma

	 

~1{c 0ð Þ: ð15Þ

We can readily see that Eq. (15) has a solution within c 0ð Þ[ 0,1½ �
only if

cƒ
ma

1zma
: ð16Þ

When the ratio c of opposing enzyme activities satisfies Eq. (16),

the solution of Eq. (15) is c 0ð Þ~1{cma= ma{cð Þ. The dashed line

in Fig. 7A represents the curve c~ma= 1zmað Þ given by Eq. (16),

that agrees well with the numerical results.

When the kinases in the cascade are far from saturation, ma&1,

from Eq. (14) we obtain the following equation for c 0ð Þ,

c~ 1{c 0ð Þð Þ 1z
c 0ð Þ
mi

	 

: ð17Þ

The right hand side of Eq. (17) is a parabola with a maximum at

c 0ð Þmax~ 1{mið Þ=2 where its value is 1zmið Þ2
.

4mið Þ. Howev-

er, when mi
w1, the maximum is reached for negative concen-

tration values, and in this case the maximum for positive

concentrations is 1. Thus, Eq. (17) only has a positive solution

within the interval [0,1] if

cƒ1 for mi
ƒ1

and

cƒ 1zmið Þ2
4mi for mi

§1:

8><
>: ð18Þ

The dashed lines in Fig. 7B represent the curves

c~ 1zmið Þ2
.

4mið Þ and c = 1 as given by (18).

Another regime of qualitatively different behavior is the case

when both reactions are saturated, i.e. mi,ma%1. The condition for

signal propagation in this case cannot be obtained analytically from

the plateau solution of Eq. (14) as in the previous cases, since this

only gives an approximation for an unstable solution c 0ð Þ~cmi=ma

that is not relevant for the steady state distribution. Numerical

simulations show that the signal propagation is restricted to smaller

and smaller values of the activation ratio c as the parameters mi,ma

are reduced. This is shown in Fig. 8. Note, that even in the case

when the saturation constants are the same, mi = ma, the threshold

for signal propagation is smaller than one.

Discussion

Cascades of protein modification cycles form the backbone of

many signaling pathways, such as MAPK and GTPase cascades,

which integrate signals from numerous plasma-membrane recep-

tors and transmit information to distant cellular targets, including

the nucleus [4,14,37]. A hallmark of these signaling cascades is the

spatial separation of activation and deactivation processes to

different cellular compartments [19,32]. In such spatially distrib-

uted cascades, the first signal transducer can be activated at the

cell membrane by a membrane-bound enzyme, e.g., a kinase or a

guanine nucleotide exchange factor for GTPase cascades, and

deactivated in the cytosol by an opposing enzyme, e.g., a

phosphatase or a GTPase activating protein [18]. If a subtle

balance between the rates of activating and deactivating enzymes,

e.g., kinases and phosphatases, is not properly maintained, the

phosphorylated kinase concentrations can drop even in close

proximity to the activation membrane source, and the phosphor-

ylation signals decay before reaching the targets.

The results of the present paper have identified the general

conditions for the robust signal propagation and determined when

the activation signal stalls near the membrane for an arbitrary

number of consecutive layers in a cascade. The signals that spread

through a cascade generate a set of stationary activation profiles.

When the ratio of the deactivation and activation rates, c , is small,

these activation profiles have almost identical plateau levels for

successive kinases and shifted in the space relative to each other by

a roughly constant distance towards the center of the cell. We

expressed analytically the amplitude and the width of successive

activation profiles that spread the signals into the cell interior and

examined the effect of saturation of the reaction rates on the

propagation of the phosphorylation signals. This precipitous

descend in the signals at different distances from the plasma

membrane provides digital, switch-like localization cues that are

more structured and robust than the information carried by a

concentration gradient that emerges in a single (de)phosphoryla-

tion cycle [38].

Importantly, we found that the control of the spatial signal

propagation is dramatically different from the control of transient

temporal responses for spatially homogenous cascades [17,39].

Whereas the persistence of transient activation in the spatially

uniform cascade depends mainly on the phosphatase activities

[17], our results show that the spatial spread of activation from the

membrane into the cell is determined by the ratio of the kinase and

phosphatase activities and by their degree of saturation. Likewise,

the maximal amplitude of propagating activation profiles depends

on the activity ratios of phosphatases and kinases and not mainly

on the kinases, as the amplitude of the temporal responses for

spatially homogenous cascades [17].

More complex spatial patterns of active kinases are generated

when the ratios of phosphatase and kinase activities are different

along the cascade (see Fig. S6). The spatial structure of activity

gradients also strongly depends on the size and shape of the cell

[24]. An interesting consequence of the activity profiles produced

by spatially distributed cascades is that at different cascade levels,

the kinase activities at the nuclear membrane change with the cell

Figure 8. Parameter regions corresponding to propagating
(red crosses) and decaying signals (blue circles) as a function of
c and small values of ma~mi .
doi:10.1371/journal.pcbi.1000330.g008
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size. As the cell grows, the distance between the cell membrane

and nucleus increases, and consequentely the activity of proteins at

the boundary is turned off one by one for increasing cascade levels.

