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Abstract

Conventional methods used to characterize multidimensional neural feature selectivity, such as spike-triggered
covariance (STC) or maximally informative dimensions (MID), are limited to Gaussian stimuli or are only able to identify a
small number of features due to the curse of dimensionality. To overcome these issues, we propose two new
dimensionality reduction methods that use minimum and maximum information models. These methods are information
theoretic extensions of STC that can be used with non-Gaussian stimulus distributions to find relevant linear subspaces of
arbitrary dimensionality. We compare these new methods to the conventional methods in two ways: with biologically-
inspired simulated neurons responding to natural images and with recordings from macaque retinal and thalamic cells
responding to naturalistic time-varying stimuli. With non-Gaussian stimuli, the minimum and maximum information
methods significantly outperform STC in all cases, whereas MID performs best in the regime of low dimensional feature
spaces.
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Introduction

In recent years it has become apparent that many types of

sensory neurons simultaneously encode information about more

than one stimulus feature in their spiking activity. Examples can be

found across a wide variety of modalities, including the visual [1–

12], auditory [13], olfactory [14], somatosensory [15] and

mechanosensory [16] systems. This discovery was facilitated by

the development of dimensionality reduction techniques like spike-

triggered covariance (STC) [17–22] and maximally informative

dimensions (MID) [23]. These two methods exhibit complemen-

tary advantages and disadvantages. For instance, STC can identify

many relevant features for stimuli whose parameters are

distributed in a Gaussian manner but can fail when natural

stimuli are used, whereas MID works well for arbitrary stimuli but

requires exponentially larger data sets to find more than a few

features. Therefore, there is need for a method that can find

relevant features from arbitrary stimulus distributions while

bypassing the curse of dimensionality. Here we propose two novel

techniques based on minimum and maximum mutual informa-

tion; these new approaches can be seen as an extension of STC to

arbitrary stimuli.

Neural coding of multiple stimulus features is typically modeled

as a linear-nonlinear Poisson (LNP) process [24–28]. A stimulus

s~ s1,s2,:::,sDð Þ, such as an image with D pixels, as well as each of

the n features fvig for which a neuron is selective are represented

by vectors in a D dimensional space. The neuron extracts

information about the stimulus by projecting s onto the linear

subspace spanned by the feature vectors. The result is a stimulus of

reduced dimensionality x~ x1,x2,:::,xnð Þ, with xi~vi
:s; this input

is then passed through an nonlinear firing rate function f xð Þ.
Spikes are then assumed to be generated by a Poisson process with

a rate equal to f xð Þ, which only depends on the relevant

dimensions of the stimulus space.

Given a set of stimuli fs tð Þg, for t~1,2,:::,T and the

corresponding observed neural responses fy tð Þg, where y is

number of spikes, there are a few commonly used methods

available to extract the stimulus features relevant to the neuron. In

the STC method, the stimulus covariance matrix Cprior and the

covariance of the spike-triggered ensemble,

Cspike i,jð Þ~ 1
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are compared to discover the dimensions along which the

stimulus variance conditional on a spike is significantly different

from the stimulus variance overall. This comparison is done by

diagonalizing the matrix DC~Cprior{Cspike. The relevant

features can be identified by the eigenvectors that have nonzero
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eigenvalues. If the stimuli are drawn from a distribution P sð Þ
which is Gaussian, then the only limitation to finding the features

is having a large enough set of spike data. In practice, the STC

procedure can be extended to Gaussian stimuli containing

correlations by adding a whitening step [17,18], and can also

include a regularization term to smooth the results (see Methods).

On the other hand, if P sð Þ is non-Gaussian, as is the case for

natural images, then higher order stimulus correlations can

greatly affect the results [23,29].

The use of Gaussian stimuli makes it possible to find many

relevant dimensions using STC, but fully sampling the dynamic

range of responses often requires a P sð Þ more similar to the non-

Gaussian distributions found in nature [27,30]. It has also been

suggested that neural representations of stimuli may be optimized

in some way [31–33] to the statistics of the natural environment.

With this in mind, it is important that multidimensional feature

extraction methods be extended to stimulus distributions with non-

Gaussian statistics.

