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Abstract

Various characteristics of complex gene regulatory networks (GRNs) have been discovered during the last decade, e.g.,
redundancy, exponential indegree distributions, scale-free outdegree distributions, mutational robustness, and evolvability.
Although progress has been made in this field, it is not well understood whether these characteristics are the direct
products of selection or those of other evolutionary forces such as mutational biases and biophysical constraints. To
elucidate the causal factors that promoted the evolution of complex GRNs, we examined the effect of fluctuating
environmental selection and some intrinsic constraining factors on GRN evolution by using an individual-based model. We
found that the evolution of complex GRNs is remarkably promoted by fixation of beneficial gene duplications under
unpredictably fluctuating environmental conditions and that some internal factors inherent in organisms, such as
mutational bias, gene expression costs, and constraints on expression dynamics, are also important for the evolution of
GRNs. The results indicate that various biological properties observed in GRNs could evolve as a result of not only
adaptation to unpredictable environmental changes but also non-adaptive processes owing to the properties of the
organisms themselves. Our study emphasizes that evolutionary models considering such intrinsic constraining factors
should be used as null models to analyze the effect of selection on GRN evolution.
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Introduction

The genetic basis of organismal evolution is one of the

fundamental problems in biology [1–7]. The modes of selection

for phenotypes would influence the fixation probabilities of the

mutations that affect the phenotypes [8], and the profile of the

mutations fixed during the course of evolution would determine

the architecture of the genomes and the genetic systems underlying

the phenotypes [9]. However, because genetic systems would

modify the phenotypic effects of the mutations, the properties of

the genetic system would influence the rates and directions of

phenotypic evolution as well as the mutational robustness and

evolvability [10–15]. Therefore, both phenotypes and genetic

systems have evolved by mutually influencing each other.

Gene regulatory networks (GRNs) constitute important parts of

such genetic systems and are involved in various biological processes

such as environmental responses in unicellular organisms and cell

differentiation in multicellular organisms [4,16,17]. Recent theoret-

ical and experimental studies have revealed that complex GRNs

have evolved by successive gene duplication, changes in regulatory

interactions, and particularly in prokaryotes, horizontal gene transfer

[18–20]. In addition, recent studies have addressed the structural

features of complex GRNs such as redundancy, scale-free outdegree

distributions and exponential indegree distributions [4,21–24] and

the contribution of these features to genetic characteristics such as

mutational robustness and evolvability [25–29].

One important question with regard to the evolution of complex

GRNs is the evolutionary origin of these structural and mutational

properties. Various evolutionary processes simultaneously influ-

ence GRN evolution and these properties are interrelated. It is

thus difficult to identify the factors that have promoted the

evolution of these properties, which could evolve as a result of

being directly influenced by selection and also incidentally as a

result of other factors [30–33]. Thus, to identify the factors

responsible for the evolution of the properties of complex GRNs, it

is necessary to consider not only selection but also various

mutational processes and constraining processes.

Selection for phenotype is one of the most important driving

forces of organismal evolution. However, the impact of phenotypic

selection on the evolution of GRNs is unclear. The mode of

selection strongly influences the fate of mutations and the profile of

mutations fixed during the course of evolution ultimately

determines the architecture of GRNs. Thus, it is important to

examine how different modes of phenotypic selection would affect

the evolution of GRNs. However, there are significant limitations

to our general understanding of the processes of adaptation in

evolutionary biology. Many previous studies on the evolution of

mutational robustness with respect to GRNs have focused on the

fixation of phenotypically neutral mutations under stabilizing

selection with a constant optimal environment [25,34]. On the

other hand, the fixation of beneficial mutations for phenotypic

adaptation under changing environments is limited [29].
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Many studies have suggested that some examples of GRN

architectures are related to mutational robustness and evolvability

[11,26,35,36]. Theoretical studies have proposed that these genetic

properties appear to be evolvable traits [29,37–40] and that these

genetic properties could play a significant role in organismal

evolution [41]. However, it is unclear how mutational robustness

and evolvability influences the process of GRN evolution.

Certain properties of GRN might have evolved through non-

adaptive processes such as mutations and biophysical constraints on

gene regulation [30,31,42–45]. Mutations in particular is the

ultimate source of genetic variation. Thus, the biased properties of

mutations can potentially influence the tendency of an organism to

evolve. For example, the probability of a transcription factor

binding site formation as a result of mutations could vary by several

orders of magnitude mainly owing to the extensive variation in the

size of potential cis-regulatory regions among organisms [31,46],

and the rate of gene deletion could be several times higher than the

rate of gene duplication in certain organisms [47,48]. Moreover, it

has been suggested that the horizontal transfer of regulatory genes is

observed to a lesser extent than that of phenotypic genes [20].

Several studies have suggested that certain characteristic features of

complex GRNs, such as redundancy and scale-free degree

distributions could evolve as an inevitable outcome of mutations

[30,31]. However, these previous studies have not considered

certain essential evolutionary processes such as selection and gene

duplication. It is therefore unclear whether such characteristic

features of complex GRNs evolved as a result of selection or as a

result of the inherent properties of the mutations.

The purpose of this study was to identify the evolutionary causes

of various structural and mutational properties of complex GRNs,

such as redundancy, indegree and outdegree distributions,

mutational robustness, and evolvability. For this purpose, we

constructed an individual-based model of GRN that dynamically

controls gene expression levels and allows populations to evolve

under various fluctuating conditions of selection with various kinds

of mutations such as gene duplication and deletion, cis-, trans-

regulatory mutation and horizontal gene transfer. In this study, to

explore selective conditions that promote the evolution of complex

GRNs, we first examine the evolution of GRNs under various

conditions of fluctuating selection. Second, for showing the

adaptive mechanisms for the evolution of complex GRNs, we

examine the fitness effect of all the mutations that arose during the

evolution. Third, to explore whether internal factors of organisms

promote or inhibit the evolution of GRNs, we examined the

impact of gene expression cost, constraints on expression

dynamics, and several types of mutational biases such as the

relative rates of gene duplication and deletion, the possibility of

formation of new transcription factor binding sites and horizontal

gene transfers. Finally, on the basis of the results of the above

analyses, we discuss the major evolutionary causes of various

properties of complex GRNs, i.e., redundancy, scale-free out-

degree distributions, exponential in-degree distributions, muta-

tional robustness, and evolvability.

Results

Outline of the model
Before presenting the results, we provide a brief description of

our model (see Methods for details). The model represents a single

regulatory module that controls gene expression in response to

specific external stimuli (Fig. 1A). We assume that the populations

comprise haploid asexually reproducing individuals. Individuals

have their own genomes, and a genome of an individual

determines the individual’s GRN structure. Individuals of a

population at generation = 0 are clonal and have 10 regulatory

genes (R1, … , R10) and 2 phenotypic genes (P1, P2) and the GRN

of an individual has a random structure. The expression levels of

each gene are restricted to a range of [0.0, 10.0]. The phenotype

of an individual is defined as the combination of steady-state

expression levels of phenotypic genes. Thus, an individual

phenotype is represented as a vector, ~PPind~(P1,P2).

Individuals reproduce according to their fitness value. A fitness

value of an individual depends on phenotypic selection and the cost

of gene expression. The phenotypic selection is defined as a

Gaussian function, where an individual phenotype that is closer to

an arbitrarily defined optimum has higher fitness (Fig. 1B). When an

offspring is produced, various types of mutations such as gene

duplication, gene deletion, cis- and trans-regulatory mutation, basal

transcription level mutation, and horizontal gene transfer are

expected to occur with certain probabilities. Under given simulation

conditions, a population is allowed to evolve for 50,000 generations,

and 60–100 replicated populations are examined under a

simulation conditions. Throughout the simulation studies, a set of

parameter values is used as a standard set of conditions (Table 1).

Then, in order to examine the influence of a certain factor on GRN

evolution, only 1 parameter value is changed while the other

parameters are kept at standard values. The standard values are

determined by approximating those of yeast because of the

availability of appropriate yeast data [49,50].

The evolution of GRNs under fluctuating selection
To elucidate the selective conditions for the evolution of complex

GRNs, we first examined the evolution of GRN under various

conditions of fluctuating phenotypic selection. For that purpose, we

compared the structures of GRNs after simulation runs for 50,000

generations with standard parameter values under various fluctu-

ating conditions of phenotypic selection. The fluctuation of

phenotypic selection was modelled by shifting the position of an

optimal phenotype by generation. The initial position of the

optimum was set as the phenotype of founding individuals at

generation = 0. We assumed 2 types of optimum shift, a random-

walk and a cyclic optimum shift for exploring the impact of the

Author Summary

Various organismal traits, including the morphology of
multicellular species and metabolism in unicellular species,
are determined by the amount and combinations of
proteins in the cell. The complex regulatory network plays
an important role in controlling the protein profiles in a
cell. Recent studies have revealed that gene regulatory
networks have many interesting structural and mutational
features such as their scale-free structure, mutational
robustness, and evolvability. However, why and how these
features have emerged from evolution is unknown. In this
paper, we constructed an evolutionary model of gene
regulatory networks and simulated its evolution under
various environmental conditions. The results show that
most features of known gene regulatory networks evolve
as a result of adaptation to unpredictable environmental
fluctuations. In addition, some internal organismal factors,
such as mutational bias, gene expression costs, and
constraints on expression dynamics, are also important
for GRN evolution observed in real organisms. Thus, these
GRN features appear to evolve as a result of not only
adaptation to unpredictable environmental changes but
also non-adaptive processes owing to the properties of the
organisms themselves.

Gene Network Evolution by Selection & Constraints
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Figure 1. Schematic representation of the model. (A) Each gene has a cis-regulatory region composed of 100 cis-sites (boxes; potential
transcription factor binding sites) and a coding region (diamonds) from which products (circles) of the genes are created. The products of regulatory
genes would bind to the corresponding binding sites (represented by the same colors) and control the expression of the target genes. A cis-
regulatory region is allowed to have multiple binding sites for the same transcription factor; thus, the strength of regulatory interactions, including
activation (red arrows) and repression (blue arrows), depend on the numbers and properties of the binding sites. The regulatory cascade would start
by imposing an input signal that activates the R1 gene. The phenotype of an individual is defined as the steady-state expression level of phenotypic
genes. Core genes are expressed and actually involved in phenotypic expression. On the other hand, pseudo-expression genes are expressed but not
involved in phenotypic expression. (B) The fitness of an individual depends on the cost of gene expression and the phenotypic suitability to the
environment. The phenotypic suitability to the environment depends on the Euclidian distance between the individual phenotype and the optimum
phenotype. The position of the optimum shifts a constant distance away (d) at every certain generation (f21) in a random direction (random-walk) or
to a fixed position (cyclic).
doi:10.1371/journal.pcbi.1000873.g001

Table 1. Glossary of parameters and their standard values.

Parameter Description Standard val.

