
Finding the ‘‘Dark Matter’’ in Human and Yeast Protein
Network Prediction and Modelling
Juan A. G. Ranea1,2", Ian Morilla2", Jon G. Lees1, Adam J. Reid1, Corin Yeats1, Andrew B. Clegg1, Francisca

Sanchez-Jimenez2, Christine Orengo1*

1 Research Department of Structural & Molecular Biology, University College London, London, United Kingdom, 2 Department of Molecular Biology and Biochemistry-

CIBER de Enfermedades Raras, University of Malaga, Malaga, Spain

Abstract

Accurate modelling of biological systems requires a deeper and more complete knowledge about the molecular
components and their functional associations than we currently have. Traditionally, new knowledge on protein associations
generated by experiments has played a central role in systems modelling, in contrast to generally less trusted bio-
computational predictions. However, we will not achieve realistic modelling of complex molecular systems if the current
experimental designs lead to biased screenings of real protein networks and leave large, functionally important areas poorly
characterised. To assess the likelihood of this, we have built comprehensive network models of the yeast and human
proteomes by using a meta-statistical integration of diverse computationally predicted protein association datasets. We
have compared these predicted networks against combined experimental datasets from seven biological resources at
different level of statistical significance. These eukaryotic predicted networks resemble all the topological and noise features
of the experimentally inferred networks in both species, and we also show that this observation is not due to random
behaviour. In addition, the topology of the predicted networks contains information on true protein associations, beyond
the constitutive first order binary predictions. We also observe that most of the reliable predicted protein associations are
experimentally uncharacterised in our models, constituting the hidden or ‘‘dark matter’’ of networks by analogy to
astronomical systems. Some of this dark matter shows enrichment of particular functions and contains key functional
elements of protein networks, such as hubs associated with important functional areas like the regulation of Ras protein
signal transduction in human cells. Thus, characterising this large and functionally important dark matter, elusive to
established experimental designs, may be crucial for modelling biological systems. In any case, these predictions provide a
valuable guide to these experimentally elusive regions.

Citation: Ranea JAG, Morilla I, Lees JG, Reid AJ, Yeats C, et al. (2010) Finding the ‘‘Dark Matter’’ in Human and Yeast Protein Network Prediction and
Modelling. PLoS Comput Biol 6(9): e1000945. doi:10.1371/journal.pcbi.1000945

Editor: Andrey Rzhetsky, University of Chicago, United States of America

Received December 14, 2009; Accepted August 30, 2010; Published September 23, 2010

Copyright: � 2010 Ranea et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Juan A. G. Ranea acknowledges funding from the Spanish Science and Innovation Ministry (http://web.micinn.es/) through the Ramon y Cajal program
(RYC-2007-01649) and the Plan Nacional project (SAF2009-09839, Subprograma MED), and also the EU-funded ENFIN project. Ian Morilla acknowledges funding
from the Andalusian Government BIO-267; Jon G. Lees from the Wellcome Trust and the ENFIN Network of Excellence; Adam J. Reid from the BBSRC; Corin Yeats
from the Biosapiens European Network of Excellence; Andrew B. Clegg from the EMBRACE European Network of Excellence; and Francisca Sanchez-Jimenez
acknowledges CIBER de Enfermedades Raras, an initiative of the ISCIII and the Spanish Plan Nacional project SAF2008-02522. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: orengo@biochem.ucl.ac.uk

" These authors were co-first authors on this work.

Introduction

Many features of biological systems cannot be inferred from a

simple sum of their components but rather emerge as network

properties [1]. Organisms comprise systems of highly integrated

networks or ‘accelerating networks’ [2] in which all components

(proteins, lipids, minerals, water, etc.) are integrated and

coordinated in time and space. Given such complexity, the gaps

in our current knowledge prevent us from modelling complete

living organisms [3,4]. Therefore, the development of bio-

computational approaches for identifying new protein functions

and protein-protein functional associations can play an important

role in systems biology [5].

The scarce knowledge of biological systems is further com-

pounded by experimental error. It is common for different high-

throughput experimental approaches, applied to the same

biological system, to yield different outcomes, resulting in protein

networks with different topological and biological properties [4].

However, errors are not restricted to high-throughput analysis. For

example, it has been demonstrated that high-throughput yeast

two-hybrid (HT-Y2H) interactions for human proteins are more

precise than literature-curated interactions supported by a single

publication [6].