The MID method is an information theoretic dimensionality

reduction technique that identifies relevant features based on how

much information a linear subspace contains about the observed

spikes (see Methods). Unlike STC, the dimensionality of the

relevant subspace to be found using MID must be specified a priori,

and thus to discover the number of relevant features one must

search for additional dimensions until the subspace accounts for a

sufficient fraction of the information carried in the neural

response. The objective function in MID relies on an empirical

construction of the reduced stimulus distribution P xð Þ and the

corresponding conditional distribution P xjspikeð Þ, and thus

suffers from the curse of dimensionality [34]. A related problem

that occurs equally for Gaussian and non-Gaussian stimuli, and

affects both the STC and MID methods, is that even if one is able

to find many relevant dimensions, it is usually not possible to

sample the nonlinear gain function simultaneously along all of

these dimensions.

Here we put forth two new dimensionality reduction techniques

applicable to arbitrary stimulus distributions. These methods,

much like STC, make use of pairwise correlations between

stimulus dimensions and are not hindered by the curse of

dimensionality in the same manner as MID. To demonstrate the

usefulness of the proposed methods, we apply them to simulated

neural data for two biologically inspired model cells, and to

physiological recordings of the response of macaque retina and

thalamus cells to time-varying stimuli.

Results

Dimensionality reduction using minimal models
If the spiking activity of a neuron is encoding certain aspects of

the stimulus, then the corresponding stimulus features must be

correlated in some way with the neural response. From an

experiment one can estimate specific stimulus/response correla-

tions, such as the spike-triggered average (STA), the spike-

triggered covariance (STC), or the mutual information [35],

I y; sð Þ~
X

y

X
s

P sð ÞP yjsð Þlog
P yjsð Þ
P yð Þ , ð1Þ

which provides a full measure of the degree of dependence

between stimulus and response. These estimates can then be used

to construct a model of the conditional response probability by

constraining Pmod yjsð Þ to match a given set of observed

correlations, as in the STA and STC methods. As there are an

infinite number of models that match any given set of

experimentally estimated correlations, the values of the uncon-

strained correlations are necessarily determined by the specific

choice of Pmod yjsð Þ.
The minimal model of Pmod yjsð Þ is the one that is consistent

with the chosen set of correlations but is otherwise as random as

possible, making it minimally biased with respect to unconstrained

correlations [36]. This model can be obtained by maximizing the

noise entropy S{logPmod yjsð ÞT, where S:::T denotes an average

over Pmod y,sð Þ~P sð ÞPmod yjsð Þ. For a binary spike/no spike

neuron consistent with an observed mean firing rate, as well as the

correlation of the neural response with linear and quadratic

moments of the stimulus, the minimal model is a logistic function

[36]

Pmin spikejsð Þ~ 1

1zexp azh:szsT Jsð Þ , ð2Þ

where the parameters a, h and J are chosen such that the mean

firing rate, STA and STC of the model match the experimentally

observed values (see Methods). If correlations between a spike and

higher order moments of the stimulus are measured, the argument

of the logistic function would include higher powers of s. In

addition to being as unbiased as possible, Pmin yjsð Þ also minimizes

the mutual information [36,37], which only includes the

contribution of the chosen constraints. We note that previously

we used this minimal model framework to characterize the

computation performed within the reduced relevant subspace

[36], and in particular to quantify in information-theoretic terms

the contribution of higher-than-second powers of relevant stimulus

features to neural firing. Here, we study whether analysis of the

second-order minimal models constructed in the full stimulus

space can be used to find the relevant feature subspace itself.

The contours of constant probability of the minimal second

order models are quadric surfaces, defined by the quadratic

polynomial f sð Þ~azh:szsT Js~constant. The diagonalization

of f sð Þ involves a change of coordinates such that

f ~az
XD

i~1

aiziz
XD

i~1

biz
2
i : ð3Þ

This is accomplished through the diagonalization of the matrix J,

yielding D eigenvectors fzig with corresponding eigenvalues fbig.
These eigenvectors are the principal axes of the constant

Author Summary

Neurons are capable of simultaneously encoding informa-
tion about multiple features of sensory stimuli in their
spikes. The dimensionality reduction methods that cur-
rently exist to extract those relevant features are either
biased for non-Gaussian stimuli or fall victim to the curse
of dimensionality. In this paper we introduce two
information theoretic extensions of the spike-triggered
covariance method. These new methods use the concepts
of minimum and maximum mutual information to identify
the stimulus features encoded in the spikes of a neuron.
Using simulated and experimental neural data, these
methods are shown to perform well both in situations
where conventional approaches are appropriate and
where they fail. These new techniques should improve
the characterization of neural feature selectivity in areas of
the brain where the application of currently available
approaches is restricted.
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probability surfaces, and as such the magnitude of the eigenvalue

along a particular direction is indicative of the curvature, and

hence the selectivity, of the surface in that dimension. This point is

illustrated in Fig. 1.