Z Population size 105

Mini Number of phenotypic genes in the founder individual 2

Nini Number of regulatory genes in the founder individual 10

L Number of cis-sites in a cis-regulatory region 102

m Size of DNA sequences that are recognized by a transcription factor. 7.14

n Possible number of DNA motifs that are produced by m base pairs of DNA sequence 9950

c Fitness load per unit of gene expression 1025

V Level of steady-state constraints on the phenotypic expression 1024

mBTL Basal transcription-level mutation rate (per gene per generation) 1026

mCIS Cis-regulatory mutation rate 1026

mTRA Trans-regulatory mutation rate 1026

mDEL Gene deletion rate 1026

mDUP Gene duplication rate 1026

mHOR Horizontal gene transfer rate 0

doi:10.1371/journal.pcbi.1000873.t001
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difference in the direction of the optimum shift (Fig. 1B). For both

types of optimum shift, we analyzed the optimum shifts with various

amplitudes (d) and frequencies (f). In the random-walk optimum

shift, the optimum shifts away from the previous position by a

constant distance (d) in a random direction for each 1/f generation.

In the cyclic optimum shift, there are 2 alternative optima that are

spaced at a constant distance (d), and the optimum is switched from

one to another for each 1/f generation.

Figure 2 shows the structures of GRNs after 50,000 generations

of evolution under various fluctuations of phenotypic selection. As

a proxy for the GRN structure, we first examined the number of

regulatory genes that were responsible for the expression of

phenotypic genes (denoted as core genes in Fig. 1A). In our model,

not all regulatory genes were responsible for the expression of

phenotypic genes because some regulatory genes were not

transcribed. An example of such an untranscribed gene is the

R5 gene in Fig. 1A (silent). In other cases, regulatory genes did not

regulate phenotypic genes either directly or indirectly. An example

of this is the R4 gene in Fig. 1A (pseudo-expression).

The results show that under the random-walk optimum shift,

the number of core and pseudo-expression genes in evolved GRNs

increases with the increase in amplitudes (d) and frequencies (f) of

the optimum shifts. However, under the cyclic optimum shift,

GRNs with a slightly large number of regulatory genes evolve only

when the optimum shift has high amplitude and low frequency.

While the random-walk optimum shift with higher amplitude and

frequency tends to promote the evolution of complex GRNs, the

number of both core genes in the evolved GRN is relatively small

when both the amplitude and the frequency are extremely high.

To clarify the relationship between the intensity of optimum

fluctuation and the evolution of complex GRNs, we analyzed the

time-averaged fitness from the 0 generation to the 50,000th

generation in each population (Fig. 3A). Because the time-

averaged fitness of a population becomes smaller as the intensity

of optimum fluctuation becomes stronger, the time-averaged

fitness of a population may be used as a good indicator of the

intensity of optimum fluctuation (Fig. 3B).

We examined the relationship between the time-averaged

fitness during evolution and the structure of GRNs after evolution

(Fig. 3C). The results show that the maximum number of core

genes is observed when the time-averaged fitness is at a middle

level. The results indicate that the evolution of complex GRNs is

most efficiently promoted when the intensity of the optimum

fluctuation is moderate. However, the evolution of complex GRNs

is disturbed when the intensity of optimum fluctuation becomes

too strong.

Generally, populations with low fitness would be exposed to a

high risk of extinction in nature. Thus, realistically, complex

GRNs would evolve under a moderately strong optimum shift,

e.g., small and frequent (d = 1021, f = 1021) optimum shift in a

random direction or a large and infrequent (d = 100, f = 1023)

optimum shift in both random and cyclic directions. On the other

hand, simple GRNs would evolve under a small and infrequent

optimum shift (d = 1023, f = 1023), and this selective condition

corresponds to a pure stabilizing selection with a fixed optimum.

Thereafter, to examine the relationships between GRN

structures and mutational properties such as the mutational

robustness and evolvability, we examined the phenotypic effect of

various types of mutations after simulation runs for 50,000

generations. For that purpose, a single mutation was introduced

into an individual and then the phenotypes of mutant individuals

were compared with those of the original individuals. One

thousand randomly chosen individuals in a population were

examined for each type of mutation. In addition, to clarify the

multilateral aspects of mutational robustness and evolvability, we

classified the mutations into 3 types according to their phenotypic

effect. The Non-effect mutations cause no phenotypic changes. The

Loss-of-phenotype mutations cause loss of the expression level at least

one phenotypic gene (Pi,1022) or prevent the expression from

reaching a steady state. Significant mutations cause phenotypic

changes but do not also produce the effect of a Loss-of-phenotype

mutation. In addition, we measured the size of phenotypic changes

caused by Significant mutations. Only the results of mutations

against core genes are presented here since mutations against non-

core genes generally have no phenotypic effect (data not shown).

Figure 4 shows the relationships between GRN structures and

the phenotypic effect of mutations in evolved GRNs under various

conditions of phenotypic selection. Several tendencies were

derived from the results. First, trans-regulatory mutations, gene

deletion, and gene duplication have similar effects, and these

mutations are unlikely to represent Loss-of-phenotype mutations in

complex GRNs. Second, most of the cis-regulatory mutations were

Non-effect mutations, while most of the other types of mutations

were rarely Non-effect mutations. Third, the extent of phenotypic

changes caused by Significant mutations was generally small in

complex GRNs.

Figure 2. GRN structures that evolved under various fluctua-
tions of phenotypic selection. The number of core genes (#core),
pseudo-expression genes (#psdexp), and silent genes (#silent) in GRNs
that evolved for 50,000 generations under random-walk optimum shift
(RW), and those that evolved under cyclic optimum shift (CY). All
parameters were set at standard values (Table 1). Each point connected
by solid lines represents the mean number of each type of genes in
evolved GRNs under each selective condition. Vertical bars attached to
the point represent 95% confidence intervals. d and f represent the
amplitude and frequency of the optimum shift, respectively.
doi:10.1371/journal.pcbi.1000873.g002
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These results suggest that the complex GRNs confer both

mutational robustness, i.e., a low proportion of Loss-of-phenotype

mutations (PL) and small phenotypic changes in Significant

mutations (DS)) as well as evolvability, i.e., high proportions of

Significant mutations (PS) and a high mutational target size. On the

contrary, simple GRNs have low evolvability. i.e., low PS and small

mutational target size and fragility, i.e., high PL and large DS.

However, because the mutational target size is small in simple

GRNs, spontaneous mutations are less likely to arise. Thus,

although simple GRNs are fragile when a mutation is artificially

introduced such as a gene knockout in the laboratory, they are

robust to spontaneous mutations under natural conditions.

Then, to confirm whether mutational target sizes and PS are

associated with actual evolvability, we examined the rates of

phenotypic adaptation in response to a benchmark selective

condition by using populations obtained after 50,000 generations

of evolution (see Methods). The results show that both the

mutational target sizes and PS are positively correlated with the

rates of phenotypic adaptation (Fig. S1). Thus, the mutational

target size and PS examined in laboratory experiments could be a

good indicator of actual evolvability.

From the present results, we suggest that the evolvability of a

target phenotype in a population could be defined as follows:

½Evolvability of a target phenotype�~

½population size�|½mutational target size�|

½mutation rates per unit of size�|

½PS; probability that a unit of mutation would

cause Significant change in the target phenotype�

ð1Þ

where a unit of mutation is a gene in this study. Because mutations

occurring in core genes were considered in this analysis, a

mutational target size in this analysis is the number of core genes,

and the PS value is the probability of Significant mutations occurring

with respect to core gene mutations.

Adaptive mechanism for the evolution of complex GRNs
In this section, we analyze adaptive mechanisms explaining the

present results where a certain mode of fluctuating selection

remarkably promotes the evolution of complex GRNs. In the present

study, complex GRNs have high evolvability, which is positively

correlated with mutational target sizes and PS. Because high

evolvability is considered to be favorable under conditions of

Figure 3. Relationship between the time-averaged fitness of a population and the GRN structures. (A) An example of the changes of the
mean fitness in a population during evolution. Red line indicates the mean fitness of a population at certain generation. Horizontal dotted line
indicates the time-averaged fitness (F9) during the evolution in this population. (B) The time-averaged fitness of GRNs that evolved under various
fluctuations of phenotypic selection. (C) The relationship between the time-averaged fitness and the structure of GRNs. Red line indicates the fitting
curve to the quintic equation by non-linear least square method.
doi:10.1371/journal.pcbi.1000873.g003
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fluctuating selection [29,39], it is possible that the evolution of

complex GRNs is promoted by its high evolvability. Thus, we first

analyzed the evolution of GRNs without the influence of evolvability.

To remove the influence of evolvability, we controlled the mutational

target size and PS. The mutations in the present model were assumed

to occur at a per-gene mutation rate, so that individuals with large

numbers of genes (i.e., large mutational target size) had high mutation

rates per individual. Thus, we kept per-individual mutation rates

constant regardless of the number of regulatory genes (see Method for

details). The results showed that the effect of constant mutation rates

per individual is almost the same as the assumption of constant

mutation rates per gene (Fig. S2). Then, to remove the influence of PS,

we set PS at 1 regardless of the difference in GRN structures (PS = 1,

PL = PN = 0; see Methods for detail). The results were almost the same

as those obtained without controlling the PS value (Fig. S3). These

results indicate that evolution of complex GRNs in our model could

be promoted without the influence of evolvability and that the

influence of evolvability on GRN evolution might be small.

The other possible mechanism for complex GRNs is fixations of

beneficial mutations through phenotypic adaptation. To elucidate

how the mutations contribute to the phenotypic adaptation, we

analyzed fitness effects (i.e., a difference in fitness between a

mutant and its original individual) for all the mutations that arose

during the 50,000 generations of evolution in each population. In

this analysis, we removed the cost of gene expression (c = 0) from

the original model since we wanted to obtain the fitness effects

caused only by the differences in phenotypes. Figure 5 shows the

relationships between the intensity of optimum fluctuation and the

fitness effects of various kinds of mutations. The results showed

that mutations are likely to be beneficial when the fluctuation is at

a moderate level (Fig. 5 red points). On the contrary, mutations

are likely to be neutral when the fluctuation is strong (Fig. 5 blue

points) and are likely to be deleterious when the fluctuation is weak

(Fig. 5 black points). The results indicate that the evolution of

complex GRNs is caused by the fixation of beneficial mutations

through phenotypic adaptation.