This suggests a signaling mechanism that conveys information

about the cell size to the nucleus. This mechanism may play a role

in the control of cell division cycle. The step structure of the

concentration profiles ensures that a sharp change in concentra-

tion takes place when the cell reaches a certain size, representing a

robust digital switch-like signal.

In this work we have not considered the effects of feedback and

feedforward loops, which may lead to more complex spatial

structures and temporal dynamics [19]. In fact, it has recently

been shown that bistability in protein phosphorylation cascades

generates phosphoprotein waves that propagate from the surface

deep into the cell interior [33]. For the cascade levels localized to

the cytoplasm, if a downstream kinase stimulates the activation of

the upstream kinase (directly or via a regulatory circuit in the

cytoplasm), a resulting bistable switch generates a trigger wave that

propagates with nearly constant amplitude and velocity [33].

However, although such a wave relays the signal over increasingly

long distances, it also destroys the positional information delivered

by the successive activation profiles for monostable cascades,

which we analyzed here.

It is instructive to compare spatially distributed reaction

cascades to other reaction-diffusion systems exploited in mathe-

matical models of biological phenomena. Traveling front or pulse

solutions in reactions with multiple steady states or with excitable

dynamics (e.g., the Hodgkin-Huxley model) produce concentra-

tion distributions that propagate in space with a constant speed,

but rarely generate heterogeneous spatial structures at steady states

[40]. On the other hand, the classical mechanism of morphogen-

esis based on the Turing instability leads to the formation of

stationary concentration patterns driven by different diffusivities of

the reacting species [41]. Although often this condition is not

satisfied for biological systems, the Turing mechanism has been

suggested to explain the formation of skin pigmentation patterns

[42], hair follicle distribution [43] and other biological patterns.

Because of their translational symmetry, periodic Turing patterns

are not always suitable for providing positional information. The

concentration distribution generated by a spatially distributed

reaction cascade can provide a simple and robust spatial pattern,

in which the distance from the source (e.g., cell membrane) is

encoded into the local concentrations. There is an important

distinction between the Turing patterns and patterns originated in

spatially extended protein cascades considered here. Heteroge-

neous Turing patterns arise spontaneously due to diffusion driven

instability and symmetry breaking, transforming an initially

homogeneous spatial distribution [41,44]. The spatial patterns

considered here involve the initial non-homogeneity of the media,

which is brought about by the spatial separation of the opposing

activator and deactivator enzymes that localize to different cellular

structures, namely the membrane and cytoplasm [45]. This type of

reaction-diffusion mechanism may also play a role at larger scales

in the development of multi-cellular systems where positional

information and growth guide cell proliferation and differentiation

events.

Supporting Information

Text S1 Exact solutions for small concentrations.

Found at: doi:10.1371/journal.pcbi.1000330.s001 (0.05 MB

DOC)

Figure S1 Temporal evolution of the active form concentration

profiles for the sixth level, c6(x), obtained by numerical integration

of Eq. (8) with c= 0.1 and initial conditions for different values of n
at times: (A) t = 5; (B) t = 10; (C) t = 50; (D) t = 104.

Found at: doi:10.1371/journal.pcbi.1000330.s002 (1.30 MB EPS)

Figure S2 Temporal evolution of the active form concentration

profiles c6(x) obtained by numerical integration of Eq. (8) with

c= 0.1 and n= 1 for different initial conditions at times: (A) t = 1;

(B) t = 10; (C) t = 170; (D) t = 104.

Found at: doi:10.1371/journal.pcbi.1000330.s003 (1.33 MB EPS)

Figure S3 Active form concentration profiles, cn(x), obtained

numerically from Eq. (8) with c= 10 at different times: (A) t = 0.01;

(B) t = 0.1; (C) t = 1; (D) 104.

Found at: doi:10.1371/journal.pcbi.1000330.s004 (1.30 MB EPS)

Figure S4 (A) Stationary total concentration as a function of n

for small values of c. The dashed lines are the linear fit to the data.

(B) The slope p as a function of c obtained by linear fit to the data.

The dashed line represents p = 1.3(12c)ln(1/c). The inset in B

shows the same figure but with the x-axis in the logarithmic scale.

Found at: doi:10.1371/journal.pcbi.1000330.s005 (1.15 MB EPS)

Figure S5 Temporal evolution of the active form concentration

profiles c6(x) obtained by numerical integration of Eq. (13) with

c= 0.1, n= 1, ma = 1 and mi = 1 for different initial conditions at

times: (A) t = 1; (B) t = 10; (C) t = 170; (D) t = 104.

Found at: doi:10.1371/journal.pcbi.1000330.s006 (1.46 MB EPS)

Figure S6 Stationary concentration profiles, cn(x), obtained by

numerical integration of Eq. (5) far from saturation with

cn(x,t = 0) = 0, D = 1, kna = 1 for all n, k4i = 10, and kni = 0.1 for

n = 1,2,3,5,6.

Found at: doi:10.1371/journal.pcbi.1000330.s007 (0.28 MB EPS)
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