The linear term in Eq. (3) may also contain a significant feature.

Subtracting off the relevant dimensions found from diagonalizing

J leaves an orthogonal vector z
0
. The magnitude of this vector can

be directly compared to the eigenvalue spectrum to determine its

relative strength.

Dimensionality reduction using nonlinear MID
The minimal models of binary response systems take the form of

logistic functions. This restriction can be eliminated if we look for a

maximally informative second order model. To accomplish this, we

extend the MID algorithm to second order in the stimulus by

assuming the firing rate is a function of a quadratic polynomial,

f w:szsT Wsð Þ. The nonlinear MID (nMID) algorithm is then run

exactly as linear MID in the expanded
D Dz3ð Þ

2
dimensional space.

Once the maximally informative parameters are found, the

matrix W can be diagonalized to reveal the relevant features, and

the linear term can be analyzed in the same manner as for the

minimal sigmoidal model. The ability to construct an arbitrary

nonlinearity allows nonlinear MID to include information

contained in higher order stimulus/response correlations and to

find the linear combination that captures the most information

about the neural response. Unlike multidimensional linear MID,

nonlinear MID is one-dimensional in the quadratic stimulus space

and therefore avoids the curse of dimensionality in the calculation

of the objective function.

Application to simulated neurons
To test and compare the two proposed methods, both to each

other and to the established methods such as STC and MID, we

created two model cells designed to mimic properties of neurons in

primary visual cortex (V1). The first model cell was designed to

have two relevant dimensions, which places it in the regime where

the linear MID method should work. The second model was

designed to have six relevant dimensions and serves as an example

of a case that would be difficult to characterize with linear MID.

Using the van Hateren [38] natural image database, a different set

of 20,000 patches of 16|16 pixels were randomly selected as

stimuli for each cell; 100 repetitions of these image sequences were

presented during the course of the simulated experiment.

To quantify the performance of a given dimensionality

reduction method, we calculate the subspace projection [39]

O~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDet UVTð Þjn

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDet UUTð Þj2n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDet VV Tð Þj2n

p , ð4Þ

where U is an n|D matrix whose rows are the n most significant

dimensions found from either DC, J or W , and V is a matrix

containing the n model cell features. This quantity is the

intersection of the volumes spanned by the two sets of vectors. It

is bounded between 0 and 1, with 0 meaning the two subspaces

have no overlap and 1 meaning they are identical, and is invariant

to a change of basis or rescaling of the vectors in either subspace.

The first model cell was constructed to respond to the two

Gabor features shown in Fig. 2A in a phase invariant manner.

This cell approximates a complex cell in area V1 by responding to

the square of the stimulus projections onto the Gabor features,

with a firing rate proportional to x2
1zx2

2, as in the energy model

[7,40–45]. Although the firing rate was low for this model cell,

there was occasionally more than one spike per stimulus frame.

These instances were rare and to simplify the analysis the neural

response was binarized by setting all multiple spiking events equal

to one.

As expected, the STC method performed poorly due to the

strong non-Gaussian properties of natural stimuli [30,46]. The

STC method found a subspace with an overlap of 0.77, whereas

the nonlinear MID result had an overlap of 0.87 and the minimal

Figure 1. Eigenvector analysis of quadratic probability surfaces. The f sð Þ~0 surfaces are shown for two simple second order minimal
models in a three dimensional space. For the surface on the left all three eigenvalues are nonzero; the surface curves in all three dimensions and the
neuron is selective for three features. For the surface on the right one of the eigenvalues is equal to zero; the surface only curves in two dimensions
and the neuron is selective for only two features.
doi:10.1371/journal.pcbi.1002249.g001
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model subspace had an overlap of 0.90, as shown in Fig. 2B. For

comparison, the conventional MID method searched for the two

most informative dimensions and was able to recover a subspace

that almost perfectly reproduced the ground truth, with an overlap

of 0.98. The feature vectors found by the different methods and

the corresponding eigenvalue spectra are shown in Fig. 2C–E.

A second model cell was also created to resemble a V1 complex

cell, but with a divisive normalization based on inhibitory features

with orthogonal orientation in the center and parallel orientation

in the surround [7,40–45,47], as shown in Fig. 3A. The two

excitatory features in the center of the receptive field have a

specific orientation. The two inhibitory features in the center of

the receptive field have an orientation orthogonal to that of the

excitatory features, while the two suppressive features in the

surround have the same orientation as the excitatory ones in the

center. The nonlinear gain function for this cell is

f xð Þ! x2
1zx2

2

1zx2
3zx2

4zx2
5zx2

6

, ð5Þ

scaled such that the average spike probability over the stimulus set

was approximately 0.15. Spiking responses were binarized as for

the first model cell.