Figure 4. Relationship between the number of core genes in GRNs and the phenotypic effects of various types of mutations in core
genes. Points represent the results of each population evolved under various amplitudes (d) and frequencies (f) of random-walk optimum shift.
Horizontal axes indicate the number of core genes in a population. Panels in each column indicate the effect of different types of mutations (basal
transcription level mutation, BTL; cis-regulatory mutation, CIS; trans-regulatory mutation, TRA; gene deletion, DEL; gene duplication, DUP). PL, PN, and
PS show the proportion of mutations that cause Loss-of-phenotype, those that have no phenotypic change (Non-effect), and those that have a
Significant phenotypic change, respectively (PL + PN + PS = 1). DS shows the size of phenotypic changes caused by Significant mutations (the Euclidean
distance between the original and mutant phenotypes). Statistical significance of the correlation was analyzed by Kendall’s correlation test.
doi:10.1371/journal.pcbi.1000873.g004
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Then, we examined the difference in the number of gene

duplications and deletions that showed beneficial fitness effects,

because fixation rate of gene duplications need to be greater than

those of gene deletion for the evolution of complex GRNs. The

results show that gene duplications are more likely to be beneficial

than gene deletions particularly when the optimum fluctuation is

moderate (Fig. 6). We then examined the relationship between the

number of core genes in the evolved GRN and the number of

beneficial gene duplications and gene deletions that occurred

during the evolution. The results show that the number of core

genes in GRN becomes larger as the number of beneficial gene

duplications become more than those of gene deletions (Fig. 7).

These results indicate that the evolution of complex GRNs are

promoted mainly by phenotypic adaptations acquired through the

more frequent fixation of beneficial gene duplication than through

gene deletion.

Influence of constraining factors
The above analysis showed that the fixation of beneficial gene

duplication by phenotypic selection is an important adaptive factor

for promoting evolution of complex GRNs. However, the genes

included in the complex GRNs of the above analysis are generally

too abundant to be regarded as a single regulatory module. Thus,

it is reasonable to expect the existence of certain constraining

factors to restrict the evolution of complex GRNs in real

organisms. We examined the impact of certain examples of

internal constraining factors that are inherent in organisms, such

as (i) the functional constraints on gene expression dynamics, (ii)

cost of gene expression, and (iii) the biased properties of mutations,

in the subsequent analysis.

(i) Functional constraint on expression dynamics. The

present model assumes that offspring are not viable if expression of

phenotypic genes does not reach a steady state. This assumption

could constrain the process of GRN evolution. The mode and

degree of constrains on the expression dynamics of a regulatory

module might depend on a functional context that the regulatory

module is involved in. For example, a regulatory module that work

in early developmental stage might be under strong demand for

steady-state expression, on the other hand, those that work in later

developmental stage might be under relatively weak demand for

steady-state expression. To examine whether steady-state

constraints on gene expression affect the evolution of a complex

GRN, we conducted simulations with steady-state constraints (V)

of varying strength. The results indicate that strong steady-state

constraints slightly restrict the evolution of a complex GRN under

conditions of fluctuating selection (Fig. 8). The results indicate that

functional constraints on the expression dynamics of GRNs could

affect the evolution of GRNs.

(ii) Cost of gene expression. It has been suggested that the

cost of gene expression has a significant impact on the evolution of

gene expression [51–53]. Thus, here, to examine how strongly the

cost of gene expression would affect the evolution of GRNs, we

conducted simulations with various fitness loads per unit of gene

expression (Fig. 9). The result showed that larger cost of gene

expression significantly prohibited the evolution of complex

GRNs, but the level of cost completely prohibiting the evolution

of complex GRNs was seemed to be unrealistic, because no

population could be sustained under such extremely high level cost

even if the optimum fluctuation was very weak. These results

suggest that the fluctuations in phenotypic selection could promote

the evolution of complex GRN when the fitness load of gene

expression cost is realistic level.

(iii) Mutational bias. We next examined the influence of

mutational bias on GRN evolution. In other words, we wanted to

determine the properties of GRNs that are more sensitive to

mutational bias. Lynch (2007) proposed that scale-free degree

distributions evolved as a result of mutational bias in the relative

rate of gain and loss of regulatory interactions under pure

stabilizing selection [31]. However, this study did not consider

mutations causing changes in the GRN size, i.e., gene duplication

Figure 5. Relationship between the intensity of the optimum fluctuation and the fitness effect of various types of mutations during
evolution. Points represent the results of a population that evolved under various conditions of random-walk optimum shift. Horizontal axes
indicate the time-averaged fitness of a population. Panels in each column indicate the effect of different types of mutations (same as Figure 4). Nt
indicates the total number of mutations that arose during the evolution for each types of mutations. P indicates the proportions of mutations that
have beneficial (red), neutral (blue), and deleterious (black) effects, respectively.
doi:10.1371/journal.pcbi.1000873.g005
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and deletion. Both type of mutations that change regulatory

interactions and those that change the size of the GRN play a

central role for the evolution of degree distributions [19]. Thus, in

the present work we examined 3 types of mutational processes; (a)

the relative rate of gain and loss of regulatory interactions; (b) the

relative rate of gene deletion and duplication; and (c) horizontal

transfer of regulatory genes.

(iii-a) Relative rate of gain and loss of regulatory

interactions. To examine the mutational bias with respect to

the gain and loss of regulatory interactions, we used a derived

parameter Cmut that is defined as the probability that a binding site

of a specific transcription factor is present in a cis-regulatory region

(see Methods for detail). For controlling the value of Cmut, the size

of a cis-regulatory region (L) was varied. A greater value of L

indicates a higher probability of binding sites formation through

regulatory mutations (Cmut). According to the estimations of Lynch

(2007) [31], we roughly inferred the order of Cmut as 1023–1022 for

prokaryotes, 1022–1021 for unicellular eukaryotes, and 1021–100

for multicellular eukaryotes. In addition, each GRN in our model,

which represents a single regulatory module, is too small to obtain

smooth degree distributions. Thus, to measure the degree

distributions, we created an assembled GRN for each simulation

conditions by considering the regulatory modules of 100 replicate

populations of each simulation condition as a single global GRN

(i.e., a single assembled GRN is composed of 100 separated

regulatory modules).

Figures 10–12 show the number of core genes and the in- and

outdegree distributions with various values of Cmut. The results

show that the number of core genes and the shape of the indegree

distributions in complex GRNs are affected by the changes in the

values of Cmut, while the outdegree distributions were mostly

unaffected by the changes. A smaller value of Cmut tends to

decrease the number of core genes. However, fluctuating

phenotypic selection could promote the evolution of complex

GRNs even under such small values of Cmut (Fig. 10).

The shape of indegree distributions generally well fit to the

Poisson distribution rather than exponential distribution; however,

some complex GRNs that evolved under low Cmut levels had

exponential indegree distributions, as observed in real microor-

ganisms (Fig. 11). On the other hand, indegree distributions that

evolved under high Cmut levels had the Poisson distribution with a

single peak (Fig. 11).

Contrary to the indegree distributions, the shapes of the

outdegree distributions were only correlated with the number of

core genes rather than Cmut, where GRNs with a larger number of

core genes had scale-free outdegree distributions as observed in

real microorganisms, while simple GRNs did not (Fig. 12). These

results suggest that the scale-free outdegree distribution is a

product of complex GRNs that evolve by phenotypic selection

rather than because of the influence of mutation properties. On

the other hand, the exponential indegree distributions are caused

not only by phenotypic selection but also by the mutation

properties.

(iii-b) Relative rate of gene duplication and

deletion. Several studies have proposed that gene deletion

rates could be several times higher than gene duplication rates

[47,48]. Thus, the mutation bias might disturb the evolution of a

complex GRN. Figure 13 shows the effect of mutational bias on

the relative rate of gene deletion and gene duplication on the

number of regulatory genes of the GRN. The result shows that as

the gene deletion rates increase with respect to gene duplication

rates, the number of core genes in evolved GRNs tends to

decrease. However, even when deletion rates are an order of

magnitude higher than duplication rates, fluctuating phenotypic

selection could lead to the evolution of complex GRNs (Fig. 13).

Inversely, even when duplication rates are an order of magnitude

higher than deletion rates, phenotypic selection with weak

optimum fluctuation effectively prohibited the evolution of

complex GRNs.

(iii-c) Horizontal gene transfer. Horizontal transfers of

regulatory genes are observed less frequently than those of

phenotypic genes [20], however, it is unclear that whether the

phenomenon was owing to the properties of selection or mutation.

Thus here, to examine the effect of horizontal gene transfer on

GRN evolution, a randomly created new regulatory gene was

added to a GRN instead of duplicating an existing gene (i.e.,

mHOR = 1026, mDUP = 0). The results showed that horizontal

transfer of regulatory genes was not maintained in GRNs under

any conditions of phenotypic selection (Fig. 14). This result

indicates that maintenance of horizontal transfer of regulatory

genes is much more difficult than those of duplications, and the

absence of horizontally transferred regulatory genes is explained

Figure 6. Relationship between the intensity of the optimum
fluctuation and the fitness effects of gene duplication and
gene deletion during evolution. Points represent the results of a
population that evolved under various conditions of random-walk
optimum shift. Nt(x), Nb(x) and Pb(x) indicate the total number of
mutations, number of beneficial mutations, and the proportions of
beneficial mutations that arose during the evolution for mutation type
x, respectively. Vertical axes indicate the difference in the number and
the proportions of beneficial mutations between gene duplications and
gene deletions. Horizontal axes indicate the time-averaged fitness of a
population (F9).
doi:10.1371/journal.pcbi.1000873.g006
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by the inherent properties of the mutation rather than by the

differences in phenotypic selection.

Discussion

Adaptive mechanism for the evolution of GRNs under
fluctuating phenotypic selection

Our study showed that the mode of fluctuation in phenotypic

selection has a remarkable impact on the evolution of GRNs. In

particular, it was found that fluctuating phenotypic selection with

random-walk optimum shift strongly promotes the evolution of

complex GRNs with high mutational robustness and evolvability.

On the other hand, phenotypic selection with cyclic optimum shift

contributes only slightly under limited conditions. By examining a

fitness effect of all the mutations during evolution, our study has

determined that phenotypic adaptation by beneficial gene

duplication represents a major factor that promotes the evolution

of complex GRNs.

Our study has shown that evolution of complex GRNs is

Figure 7. Relationship between the number of core genes after evolution and the number of beneficial gene duplications and gene
deletions. Points represent the results of a population that evolved under various conditions of random-walk optimum shift. Vertical axes indicate
the number of core genes. Nt(x), Nb(x) and Pb(x) indicate the total number of mutations, the number of beneficial mutations, and the proportions of
beneficial mutations that arose during the evolution for mutation type x, respectively. Horizontal axes indicate the difference in the number and the
proportions of beneficial mutations between gene duplications and gene deletions. Statistical significance of the correlation was analyzed by the
Kendall’s correlation test.
doi:10.1371/journal.pcbi.1000873.g007

Figure 8. Effect of the strength of steady-state constraints on
GRN evolution. Greater values of V indicate weaker constraints on
steady-state expression (V = 1024, standard parameter value). Points
connected by solid lines represent the mean number of core genes
(#core), pseudo-expression genes (#psdexp), silent genes (#silent)
and the time-averaged fitness (F9) in populations that evolved for
50,000 generations under each simulation condition. Vertical bars
indicate 95% confidence intervals. Different colors indicate different
conditions of phenotypic selection: d = 1021, f = 1021 (red); d = 100,
f = 1023 (blue); d = 1023, f = 1023 (black) under random-walk optimum
shift.
doi:10.1371/journal.pcbi.1000873.g008

Figure 9. Effect of gene expression costs on GRN evolution.
Greater values of c indicate the larger fitness load of a unit of gene
expression (c = 1025, standard parameter value). Points connected by
solid lines represent the mean number of core genes (#core), pseudo-
expression genes (#psdexp), silent genes (#silent) and the time-
averaged fitness (F9) in populations that evolved for 50,000 generations
under each simulation condition. Vertical bars indicate 95% confidence
intervals. Different colors indicate different conditions of phenotypic
selection: d = 1021, f = 1021 (red); d = 100, f = 1023 (blue); d = 1023,
f = 1023 (black) under random-walk optimum shift.
doi:10.1371/journal.pcbi.1000873.g009
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promoted when the intensity of optimum fluctuation is moderate.

This phenomenon was thought to occur because the fitness effects

of Significant mutations depends upon the intensity of optimum

fluctuation (see Fig. S10 for illustration). When the fluctuation is

weak, most phenotypic changes produced by mutations are likely

to be deleterious because the phenotype of the current population

is very close to optimal and mutated phenotypes are more likely to

be far from optimal. Thus, phenotypic selection tends to inhibit

the fixation of the mutations under these conditions. When the

intensity of the optimal fluctuation is moderate, certain phenotypic

changes produced by mutations would be beneficial since the

mutated phenotypes have a greater chance of being located closer

to the optimum than the current population. Thus, phenotypic

selection tends to promote the fixation of the mutations under

these conditions. When the fluctuation is strong, the position of the

optimum would be too far from both the current population and

the mutated phenotypes. Thus, most phenotypic changes induced

by the mutations would not change the fitness. Such phenotypic

changes are selectively neutral and would be fixed only by genetic

drift. Thus, phenotypic selection does not play any role in the

fixation of mutations under these conditions.

We observed the relationship between phenotypic effects

(Significant, Non-effect, and Loss-of-phenotype) and the fitness effects

(beneficial, neutral, and deleterious) of mutations. Non-effect

mutations are always neutral by definition. Loss-of-phenotype

mutations are usually deleterious because the movement of the

optimum was assumed to avoid the vicinity of 0.0 in our model.

On the contrary, Significant mutations could show all three of the

fitness effects. Particularly, Significant mutations that cause only

small phenotypic changes are not exactly neutral, but mutations

having very small fitness effects are known to behave like neutral

mutations. Such mutations are referred to as ‘‘nearly neutral’’.

Thus, our study regards the mutations as neutral when their fitness

effects are smaller than 1022. The exact judgment on near

neutrality theoretically depends upon the population size and the

selection differential. In our analyses, we did not adopt a precise

judgment with respect to neutrality since it was difficult to

calculate selection differential precisely. We defined values ranging

from 1024 to 1021 as indicating neutrality, and the results were

qualitatively unaffected by changing these values (data not shown).

We analyzed the fitness effect of a mutation at the time of

incidence of the mutation in a population. However, because the

position of the optimum fluctuates over generations, the fitness

effect estimated in our analysis was not a complete indicator for

judging the fate of a mutation, particularly when the fluctuation

was very frequent. Although such a factor might make it more

difficult to detect the fitness effects of the mutation, the present

analysis showed high statistical significance. Thus, we believe that

the analysis is valid and that the mechanism explained above

would operate for most populations of our simulation. Although

the detailed mechanisms of how gene duplication is more likely to

become beneficial than gene deletions under conditions of

fluctuating selection are unclear, we can conclude that there

should be differences in the phenotypic effects between gene

duplication and deletion. To address this problem, we need to

perform detailed analyses with regard to the sizes and directions of

phenotypic changes caused by mutations.

Role of genetic drift in GRN evolution
Fixation of a mutation occurs not only through selection but

also through genetic drift. A role of genetic drift in the fixation of a

mutation becomes stronger when the efficiency of selection

becomes weak. The fixation probabilities of mutations by genetic

drift depend on the mutation rates, i.e., mutations that occur more

frequently will be fixed more frequently than the other kinds of

mutations. Thus, for the evolution of complex GRNs through

genetic drift, the following two conditions must be satisfied: (i) gene

duplications occur more frequently than gene deletions; (ii)

selection is ineffective for fixation (i.e., very small population size,

weak strength of selection, and strong optimum fluctuation). This

study showed that when the intensity of optimum fluctuation was

weak, evolution of complex GRNs was effectively restricted even

when gene duplications occur more frequently than gene deletions

(Fig. 13). This indicates that the effects of selection were much

larger than those of genetic drift, and thus, the conditions where

the evolution of complex GRNs is promoted only by genetic drift

might be limited.

Beneficial effect of loss-of-function by trans-regulatory
mutations

The complex GRNs not only had a larger number of core genes

but also had pseudo-expression genes. In our study, pseudo-

expression genes are produced by loss-of-function because of trans-

regulatory mutations. These results indicate that phenotypic

changes occurring through loss-of-function by trans-regulatory

mutations are likely to contribute to phenotypic adaptation. Loss-

of-function mutations are generally considered deleterious in

molecular evolution. However, our study showed that a loss-of-

function mutation could become somewhat beneficial when one of

the duplicated genes loses its function under conditions of

fluctuating selection.

Figure 10. Effects of the probability of binding site formation
by regulatory mutations (Cmut) on GRN evolution. Greater values
of Cmut indicate larger probabilities of binding site formation by
regulatory mutation (Cmut = 1022, standard parameter values). To
control the Cmut value, the size of the cis-regulatory region of a gene
(L) was varied; L = 10, 30, 100, 303, and 1000 for Cmut = 1023, 361023,
1022, 361022, and 1021, respectively. Points connected by solid lines
represent the mean number of core genes (#core), pseudo-expression
genes (#psdexp), silent genes (#silent) and the time-averaged fitness
(F9) in populations that evolved for 50,000 generations under each
simulation condition. Vertical bars indicate 95% confidence intervals.
Different colors indicate different conditions of phenotypic selection;
d = 1021, f = 1021 (red); d = 100, f = 1023 (blue); d = 1023, f = 1023 (black)
under random-walk optimum shift.
doi:10.1371/journal.pcbi.1000873.g010
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Pseudo-expression genes and silent genes as a genomic
architecture

Our study showed that the evolution of GRNs under various

selective and constraining conditions would produce not only core

genes but also non-core genes. While silent pseudogenes have been

commonly observed in various species, only a small number of

silent regulatory genes were observed in our model. This might be

because the loss of gene expression by basal transcription level

mutations and cis-regulatory mutations rarely occurred in our

model. Silencing of gene expressions through loss-of-function

mutations at the transcription factor binding sites and the

promoter regions were commonly observed in real organisms.

As far as we know, while the actual rates of these mutations were

unknown, the mutations might occur more frequently than those

in our simulations.

Moreover, most non-core genes in our model were pseudo-

expression genes. This might be because these pseudo-expression

genes were produced by loss-of-function through trans-regulatory

mutations, and the mutations were likely to become beneficial

under fluctuating selection in our model. Although such pseudo-

expression genes might be wasteful, recent studies have revealed

that significant fractions of non-coding RNA are composed of

transcribed pseudo-genes [54,55]. Thus, the presence of pseudo-

expression genes in GRNs in this study is not necessary unrealistic,

and the transcribed pseudo-genes present in real organisms might

be products of adaptation of gene expression under fluctuating

selection.

While pseudo-expression genes and silent genes do not involved

in functional parts of GRNs, these competent constitute significant

part of genomic contents. Thus, our study indicates that the mode

of phenotypic selection could influence not only GRN structures

but also genomic architectures.

Importance of dosage effect of mutations in the
evolution of gene expression

While cis-regulatory mutations have been receiving considerable

attention in the studies on gene expression evolution, various other

mutations, including gene duplications, gene deletions, and trans-

regulatory mutations could also influence gene expression through

dosage effects. Although dosage effects of gene duplication and

deletion have been well recognized, the selective conditions that

promote the fixation of these mutations are unknown. Our study

demonstrates that these mutations were fixed by selection when

the direction of selection was randomly fluctuated. Functional

protein dosage increases with gene duplications, but decreases with

gene deletions and loss-of-function by trans-regulatory mutations;

Figure 11. Indegree distribution of the assembled GRNs that evolved under various Cmut levels. Horizontal and vertical axes in each
panel show the indegree (the number of regulatory interactions that arrived at a gene) and the frequency, respectively. Note that the vertical axes are
shown logarithmically to demonstrate the exponential character of the distribution. Different rows and columns indicated the different conditions of
phenotypic selection and different values of Cmut, respectively. Lines in each panel indicate the regression of the plot to the Power law distribution
(red), exponential distribution (blue), and Poisson distribution (green). Regression was estimated by a nonlinear least-square method. To judge the
goodness of regression, Akaike’s information criterion (AIC) was used, and the regression that showed the smallest value of AIC was drawn as a thick
line. POW, EXP and POI in each panel indicate the differences between AIC value of the best regression model and those of power-law (scale-free),
exponential and poisson distributions, respectively.
doi:10.1371/journal.pcbi.1000873.g011
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thus, these mutations appeared to become beneficial more often

under fluctuating selection in this model.

While our study emphasizes the beneficial aspects of dosage

effect, several studies in some multicellular organisms suggested

that dosage effects negatively influence fitness. For example, small-

scale duplications in some kinds of genes, such as developmental

genes and transcription factors, might be limited because a

quantitative balance between different proteins through molecular

interactions is important for the functioning of these types of genes

[56,57]. In our analysis, the fixations of mutations that have

dosage effects were strongly inhibited even if the emergence of

mutations was positively biased when the intensity of optimum

fluctuation was small (Fig. 13). Although our study focused on the

selection by external environments, functional constraints through

molecular interactions between proteins in a cell seem to be

important in real organisms. Thus, it is necessary to consider such

biophysical processes in future studies on GRN evolution.

Regulatory module for specific cellular function
While, many studies about the evolution of development and

GRN have focused on relatively discrete spatial and temporal

changes of gene expression (i.e., heterotopy and heterochrony)

where importance of cis-regulatory mutation is proposed to play

major role [1,3,29,58,59]. Our study focused on a single

regulatory module producing the continuous changes of gene

expression level in a specific cellular type (heterometry [60]). Such

continuous differences in the levels of gene expressions in a specific

cellular type are also often correlated with the variations in fitness

and quantitative traits in multicellular organisms [61–63].

Likewise, a steady-state gene expression level in response to

specific environmental stimuli is also correlated with fitness in

unicellular organisms [51,64–66]. In real organisms only a part of

GRN is used in a specific condition [67], and such a condition-

specific sub-network appears to be a regulatory module that

controls specific cellular function [17,68,69]. Thus, a significant

part of phenotypic evolution could be represented as the

quantitative changes in gene expression by single regulatory

module.