The performance of the various dimensionality reduction

methods is shown in Fig. 3B. The spike-triggered covariance

Figure 2. Model complex cell. A) The two excitatory features of the model are Gabor filters 90 degrees out of phase. The quadratic nonlinearity
ensures that the responses are invariant to phase. B) Subspace projections for the STC, minimal model (MM), and nonlinear and linear MID models.
The normalized eigenvectors (left) corresponding to the two largest magnitude eigenvalues (right) for C) STC, D) minimal model and E) nonlinear
MID method.
doi:10.1371/journal.pcbi.1002249.g002
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approach finds features (Fig. 3C) that bear some resemblance to

the model features, but have a low overlap of 0.29. In contrast,

nonlinear MID and the minimal model find features with much

larger overlaps: 0.84 and 0.85, respectively. Note that the linear

MID was not implemented for this model cell, as the algorithm

cannot recover a 6 dimensional feature space.

Feature selectivity of real neurons
To demonstrate the usefulness of the new approaches proposed

here for the analysis of real neural data, we analyzed the responses

of 9 macaque retina ganglion cells (RGC) and 9 cells from the

lateral geniculate nucleus (LGN) under naturalistic stimulus

conditions [48] (see Methods). In this case, the stimulus was a

spot of light filling the center of the RGC or LGN receptive field

with non-Gaussian intensity fluctuations.

While we cannot know the true features of these neurons as we

can for the model cells, this data was previously analyzed using

MID [3] and it was found that two stimulus features explain

nearly all of the information in the neural response (an average of

85% information explained across the 18 cells analyzed). We can

therefore use the two linear MID features as a benchmark for

comparing the features recovered with the new algorithms, using

the subspace projection quantity in Eq. (4). Moreover, the

veracity of these new algorithms can be tested by comparison

with other studies that have used Gaussian stimuli and STC to

investigate feature selectivity of retinal cells. For instance, it was

previously shown that salamander RGCs are selective to 2 to 6

significant stimulus features [2]. Here we examine if the new

algorithms can find a similar number of features in macaque

RGCs.

We show the result of fitting the minimal model to one of the

RGCs. The parameters are shown in Fig. 4A; the 50 dimensional

linear term h is plotted as a function of time before a spike and the

matrix J is shown in the inset. The eigenvalue spectrum of this cell

is shown in Fig. 4B. The eigenvectors corresponding to the two

largest eigenvalues are shown in Fig. 4C (solid curves); the MID

features (dashed curves), shown for comparison, captured 92% of

the information. These two subspaces are very similar, with an

overlap of 0:93, demonstrating that the minimal model method is

able to accurately identify the two features of this cell.

Although the two most informative dimensions captured a very

large percentage of the information in the neural response [3], the

number of significant features found using the minimal model

approach ranged from 2 to 5, echoing the previous work [2] in

salamander retina using white noise stimuli and STC. The

number of cells with a given number of significant features is

shown in the histogram in Fig. 4B. Most of the cells were

dominated by one or two features, with additional weakly

influential dimensions having significant curvature, in agreement

with previous findings [2,3].

Figure 3. Model complex cell with inhibitory features. A) The first two panels show the excitatory fields: two Gabor filters 90 degrees out of
phase located only in the center region of the receptive field (RF). The middle two panels show two inhibitory Gabor features, also in the middle of
the RF and rotated to have an orientation perpendicular to that of the excitatory features. The right two panels show two inhibitory surround features
aligned in orientation to the excitatory features. A quadratic nonlinearity applied to the projection of the stimulus onto these six features ensures
phase invariance. B) The subspace projections for the STC, minimal model (MM) and nonlinear MID models. The eigenvectors (left) corresponding to
the six largest magnitude eigenvalues (right) using the C) STC, D) minimal models and E) nonlinear MID method.
doi:10.1371/journal.pcbi.1002249.g003
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Figure 4. Minimal model of retinal feature selectivity in a retinal ganglion cell. A second order minimal model was fit to the spike train of a
RGC. A) The feature h that controls the linear term in the argument of the logistic nonlinearity, plotted as a function of time before the neural
response. The matrix J that controls the quadratic term is shown as an inset. B) The eigenvalue spectrum for this cell has two significant features. The

Second Order Dimensionality Reduction
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Discussion

Both of the methods proposed here find relevant subspaces

using second order stimulus statistics and can therefore be seen as

extensions of the STC method. The minimal model is forced to

have a logistic function nonlinearity, which has the benefit of

removing unwanted model bias regarding higher than second

order stimulus moments. In contrast, nonlinear MID uses an

arbitrary nonlinear gain function and is therefore able to make use

of higher order statistics to maximize information. Although both

methods yield models consistent with first and second order

stimulus/response correlations, neither method is guaranteed to

work if the underlying neural computation does not match the

structure of the model or the assumptions that underlie the

estimation of relevant features.