Mode of environmental fluctuation
Changes in the direction of selection for phenotypes owing to

spatio-temporal environmental fluctuation is one of the major

driving forces of organismal evolution [64–67]; however, most

studies in the field of evolutionary biology are focused on evolution

under stabilizing selection with fixed optimum or directional

selection in a fixed direction [37,65,70]. Only a few studies have

Figure 12. Outdegree distribution of assembled GRNs that evolved under various Cmut levels. Horizontal and vertical axes in each panel
show the outdegree (the number of regulatory interactions that depart from a gene) and the frequency, respectively. Note that the both horizontal
and vertical axes are shown logarithmically to demonstrate the scale-free character of the distribution. Different rows and columns show the different
conditions of phenotypic selection and the different values of Cmut, respectively. Lines in each panel indicate the regression of the plot to the Power
law distribution (red), exponential distribution (blue) and Poisson distribution (green). Regression was estimated by a nonlinear least-square method.
To judge the goodness of the regression, Akaike’s information criterion (AIC) was used, and the regression that showed the smallest value of AIC was
drawn as a thick line. POW, EXP and POI in each panel indicate the differences between AIC value of the best regression model and those of power-
law (scale-free), exponential and poisson distributions, respectively.
doi:10.1371/journal.pcbi.1000873.g012
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dealt with adaptation toward a moving optimum [8] or a cyclically

fluctuating optimum [29,71]. Interestingly, while it is difficult to

elucidate historical patterns of fluctuation in the direction of

selection, a study on the long-term evolutionary patterns of various

quantitative traits from fossil records showed that the most of the

traits fit to the evolutionary models of random-walk or stasis rather

than prolonged directional selection [72]. Thus, the modes of

fluctuation in phenotypic selection assumed in this paper might be

plausible.

Constraints on expression dynamics of GRNs
Our results demonstrated that steady-state constraints on GRN

expression dynamics could significantly restrict the evolution of

complex GRNs. This is because the constraints would decrease the

proportion of mutations that could contribute to phenotypic

adaptation. A previous study demonstrated that signaling

pathways that evolved under constraints for different response

dynamics would show the different levels of complexity [73]. This

indicates that the strength of constraints might depend on the type

of expression dynamics, and the result of that study might be

compatible with our results.

Gene expression cost
Our results demonstrated that the fitness load of gene

expression costs significantly restricted the evolution of complex

GRNs. This is because the cost of gene expression would increase

both the deleterious effects of gene duplications and the beneficial

effects of gene deletion. Previous studies have suggested that even

small costs of gene expression have significant impacts on the

evolution of gene expression in microorganisms [51–53]. Howev-

er, the fitness loads of a single gene duplication/deletion might be

generally very small; thus, the impacts of expression costs on GRN

evolution have not been sufficiently studied. By using individual-

based simulations that could deal with very large population sizes,

we could demonstrate that even small costs of gene expression

could have significant impacts on GRN evolution.

The probability of binding site formation by mutation
and the shape of degree distributions

Our study showed that some mutational bias had a considerable

impact on GRN evolution. The probability of transcription factor

binding site formation by regulatory mutations (Cmut) mainly

affected the number of core genes in GRNs and the shape of

indegree distributions in complex GRNs, but not the outdegree

distributions (Figs. 10–12). In particular, some GRNs that evolved

with lower Cmut showed exponential distributions as observed in

microorganisms, while those with higher Cmut showed single-

peaked Poisson distributions (Fig. 11). These results indicated that

the exponential indegree distributions observed in real microor-

ganisms might be due to their small Cmut rather than being a direct

product of selection; in addition, indegree distributions of global

GRNs in multicellular organisms might be single peaked, although

Figure 13. Relationships between GRN structures and the
relative rates of gene duplication and gene deletion (mDEL/mDUP).
Standard parameter value, mDEL/mDUP = 1. To control the value of (mDEL/
mDUP), only mdel are varied from 1027 to 1025, while mdup was fixed at a
standard value (1026). Points connected by solid lines represent the
mean number of core genes (#core), pseudo-expression genes
(#psdexp), silent genes (#silent) and the time-averaged fitness (F9) in
populations that evolved for 50,000 generations under each simulation
condition. Vertical bars indicate 95% confidence intervals. Different
colors indicate different conditions of phenotypic selection; d = 1021,
f = 1021 (red); d = 100, f = 1023 (blue); d = 1023, f = 1023 (black) under
random-walk optimum shift.
doi:10.1371/journal.pcbi.1000873.g013

Figure 14. GRN structures that evolved with horizontal transfer
of regulatory genes. Instead of the duplication of existing regulatory
genes, a randomly created new regulatory gene was introduced into a
GRN (i.e., mDUP = 0, mHOR = 1026). All other parameters were set at
standard values. Each point connected by solid lines represents the
mean number of each type of genes in evolved GRNs under each
selective condition. Vertical bars attached to the point represent 95%
confidence intervals. d and f represent the amplitude and frequency of
the optimum shift, respectively.
doi:10.1371/journal.pcbi.1000873.g014
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only a part of the GRNs were identified in multicellular organisms.

In contrast, the scale-free outdegree distribution depended on

GRN complexity (i.e., phenotypic selection) but not on Cmut

(Fig. 12). Thus, scale-free outdegree distributions can be

considered as a by-product of complex GRNs that evolved

through phenotypic selection. Most studies have focused only on

the scale-free feature of biological networks and have ignored the

differences between outdegree and indegree distributions. Lynch

(2007) [31] argued that scale-free degree distributions could evolve

as a result of mutational bias where the gain rates of regulatory

interactions were much smaller than loss rates (i.e., low Cmut).

However, the study presented only an indegree distribution rather

than outdegree distributions, and the shape of the indegree

distribution appeared to be exponential. Hence, our results might

correspond to those of Lynch (2007).

However, our results might contain some biases since we

obtained the degree distributions by assembling separated

regulatory modules. If the removal of regulatory interactions

between regulatory modules in real GRNs disrupts the scale-free

and exponential properties of degree distributions, GRN models

that contain multiple regulatory modules would be necessary. On

the other hand, if the removal of regulatory interactions between

regulatory modules does not disrupt the degree distributions in real

GRNs, real GRNs might be regarded as the assembly of complex

regulatory modules, even if there are some connections between

modules.

Although the precise mechanisms for the evolution of these

degree distributions were unclear from our study, gene duplica-

tions and changes in regulatory interactions by trans-regulatory

mutations might be necessary factors for the evolution of scale-free

properties. We conducted an additional analysis by changing the

rates of cis- and trans-regulatory mutations. The results showed that

the decreased rates of cis-regulatory mutation did not affect the

number of core genes, indegree distributions, and outdegree

distributions (Fig. S4, S5, S6). On the other hand, decreased rates

of trans-regulatory mutations decreased the number of core genes

(Fig. S4) and disrupted the shape of outdegree distributions (Fig.

S6). These results imply that the gains of regulatory interactions

through trans-regulatory mutations might contribute to the

increase of core genes and the establishment of scale-free

outdegree distributions.

In our results, indegree distributions mostly fitted to the Poisson

distributions rather than the exponential distribution, and the

distribution peaked as Cmut increased. In contrast, outdegree

distributions mostly fitted to scale-free distributions and the shape

did not depend on Cmut. We hypothesized the mechanisms of these

result as follows.

The mechanism of indegree distributions: Theoretically, a

random network where a link (input and output regulatory

interactions) between two randomly selected nodes (genes) exists at

constant probability (Cmut) is supposed to have the Poisson

distribution for both its indegree and outdegree distributions

where the average (generally denoted as l) is equal to the average

degree of nodes (i.e., l = N6Cmut, where N is the number of nodes

in the network). Because an increase of Cmut would increase the

average degree of nodes (N6Cmut), the change in the shape of the

indegree distributions owing to the changes in Cmut seemed natural

from this equation. The Poisson distribution with very low average

values (l,1) is almost indistinguishable from the exponential

distribution, and the estimated value of Cmut for organisms in

which exponential indegree distribution was reported are generally

small. Thus, the reported indegree distributions in these organisms

might fit the Poisson distribution rather than the exponential

distribution.

The mechanism of outdegree distributions: Bhan et al (2002)

showed that the joint effects of node duplication and link rewiring

would change the degree distributions from Poisson to scale-free

[19]. While the study did not distinguish indegree and outdegree

distributions (i.e. the degree was sum of the indegree and

outdegree), we presume that both would be scale-free if the

distributions were analyzed separately. In addition, while we

assumed that the establishment of regulatory interactions depend-

ed on the cis-regulatory and coding regions, Bhan’s study did not

have such assumption. Thus, the differences we observed between

indegree and outdegree distributions might be attributed to our

assumption. This assumption might disrupt the changes of

indegree distributions from Poisson to scale-free even if gene

duplication and regulatory mutations occurred. On the other

hand, we supposed that the change in outdegree distributions from

Poisson to scale-free is due to the joint effects of gene duplication

and trans-regulatory mutations in our model, because the change

in outdegree distributions from Poisson to scale-free was also

disrupted when the rates of trans-regulatory mutations became low

(Fig. S6). To detect the actual mechanisms for degree distribution,

more detailed examinations on how various mutations change the

regulatory interactions are necessary.

Relative rate of gene duplication and deletion
Recent studies in yeasts have revealed higher rates of gene

duplication and deletion than previously thought [49] and the

abundance of copy number variations in some model organisms

[74]. In addition, the contributions of copy number variations to

gene expression variations have also been elucidated [75].

Surprisingly, the estimation of the expected number of gene

duplication and deletion per genome is even higher than those of

base substitutions [49]. Furthermore, while relative rates of gene

duplication and deletion were said to be biased toward a high

deletion rate, the estimated duplication rate is several times higher

than the deletion rate [49]. Thus, genetic drift might have a larger

effect to promote the complex GRNs in real organisms.

Horizontal gene transfers
In contrast to the relative rate of gene deletion and gene

duplication, horizontal transfer of single regulatory genes did not

contribute to the evolution of complex GRNs under any

conditions of phenotypic selection (Fig. 14). The results indicate

that duplication of regulatory genes is indispensable for the

evolution of complex GRNs and also that the minority of

horizontally transferred regulatory genes against phenotypic gene

in bacterial species were not due to natural selection but due to an

inherent property of the mutation. However, we only considered

the horizontal transfer of a single regulatory gene in this model.

Some studies have reported that functionally related genes are

often clustered and that transcription factors and their target genes

tend to exist close to each other in a genome [42,45,76].

Therefore, simultaneous horizontal transfer of transcription factors

and their target genes might be necessary for successful horizontal

transfer of regulatory genes.

Importance of constraining factors in GRN and genomic
evolution

Our study demonstrates that various constraining factors

inherent in organisms could show significant impacts on GRN

evolution. While redundant duplicated genes are common in

various species, some microbial organisms, such as Escherichia coli,

were known to have only a small number of duplicated genes and

very few pseudo genes in their genome. This indicates that these
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organisms might show mutational biases toward high deletion

rates or be living under the strong influence of selection for

expression costs. Many studies have suggested that various

biophysical factors involved in transcriptional regulations (e.g.,

molecular properties of DNA and proteins, physical structures of

the nucleus and chromosomes, spatial arrangements of gene order

in genomes, and stochastic noises of chemical reactions) would be

important for the evolution of GRNs and genomic architectures

[42–45,77–79]. Thus, these biophysical constraints should be

considered for the extension of the model.