In principle, the flexibility in the nonlinear MID gain function

means it should perform at least as well as the minimal model.

However, what we have observed is that the nonlinear MID

subspace projection with these two model cells is slightly smaller

than the minimal model subspace. This may be due to the

differences in the nature of the optimization problems being solved

in the two methods. Maximizing noise entropy under constraints is

a convex optimization problem [49], whereas maximizing mutual

information is not convex. This means that the parameter space

for nonlinear MID may contain many local maxima. Although the

MID algorithm uses simulated annealing to overcome this issue,

the number of iterations required to outperform the minimal

model may be large. We have observed (data not shown) that

minimal models can find feature spaces with extremely high

dimensionality D, i.e. *1000, which corresponds to finding on the

order of 106 values of the covariance matrix.

Neurons with selectivity for only a few features that are

probed with non-Gaussian stimuli, such as the model cell shown

in Fig. 2 or the RGC in Fig. 4, can be characterized very well

with MID, as previously shown [23]. Thus, in such cases MID is

a useful tool for estimating the relevant features. We have found

that for both real and model neurons with a small number of

relevant features, the minimum and maximum information

models performed quite well, despite the large number of

parameters that need to be estimated. In particular, both

methods were able to outperform STC in the recovery of the

relevant stimulus subspace. On the other hand, when the

dimensionality of the feature space is larger, as for the 6

dimensional cell in Fig. 3, linear MID cannot be used reliably

due to the massive amount of data needed to construct a 6

dimensional empirical spike-conditional probability distribution.

Because in the case of model cells the relevant features are

known, we can verify that the minimal models and nonlinear

MID approaches are able to find all of the features, whereas

STC performs significantly worse. Furthermore, the fact that

the second-order minimal models yielded a similar number (2–

5) of relevant dimensions across the neural population as was

previously described with Gaussian stimuli can be viewed as a

further validation of the new method. It is our hope that these

new techniques will advance the characterization of neural

feature selectivity under a variety of stimulus conditions.

Methods

Ethics statement
Experimental data were collected as part of a previous study

using procedures approved by the UCSF Institutional Animal

Care and Use Committee, and in accordance with National

Institutes of Health guidelines.

Spike-triggered covariance
When applied to stimuli with correlations, a whitening

procedure can be used to correct for them [18]. This procedure

can still be used if stimuli are non-Gaussian, but the results are

biased [29]. The whitening operation can be performed after

diagonalization of DC by multiplying the eigenvectors by C{1
prior,

the inverse of the prior covariance matrix.

Whitening has the consequence of amplifying noise along

poorly sampled dimensions. To combat this effect, we regularize

using a technique called ridge regression [50] in our analysis, in

which CpriorzlI
� �{1

instead of C{1
prior is used in the whitening

step. Here I is the identity matrix and l is a regularization

parameter that was varied for both model cells to identify the value

which gave the largest overlap. This value of l was used to give a

best case estimate of STC performance. We note that this

procedure gives more credit to STC compared to the other

methods used here because it is not possible to evaluate a cross-

validation metric such as percent information explained when

many dimensions are involved.

Maximally informative dimensions
Maximally informative dimensions [23] is an algorithm that

finds one or more linear combinations of the stimulus dimensions,

i.e. a reduced stimulus vector x, that maximizes the information

per spike [51]

Ispike xð Þ~
XT

i~1

P xijspikeð Þlog
P xijspikeð Þ

P xið Þ
, ð6Þ

where T is the total number of stimuli. The mutual information

between the stimulus features and the neural response (the

presence of a spike, y~1, or its absence, y~0) is a sum of

contributions from both types of responses:

I y; xð Þ~P(spike)Ispike xð ÞzP(silence)Isilence xð Þ, with Isilence xð Þ
defined by replacing P xijspikeð Þ with P xijsilenceð Þ in Eq. (6).