We would like to emphasize the striking importance of

considering constraining factors in evolutionary models to analyze

the effect of selection on GRN and genomic evolution. Generally,

many evolutionary biologists are often interested in questions such

as how differences in genomes or GRNs among species are caused

by selection or whether some characteristic properties of GRNs

such as network motifs are evolved by selection or not. In the field

of molecular evolution, evolutionary models have generally

considered various mutational biases (e.g., base substitution

model). In contrast, in the studies on biological network evolution,

mathematical random network models have been usually used as

null models to detect the effects of selection. Thus, previous studies

on network evolution might be ineffective in detecting the effects of

selection. To solve this problem, evolutionary models considering

these constraining processes (e.g., mutation biases and biophysical

factors) must be used as null models to detect the effects of

selection.

Multilateral aspects of mutational robustness and
evolvability

Our study demonstrated that complex GRNs confer high

mutational robustness (i.e., mutations against core genes are

unlikely to cause Loss-of-phenotype and have only a small phenotypic

effect) and evolvability (i.e., a larger mutational target size and a

mutation are likely to change the phenotype) (Fig. 4). In contrast,

simple GRNs confer only mutational robustness because of their

small mutational target size. Increased core genes in complex

GRNs are mostly functionally redundant duplicated genes in our

model; thus, the proportion of mutations that cause Loss-of-

phenotype seems to be small in complex GRNs. At the same time, an

increase of redundant genes might reduce the contribution of each

redundant gene to phenotypic expression; thus, the size of

phenotypic change by Significant mutations might be small in

complex GRNs. On the other hand, mutations against core genes

generally unlikely to be Non-effect; thus, a decrease of Loss-of-

phenotype mutations in complex GRNs leads to the increase of

Significant mutations.

Many studies in evolutionary biology have studied the

relationship between the mode of fluctuating selection and the

evolution of mutational properties, such as genetic canalization

and evolvability. Previous studies showed that genetic canalization

(a kind of genetic robustness, which is defined as phenotypic

insensitivity to mutation or a lower genetic variance of phenotype)

would evolve under stabilizing selection and cyclically fluctuating

selection with particularly small and frequent optimum shift

[25,71,80]. Also, decanalization or higher evolvability would

evolve under randomly fluctuating selection and cyclically

fluctuating selection with large and infrequent optimum shifts

[29,39,71]. In this study, simple GRNs evolved under conditions

where genetic canalization is expected to evolve, while complex

GRNs evolved under condition where decanalization is expected

to evolve. Because a population continuously needs to follow in the

movement of the optimum shift under selective conditions where

decanalization was favored, the evolution of complex GRNs was

promoted by phenotypic adaptation by gene duplication in these

selective conditions.

The relationship between robustness and evolvability is a key to

understanding how organisms can withstand mutations. However,

multiple definitions of mutational robustness and evolvability

made it difficult to understand the relationship and evolutionary

origins of these features. For example, mutational robustness is

defined as a property that reduces the phenotypic and lethal effects

of mutations [25], while evolvability is defined as the ability to

promote high evolution rates of an existing trait [11,37] and the

emergence of a novel trait [27]. These definitions of mutational

robustness and evolvability indicate that they are interrelated with

each other and include several distinct properties concerning the

effect of mutations on phenotype and viability. Because robustness

and evolvability are such complex traits, various mutational effects

such as Loss-of-phenotype, Non-effect, and Significant should be

considered to understand these mutational properties. For

example, most quantitative traits in wild populations have

substantial genetic variations (evolvability); however, systematic

analysis of gene knockout experiments has revealed that mutations

are unlikely to cause lethal outcomes and are likely to show only

small phenotypic effects (mutational robustness) [81,82]. However,

the type of biological systems that could consistently achieve both

mutational robustness and evolvability and the modes of

environmental conditions by which such genetic systems could

evolve remain unknown [83,84]. Our study revealed that both

mutational robustness and evolvability could be consistently

achieved by complex GRNs that evolved under randomly

fluctuating environments.

Relationship between mutational robustness and genetic
canalization

Genetic canalization has long been regarded as a proxy of

mutational robustness in biology [80]. Thus, our results might be

confusing since complex GRNs that evolved under the condition

of decanalization have higher mutational robustness than simple

GRNs that evolved under the condition of canalization in several

aspects (mutations against core genes are unlikely to cause Loss-of-

phenotype and are likely to cause only small phenotypic changes). In

the studies on the evolution of genetic canalization with GRN

[25,85], genetic canalization was defined as a smaller average

phenotypic effect of mutations. However, because these studies did

not distinguish Non-effect and Significant mutations, it is not clear

whether the smaller average phenotypic effect of mutations is due

to the larger proportion of Non-effect mutation (i.e. high PN) or the

smaller phenotypic effect of Significant mutations (i.e. small DS).

Generally, some genes do not contribute to the expression of other

genes when GRNs evolve under stabilizing selection, and these

genes are called frozen components [86,87]. If frozen components

correspond to non-core genes in our model, mutations in frozen

components mostly would not affect gene expression patterns of

GRNs (i.e., Non-effect). Thus, the evolution of genetic canalization

in previous GRN models showed robustness mainly due to larger

proportion of Non-effect mutations rather than to smaller pheno-

typic effect of Significant mutations. In addition, these studies

showed that evolution of genetic canalization in GRNs was

associated with the evolution of shorter developmental time to

establish a steady-state gene expression pattern [25,85]. The

results also indicated the evolution of simple GRNs (smaller

number of core genes) in these models [87]. Additionally, Huerta-

Sanchez and Durrett (2005) revealed that the evolution of genetic

canalization in the model was due to the selection for increased

viability against mutations rather than phenotypic selection [88].

In other words, selection for increased viability under pure
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stabilizing selection promotes smaller mutation rates of the

phenotype (i.e. smaller mutational target size) rather than smaller

phenotypic effects of mutations.

Role of mutational robustness and evolvability in
evolution

The importance of mutational robustness in evolution has been

pointed out [41]. Robustness mechanisms generally would lessen

the number of mutations that show deleterious effects and would

increase the number of mutations that potentially contribute to

phenotypic adaptation. Thus, robustness mechanisms are consid-

ered to have some effects that promote the evolvability of

organisms in general. For example, in our analysis, the robustness

conferred by redundant duplicated genes and other robustness

mechanisms that reduce functional constraints that act on

expression dynamics would lessen the proportion of Loss-of-

phenotype mutations and increase the proportion of Significant

mutations. Consequently, the rate of evolution in the existing trait

(a kind of evolvability) is increased. Some studies argued that

robustness mechanisms would lessen the number of mutations that

show some phenotypic effects and would increase the number of

neutral mutation. Moreover, these studies argued that the

accumulation of such neutral mutations would aid the evolution

of a novel phenotype (another definition of evolvability) when the

environmental or genetic background was changed [83,84]. Thus,

the decrease of deleterious effects of mutations through some

robustness mechanisms, including redundancy, Hsp proteins,

posttranscriptional processes, and protein-protein interactions,

might have some effects that can promote organismal evolvability

in general.

Our results showed that the evolution of GRNs could occur

when the effects of evolvability are absent (Fig. S2 and S3). The

level of evolvability appeared to saturate at relatively small

numbers of core genes (,10 or so) (Fig. S1). Because phenotypic

selection strongly promoted the evolution of complex GRNs that

had very large number of genes in our model, the effects of

evolvability on GRN evolution might not be detected in our study.

The level of complexity of a single regulatory module in real

organisms is not so high; thus, the selection for evolvability might

actually be effective for promoting complex GRNs. Our study did

not analyze the effects of evolvability in GRNs with such small

number of genes. Estimating the effects of evolvability alone on

GRN evolution without the influence of phenotypic selection

would be possible if the evolvability of each genotype is examined,

and the genotype would be artificially selected according to their

evolvability. Then, if evolution of complex GRNs is observed

through the analysis, we can demonstrate that selection for

evolvability alone could promote complex GRNs. However, such

selective conditions might be unrealistic in nature, and selection

for evolvability is inevitably coupled with phenotypic selection.

Thus, it may be generally difficult to distinguish the effects of these

two factors.

The role of evolvability in organismal evolution is an interesting

subject in understanding the origin of biological diversity.

Contrary to the ordinary phenotypes, evolvability is not a property

of an individual. Instead, it is a property of a ‘‘genotype.’’ Because

the evolvability of an original genotype itself would change by

mutations, it should be applied only for short-term evolution.

However, depending on the properties of target systems, e.g., very

low gene duplication rates, the evolvability of an original genotype

might be invariant to the mutations and might be applied even for

long-term evolution. The mechanism by which properties of

evolvability depend on the target systems will be an interesting

subject in the future.

Diverse effects of mutations on phenotypes and fitness
To analyze mutational robustness and evolvability, we used the

phenotypic effects of mutations rather than fitness effects. This is

because the phenotypic effects of mutations can be observed in

laboratory experiments for real organisms, but the fitness effects of

mutations differ depending on external environments and are very

difficult to be measured. One of our aims in the present study was

to clarify the multilateral aspects of mutational robustness and

evolvability by using data available in laboratory experiments.

While experimental noise would bring some difficulty in estimating

the phenotypic effects, it would be possible to distinguish the

effects of mutations such as Loss-of-phenotype, Non-effect, Significant,

and also the mutations that change the expression dynamics

through examining temporal changes of gene expression or

variance of the expression. A distinction between Significant

mutations and Loss-of-phenotype mutations in our analysis was

actually helpful because the increased number of core genes

mainly contributed to the increased number of Significant mutations

and decreased number of Loss-of-phenotype, but minorly contribute

to Non-effect mutations. Thus, it would be difficult to reveal the

relationship between the structure and genetic properties of GRNs

without distinguishing between Significant and Loss-of-phenotype

mutations in our analysis. We believe that such a distinction

between mutations is useful in understanding mutational robust-

ness and evolvability.

Moreover, these diverse mutational effects might have funda-

mental importance in biological evolution. For example, some

studies proposed that even mutations that were neutral at the time

it arose (called cryptic genetic variation) might contribute to

phenotypic adaptation because such cryptic genetic variations

could contribute the phenotypic variation following changes of

genetic and environmental background [89,90]. In our simula-

tions, we considered the unsteady dynamics of phenotypic gene

expression as lethal. In addition, while the loss of phenotypic gene

expression were not assumed to be lethal, the mutation was

generally deleterious in our analysis (data not shown) because in

our simulations, the movement of optimum was assumed to avoid

around Pi = 0. However, the mutations did not necessarily become

lethal/deleterious in real organisms. For example, gene essentiality

would be reduced under conditions where selective pressure might

be weak, such as laboratory conditions or intrabody environments.

Moreover, some studies have revealed that even loss of gene

expression could be beneficial for phenotypic adaptation under a

certain environment in nature [91]. In addition, unsteady

expression dynamics might be favorable under fluctuating

environments through its increased temporal variance of gene

expressions. Recent technological advances have allowed us to

perform not only whole genome expression analysis but also

analysis of expression dynamics at the single-cell level [92]. By

shifting the viewpoint regarding the effect of mutations from the

changes in steady-state expression levels to the changes in

expression dynamics, we could deal with broader aspects of

GRN evolution and could understand organismal evolution in

general.

Future directions
Some predictions from our study might provide useful

hypotheses that can be tested by experimental data in real

organisms. For example, Roth (1989) conducted an experiment on

microbial evolution and showed that a duplication-containing

strain was fixed under conditions of growth limitation because of

the availability of a carbon and energy source, but the strain was

displaced by other strains afterward [93]. Experimental evolution
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under unexpectedly fluctuating environments might promote

increasing number of gene duplication.

The present models did not consider several important factors

such as duplication of receptor and phenotypic genes, stochastic

noise, pleiotropy, and complexity of gene regulation. Duplication

and divergence of receptors and target genes are commonly

observed in microbial GRN evolution [94]. Extending our

models would make it possible to study GRN evolution in

broader contexts, such as evolution of new functions, adaptation

to novel environment, and evolution of complex phenotypes.

Many studies have revealed that even simple genetic networks

could show robustness against the noise of gene expressions by

means of some local network architectures called network motifs

[95–98]. Examining how gene expression noise affects the

evolution of GRNs under various fluctuating selection conditions

would be interesting. In multicellular organisms, many transcrip-

tion factors work at several developmental stages or in multiple

cell types. The pleiotropic property of genes would be necessary

for GRNs of multicellular organisms. Molecular interactions

between the DNA, transcription factors, and transcription

machinery are extremely complex. While simulating all of these

interactions is impossible, considering some interactions is

necessary to explore their importance. A sequence-based GRN

model that considers molecular interactions might aid in detailed

quantitative analyses of the evolution of gene expression and

GRNs [99].

Methods

Structures of genes and GRNs
The GRN of each individual had M phenotypic genes and N

regulatory genes. Each gene was composed of a cis-regulatory

region and a coding region. A cis-regulatory region was composed

of L cis-sites that are potentially recognized by specific transcrip-

tion factors (boxes in Fig. 1A), and each cis-site had two parameters

called the cis-number and the interaction coefficient. On the other

hand, a coding region (diamonds in Fig. 1A) had a parameter

called the trans-number. The cis- and trans-number values

determined which regulatory gene product (i.e., transcription

factor) would bind to a cis-site. For example, the product of a

regulatory gene with a trans-number of 5 would bind to cis-sites

with a cis-number of 5 (see Fig. S9 for an illustration). The value of

the interaction coefficient determines the strength of transcrip-

tional activation/repression when a regulatory gene product binds

to the cis-site. A cis- and trans-number was assigned an integral

number in the range [1, n]. An interaction coefficient had a real

value in the range [25, 5].

A cis-number represented a specific DNA sequence of m base

pairs. The possible number of motifs (n; the possible number of

colors in Fig. 1A) produced by m base pairs of DNA sequence was

calculated as:

n~(1=2) � 4m, ð2Þ

where 1/2 indicates the direction of motifs against the promoter.

Multiple binding sites for the same transcription factor were

allowed to exist in a cis-regulatory region. However, not all the cis-

sites were bounded by transcription factors because the possible

number of motifs (n) was much greater than the number of

regulatory genes that actually existed in a genome (N); n&N.

Generally, the length of DNA sequences that were recognized by a

transcription factor (m) was 5–10 bp; thus, we assumed m<7.14 for

all the regulatory genes (this corresponded to n = 9950).

Dynamics of gene expression and phenotype
A GRN was represented by a dynamic system whose state was

represented by the expression levels of the network genes, which

were denoted as:

~RR(t)~ R1(t), . . . ,RN (t)ð Þ
~PP(t)~ P1(t), . . . ,PM (t)ð Þ,

ð3Þ

where Ri(t) and Pi(t) are the expression levels of the regulatory gene

i and phenotypic gene i at developmental time t, respectively. The

gene expression state at t = 0 is the initial gene expression state.

The initial gene expression state for all genes was set at the 0.0

expression level. Thus, the initial gene expression state was

represented as:

~RR(0)~ 0, . . . ,0ð Þ
~PP(0)~ 0, . . . ,0ð Þ:

ð4Þ

Certain genes were assumed to have a positive basal

transcription level (described below), and these genes began to

express without transcriptional activation by regulatory genes soon

after the beginning of development. The expression level of each

gene would change by the following equation:

Gi(tz1)~W xi(t)ð Þ, ð5Þ

where Gi(t) is the expression level of gene i (Ri or Pi) and xi(t) is the

regulatory input to gene i at developmental time t. The W value

was defined by:

W xð Þ~ Emaxx

Kzx
(xw0)

~0 (xƒ0),

ð6Þ

where K and Emax was constant that determines threshold against

regulatory input and the maximum gene expression level and was

set at 15 and 10 for all the genes, respectively. This value restricted

the expression level to a range [0.0, 10.0] for all genes. The

regulatory input to gene i at developmental time t was calculated

as:

xi(t)~biz
XL

j~1

Bji|Eji(t)
� �

, ð7Þ

where bi is the basal transcription level of gene i (bi$0), L is the

number of cis-sites, Bji is the interaction coefficient of the cis-site j of

gene i, and Eji(t) is the sum of the expression levels of all the

regulatory genes that bind to the cis-site j of gene i at

developmental time t. We assumed that half of the genes in a

GRN at generation 0 had b = 1, while the other half of genes had

b = 0.

We considered the equilibrium steady-state expression levels of

phenotypic genes as individual phenotype, which was described as:

P
I

ind~ P1(?), ::: ,PM (?)ð Þ, ð8Þ

The steady state was achieved when the following variance-like

criterion was met for all the phenotypic genes
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1

50

Xt

h~t{50

Pi(h){�PPi(t)ð Þ2vV , ð9Þ

where �PPi(t) is the mean expression level of the phenotypic gene i

over the developmental time from (t250) to t, and V determined

the degree of steady-state levels that were required for the viable

phenotypic expression (V = 1024 for standard parameter values).

In addition, an individual that did not reach the steady state within

the developmental time of 500 was considered to be lethal.

For the modeling of external signals, we assumed that the R1

gene was a receptor transcription factor. R1 can exist either in the

active state (R1
+), which can control transcription, or in the

inactive state (R1
2), which cannot control transcription. If external

signals were present, all products of the R1 gene stayed active

throughout the developmental process; however, if the external

signals were absent, all products of the R1 gene stayed inactive

throughout. Thus, an individual had two phenotypic states: ~PPz
ind

(in the presence of an external signal) and ~PP{
ind (in the absence of

an external signal).

Fitness
The fitness value of an individual (F) was calculated by

F~S{Q ð10Þ

where S is the suitability of the individual’s phenotype to the

environmental conditions, and Q is the cost of expressing the

phenotype. The suitability of phenotype (S) was determined by the

following Gaussian function:

S~ exp {s D(P
Iz

ind ,P
Iz

opt)
2zD(P

I{

ind ,P
I{

opt)
2

� �� �
, ð11Þ

where D is the Euclidean distance between the phenotype of an

individual (~PPind ) and the optimal phenotype (~PPopt), s represents the

strength of phenotypic selection (s = 1), and ~PPz
opt or ~PP{

opt is the

optimal phenotype in the presence or absence of an external

signal, respectively. Because expressing phenotypic genes in the

absence of external signals would be wasteful, we assumed
~PP{

opt~ 0, ::: ,0ð Þ for all simulation conditions. On the other hand,

the state ~PPz
opt was assumed to change temporally, as described in

the main text, according to fluctuations in external conditions. The

cost of expressing the phenotype (Q) was described as:

Q~c �
X?
t~0

XN

i~0

Ri(t)z
XM
i~0

Pi(t)

 !
ð12Þ

where c is the fitness load per unit of gene expression and Ri(t) and

Pi(t) are the expression levels of the R and P genes i at

developmental time t, respectively (c = 1025 for standard param-

eter values).

Then, the probability of reproduction (Wi) that a copy (i.e.,

offspring) of individual i was created for the next generation was

described as:

Wi~
FiPZ

k~1

Fk

,

ð13Þ

where Z is the effective population size (Z = 105). Thus, in creating

the next generation, one individual was selected according to the

probability, and this procedure was repeated until we got Z viable

offspring.

Mutation
When a copy of an individual (offspring) was created, mutation

would occur at a certain probability. Six types of mutations (gene

duplication, gene deletion, cis-regulatory mutation, trans-regula-

tory mutation, basal transcription level mutation, and horizontal

gene transfer) were assumed in the model, and the per-gene

mutation rates for each type of mutations were denoted as mBTL,

mCIS, mTRA, mDUP, mDEL, and mHOR, respectively. When a gene

duplication (or gene deletion) was assumed to occur, one

regulatory gene was randomly copied (or erased) along with its

cis-regulatory and coding regions. When a cis-regulatory mutation

(or trans-regulatory mutation) was assumed to occur, a cis-site (or

the coding region) was randomly chosen and the value of its cis-

number (or trans-number) was replaced by the value drawn from

the uniform distribution of the integer [1, n]. When a basal

transcription level mutation was assumed to occur, a regulatory or

phenotypic gene was randomly chosen, and the value of the basal

transcription level of the gene (b) was increased (+1) or decreased

(21). When a horizontal gene transfer was assumed to occur, a

regulatory gene was randomly created by assigning values drawn

from uniformly distributed integer [1, n] to each cis- and trans-

number, and by assigning values drawn from uniformly distributed

real number [25, +5]. R1 is the receptor for upstream signals;

thus, duplication and deletion were not assumed to occur in this

gene.

Although the per-gene mutation rate of the cis-regulatory region

was not estimated, based on the mutation rate per nucleotide per

generation (10210) and the extent of the cis-regulatory region of

genes (102–105 bp) [50,100], the mutation rate including the cis-

regulatory region would be in the order of 1028–1025 per gene

per generation. Background rates of gene duplication and deletion

are approximated in the order of 1026 per gene per cell division

(generation) in yeast; on the other hand, per-generation mutation

rates in multicellular organisms could be 1 to nearly 3 orders of

magnitude greater than that in yeast because germ-line cell

divisions occur 9 times in nematodes, 36 times in flies, and 200

times in humans [49]. Therefore, the mutation rates used in this

study are probably realistic.

Per-individual mutation rate
Because offspring are assumed to be subject to a mutation at

per-individual mutation rate regardless of the number of genes,

only a single mutation was always introduced to the offspring. The

per-individual rate of each mutation was set at values 10 times

larger than the per-gene rates because a founder individual has 10

regulatory genes.

Constant PS

For setting PS = 1 and PN = PL = 0, we reintroduced a mutation

to the original offspring until the mutation showed Significant

phenotypic changes when the offspring were subjected to a

mutation. Notably, this procedure did not cause multiple

mutations in the offspring. We assumed PS = 1 only for gene

duplication, gene deletion and trans-regulatory mutation, and the

other type of mutations are assumed as same as the original model.