However, in the limit of small time bins where y~0 in most of the

bins, P xijsilenceð Þ&P xið Þ, which leads to vanishing contributions

from Isilence xð Þ. In this case, one can optimize either I y; xð Þ or

Ispike xð Þ to find the relevant features vi along which the probability

distribution P xijspikeð Þ is most different from P xið Þ according to

the Kullback-Leibler distance, cf. Eq. (6). We note that this

optimization is not convex and therefore a standard gradient

ascent algorithm may not find the global maximum. An algorithm

that combines stochastic gradient ascent with simulated annealing

is publicly available at http://cnl-t.salk.edu.

To extend the MID algorithm to nonlinear MID (nMID), the

stimulus is simply transformed by a nonlinear operation. For the

inset shows a histogram of the number of significant features across the population of 9 retinal cells and 9 thalamic cells. All cells fell in the range of 2
to 5 features. C) The minimal model eigenvectors u1 and u2 corresponding to the two largest eigenvalues (solid) along with the two most informative
features (dashed). The most informative dimensions and these eigenvectors had a subspace projection of 0.93. This analysis thus validates the
minimal model algorithm by applying it to neural data in a case where the relevant dimensions can be obtained by an existing and well established
method.
doi:10.1371/journal.pcbi.1002249.g004
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second order nonlinear transformation considered in this paper,

s[RD?S[RD
0
, where S is a vector whose first D components are

the components of s and the remaining components are the

elements of ssT . Due to the symmetry of the outer product matrix,

this transformed stimulus dimensionality is D
0
~

D Dz3ð Þ
2

. In this

new space, the MID algorithm works as before, finding a linear

combination of these dimensions, i.e. x
0
~w:szsT Ws, such that

Ispike x
0� �

is maximized. To improve performance and cut down

on runtime, the search was started from the minimal model

estimate h for w and J for W .

To prevent overfitting of the parameters, an early stopping

mechanism was used whereby the data was broken into two sets:

one set was used for training and the other used for testing. The

training set was used to search the parameter space, while the test

set was used to evaluate the parameters on independent data. The

best linear combination for both data sets was returned by the

algorithm. This procedure was done four times, using four

different quarters of the complete data set as the test set. The

resulting parameters found from these four fittings were averaged

before diagonalizing and finding the relevant features. Unlike the

regularization of STC models, this procedure can be used when

analyzing experimental data.

Minimal models
The model of the neural response that matches experimental

observations in terms of the mean response probability, as well as

correlations between the neural response with linear and quadratic

moments of stimuli can be obtained by enforcing

SyTdata~SyTmodel

SysiTdata~SysiTmodelf gi

SysisjTdata~SysisjTmodel

� �
i,j

,

ð7Þ

where S:::Tdata is an average over Pdata y,sð Þ and S:::Tmodel is an

average over Pmodel y,sð Þ. Because SysisjT~SysjsiT, this reduces

to a set of

1z
D Dz3ð Þ

2
ð8Þ

equations. Simultaneously satisfying these equations is analytically

equivalent to maximizing the log likelihood of the data [49], which

is convex and can therefore be maximized using a conjugate

gradient ascent algorithm.

To prevent overfitting of the parameters, an early stopping

procedure was implemented similar to that used in the MID

algorithm. Each step of the algorithm increased the likelihood of

the training set, but at some point began decreasing the likelihood

of the test set, indicating the fitting of noise within the training set.

The algorithm then returned the parameters found at the

maximum likelihood of the test set. As described above, this was

done four times with different quarters of the data serving as the

test set and the resulting parameter vectors were averaged before

diagonalizing the matrix J.

Significance testing of the eigenvalues was done by creating 500

Gaussian distributed random matrices with the same variance as

that of the set of elements of J. These random matrices were each

diagonalized to create a random eigenvalue distribution. Eigen-

values of J were then said to be significant if they fell below the

lower 2.5th percentile or above the 97.5th percentile.

Physiology experiments
The data analyzed in this paper were collected in a previous

study [48] and the details are found therein. The stimulus was a

spot of light covering a cell’s receptive field center, flickering with

non-Gaussian statistics that mimic those of light intensity

fluctuations found in natural environments [30,38]. The values

of light intensities were updated every 12:5ms (update rate 80Hz).

The spikes were recorded extracellularly in the LGN with high

signal-to-noise ratio, allowing for excitatory post-synaptic poten-

tials generated by the RGC inputs to be recorded. From such data,

the complete spike trains of the RGCs could be reconstructed.
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