Because, the value of PS in gene duplications, gene deletions and

trans-regulatory mutations were well correlated to the structure of

GRNs. On the other hand, cis-regulatory mutations and basal

transcription level mutations originally had very low value of PS,
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and the procedure of setting PS = 1 in these mutations would

disrupt the evolution of GRNs in unwilling manner.

Measurement of phenotypic adaptation rate
To examine the rate of phenotypic adaptation of an evolved

population, a new optimum was placed at a distance away (d = 1)

from the mean phenotype of the population. Then, under this

benchmark selective condition, the population was allowed to

evolve for 1000 generations. During the benchmark evolution,

changes in the Euclidean distance between the optimum and the

mean phenotype of populations were examined.

Definition of Cmut

The probability that a binding site of a particular transcription

factor is present in a cis-regulatory region depended on the size

(base pair) of the binding site (m) and the cis-regulatory region (L)

[70]. The number of DNA motifs (n) produced by m base pairs of

DNA sequences was calculated as n = (1/2)64m as described by

Equation 2. Thus, the probability of the presence (Cmut) and

absence (12Cmut) of a binding site of a particular transcription

factor in a cis-regulatory region was represented by the following

equation (see Fig. S9 for an illustration).

Cmut~1{
n{1

n

� 	L

ð14Þ

where L is the number of cis-sites (i.e., potential binding sites) in a

cis-regulatory region. The value of L was changed to control the

value of Cmut in the simulation. For the standard parameter values,

we used L = 100, n = 9550 (m = 7.14), and, thus, Cmut<0.01. This

probability was applied to all combinations of any transcription

factor and any cis-regulatory region in a GRN; therefore, the value

of the GRN connectivity density (C; the proportion of the number

of existing regulatory interactions against the number of possible

regulatory interactions in a GRN) tended to approach the value of

Cmut if sufficient numbers of regulatory mutation were accumulat-

ed. To represent the relative rate of gain and loss of regulatory

interactions, Lynch (2007) used a different parameter, a = ml/mg,

where ml and mg are the rate of loss and gain of a transcription

factor binding sites, respectively [31]. We approximate that a = ml/

mg<(12Cmut)/Cmut. Lynch (2007) inferred a = 1032102 for pro-

karyotes, 1022101 for unicellular eukaryotes, and 1012100 for

multicellular eukaryotes; this corresponds to Cmut = 1023–1022 for

prokaryotes, 1022–1021 for unicellular eukaryotes, and 1021–100

for multicellular eukaryotes.

Preparation of the initial population
To prepare the initial population, we created a founder

individual for each population. A founder individual had Mini

phenotypic genes and Nini regulatory genes; its GRN structure was

randomly generated with a certain connectivity (Cinit). We used

Mini = 10, Nini = 2, and Cinit = 0.5 for the standard simulation

condition because the low value of Cinit made it difficult to obtain

viable founder individuals. Qualitatively similar results were

obtained with the various values of Mini, Nini (Fig. S7 and S8),

and Cinit. We assumed b = 1 for half of the genes and b = 0 for the

other half. To create a founder individual with a certain value of

Cinit, we determined the range of values for cis- and trans-numbers

(ninit) according to Equation 14 (L = 100, standard parameter value;

thus, ninit = 145 for Cinit = 0.5). We then initialized the genome of

the founder individual by setting the random integral number

between 1 and ninit for each cis- and trans-number, and the random

real number between 25 and +5 for each interaction coefficient.

This procedure assured that the GRN connectivity (C) of the

founder individual equaled to Cinit. Then, the cis-numbers that

were not used for regulatory interactions were rerandomized by

setting a random integral number ranging [1, n]; however, the

numbers that were already assigned as trans-numbers were

excluded from the rerandomization. This procedure assured the

sufficient complexity of the composition of the cis-regulatory

regions of the founding individual. We assumed that the viable

founder individual should have appropriate phenotypic values, in

which the expression levels of all phenotypic genes are ,0.01 in
~PP{

ind and .2.0 in ~PPz
ind .

Supporting Information

Figure S1 Relationship between the rate of phenotypic

adaptation and the properties of GRNs. After 50,000 generations

in the experimental evolution, a new optimum was placed at a

constant distance away (d = 1) from the mean phenotype of the

population. The population was then allowed to evolve for 1000

generations (denoted as the benchmark evolution). Points

represent the results of each population in the random-walk

optimum shift. Horizontal axes indicate the number of core genes

and PS of a population at the end of experimental evolution. Di

indicates the Euclidean distance between the optimum and the

mean phenotype of a population at generation i during the

benchmark evolution. Kendall’s correlation test was used for

statistical analysis of the correlation.

Found at: doi:10.1371/journal.pcbi.1000873.s001 (0.31 MB TIF)

Figure S2 Number of regulatory genes in GRN that evolved under

fixed per-individual mutation rate. GRNs were allowed to evolve with

a fixed per-individual mutation rate regardless of the number of genes

in GRNs. mBTL = mCIS = mTRA = mDEL = mDUP = 1025 per-individual

per generation. Each point connected by solid lines represents the

mean number of each type of genes in evolved GRNs under each

selective condition. Vertical bars attached to the point represent 95%

confidence intervals. d and f represent the amplitude and frequency of

the optimum shift, respectively.

Found at: doi:10.1371/journal.pcbi.1000873.s002 (0.16 MB TIF)

Figure S3 Number of regulatory genes in GRN that evolved

under constant PS. GRNs were allowed to evolve with a constant

PS regardless of the number of genes in GRNs (PS = 1,

PL = PN = 0). mBTL = mCIS = mTRA = mDEL = mDUP = 1025 per-indi-

vidual per generation. Each point connected by solid lines

represents the mean number of each type of genes in evolved

GRNs under each selective condition. Vertical bars attached to

the point represent 95% confidence intervals. d and f represent the

amplitude and frequency of the optimum shift, respectively.

Found at: doi:10.1371/journal.pcbi.1000873.s003 (0.16 MB TIF)

Figure S4 Number of regulatory genes in GRN that evolved

under various rates of cis- and trans-regulatory mutations (mCIS,

mTRA). The values of both mCIS and mTRA are varied from 1028 to

1026 (mCIS = mTRA = 1026, standard parameter value). Points

connected by solid lines represent the mean number of core genes

(#core), pseudo-expression genes (#psdexp), and silent genes

(#silent) in GRNs that evolved for 50,000 generations under each

simulation condition. Vertical bars indicate 95% confidence

intervals. Different colors indicate different conditions of pheno-

typic selection; d = 1021, f = 1021 (red); d = 100, f = 1023 (blue);

d = 1023, f = 1023 (black) under random-walk optimum shift.

Found at: doi:10.1371/journal.pcbi.1000873.s004 (0.13 MB TIF)

Figure S5 Indegree distribution of assembled GRNs that

evolved under various rates of cis- and trans-regulatory mutations

(mCIS, mTRA). The values of both mCIS and mTRA are varied from
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1028 to 1026, standard parameter value). Horizontal and vertical

axes in each panel show the indegree (the number of regulatory

interactions that arrived at a gene) and the frequency, respectively.

Note that the vertical axes are shown logarithmically to

demonstrate the exponential character of the distribution.

Different rows and columns show the indegree distributions of

GRNs under different conditions of phenotypic selection and

different values of (mCIS, mTRA), respectively. Lines in each panel

indicate the regression of the plot to the Power law distribution

(red), the exponential distribution (blue) and the Poisson

distribution (green). Regression was estimated by a nonlinear

least-square method. To judge the goodness of the regression,

Akaike’s information criterion (AIC) was used, and the regression

that showed the smallest value of AIC was drawn as a thick line.

POW, EXP and POI in each panel indicate the differences

between AIC value of the best regression model and those of

power-law (scale-free), exponential and poisson distributions,

respectively.

Found at: doi:10.1371/journal.pcbi.1000873.s005 (0.52 MB TIF)

Figure S6 Outdegree distribution of assembled GRNs that

evolved under various rates of cis- and trans-regulatory mutations

(mCIS, mTRA). The values of both mCIS and mTRA are varied from

1028 to 1026 (mCIS = mTRA = 1026, the standard parameter value).

Horizontal and vertical axes in each panel show the outdegree (the

number of regulatory interactions that depart from a gene) and the

frequency, respectively. Note that the both horizontal and vertical

axes are shown logarithmically to demonstrate the scale-free

character of the distribution. Different rows and columns show the

outdegree distributions of GRNs under different conditions of

phenotypic selection and different values of (mCIS, mTRA),

respectively. Lines in each panel indicate the regression of the

plot to the Power law distribution (red), exponential distribution

(blue) and Poisson distribution (green). Regression was estimated

by a nonlinear least-square method. To judge the goodness of the

regression, Akaike’s information criterion (AIC) was used, and the

regression that showed the smallest value of AIC was drawn as a

thick line. POW, EXP and POI in each panel indicate the

differences between AIC value of the best regression model and

those of power-law (scale-free), exponential and poisson distribu-

tions, respectively.

Found at: doi:10.1371/journal.pcbi.1000873.s006 (0.55 MB TIF)

Figure S7 Number of regulatory genes in GRN that evolved

under the various initial numbers of regulatory genes (Ninit).

Ninit = 10, standard parameter value. Points connected by solid

lines represent the mean number of core genes (#core), pseudo-

expression genes (#psdexp), and silent genes (#silent) in GRNs

that evolved for 50,000 generations under each simulation

condition, respectively. Vertical bars indicate 95% confidence

intervals. Different colors indicate the different conditions of

phenotypic selection; d = 1021, f = 1021 (red); d = 100, f = 1023

(blue); d = 1023, f = 1023 (black) under random-walk optimum

shift.

Found at: doi:10.1371/journal.pcbi.1000873.s007 (0.13 MB TIF)

Figure S8 Number of regulatory genes in GRN that evolved

under various initial numbers of phenotypic genes (Minit). Minit = 2,

standard parameter value. Points connected by solid lines

represent the mean number of core genes (#core), pseudo-

expression genes (#psdexp), and silent genes (#silent) in GRNs

that evolved for 50,000 generations under each simulation

condition, respectively. Vertical bars indicate 95% confidence

intervals. Different colors indicate the different conditions of

phenotypic selection; d = 1021, f = 1021 (red); d = 100, f = 1023

(blue); d = 1023, f = 1023 (black) under random-walk optimum

shift.

Found at: doi:10.1371/journal.pcbi.1000873.s008 (0.11 MB TIF)

Figure S9 Relationship between gene structures and Cmut.

Found at: doi:10.1371/journal.pcbi.1000873.s009 (0.14 MB TIF)

Figure S10 Illustration of the relationship between the intensity

of optimum fluctuation and the fitness effects of a certain

mutation.

Found at: doi:10.1371/journal.pcbi.1000873.s010 (0.09 MB TIF)
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