There has been a great deal of work analysing biological

networks across different species, giving insights into how networks

evolve. However, many of these publications have yielded

disparate and sometimes contradictory conclusions. Observation

of poor overlap in protein networks across species [7] and

divergence amongst organisms [8] suggest fast evolution. Signif-

icant variation in subunit compositions of the functional modules

has also been observed in protein networks across species [9].

However, in contrast to these observations, recent work using
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combined protein-protein interaction data suggests high conser-

vation of the protein networks between yeast and human [10].

This approach, based on data combination, stresses the impor-

tance of integrating different data sources to reduce the bias

associated with errors in functional prediction, and to increase the

coverage in network modelling, and has been demonstrated in

numerous studies [11–14].

Increasing the accuracy of networks by integrating different

protein interaction data relies on the intuitive principle that

combining multiple independent sources of evidence gives greater

confidence than a single source. For any genome wide computa-

tional analyses, we expect the prediction errors to be randomly

distributed amongst a large sample of true negative interactions

(i.e. the universe of protein-protein interactions that do not take

place). Hence, it is unlikely that two independent prediction

methods will both identify the same false positive data in large

interactomes like yeast or human. In general, we expect the

precision to increase proportionally to the number of independent

approaches supporting the same evidence.

From the available list of well-known integration methods

specifically designed to integrate diverse protein-protein interac-

tion -PPI- datasets (e.g. Naı̈ve-Bayes; SVM; etc. [15–19]), we

chose the Fisher method [12] in order to have a predictor that is

independent from the experimental data used to validate it. Fisher

integration method is not a trained or supervised method as, for

example, Naive Bayes or SVM methods. The Fisher method

presumes a Gaussian random distribution of the prediction

datasets’ scores as a null hypothesis and the Fisher integrated

score calculation is based on Information Theory statistics [20,21].

Therefore, the Fisher integration score is completely independent

of the experimental datasets used in this study to validate and

compare the predictions.

In this work, we significantly increase the prediction power of

binary protein functional associations in yeast and human

proteomes by integrating different individual prediction methods

using the Fisher integration method. Three different untrained

methods are implemented: GECO (Gene Expression COmpari-

son); hiPPI (homology inherited Protein-Protein Interactions); and

CODA (Co-Occurrence Domain Analysis) run with two protein

domain classifications, CATH [22] and PFAM [23] (see the

section: Ab initio methods used for building the Predictograms).

The four different prediction datasets obtained by these methods

(GECO, hiPPI, CODAcath and CODApfam), were integrated

using simple integration and Fisher’s method as examples of

untrained methods (see the section: Integrating the prediction

data). Similarly ab-initio prediction datasets from STRING [14]

were also integrated using Fisher integration and compared

against the integrated prediction datasets from our methods.

Results from the Fisher integration of our prediction datasets were

benchmarked and compared against the individual prediction

methods and the results from the integrated STRING methods. In

all cases we demonstrate increased performance for the integrated

approach (assessed by prediction power) with the Fisher

integration of GECO, hiPPI, CODAcath and CODApfam

datasets yielding the best results.

Protein pairs identified by significant Fisher integration p-values

were used to build a protein network model for yeast and human

proteomes referred to as the Predictogram (PG). Additionally, all

the protein-protein associations from several major biological

databases, including Reactome [24], Kegg [25], GO [26], FunCat

[27], Intact [28], MINT [29] and HRPD [30] were retrieved and

combined into a network referred to as a Knowledgegram (KG).

As implemented in other pioneering studies [31], we built

predicted (PG) and experimental (KG) models for further

comparison. Different network topology parameters were calcu-

lated and compared between KG and PG models for two test

species Homo sapiens (human) and Sacharomyces cerevisae (yeast). We

observe how the networks change as the cut-off on the confidence

score of the predictions is varied. Results of this PG and KG

network comparison demonstrate that PG networks resemble KG

networks in many of the major topological features and model a

substantial fraction of real protein network associations, as

previously observed in some bacterial predicted networks [32,33].

There have been frequent observations of low overlaps between

different experimental high-throughput approaches [34]. Our

comparison of the PG and KG models also show that the

intersection between the two models is small and that the majority

of predictions in the PG are ‘‘novel predictions’’. However, the

overlap between PG and KG is significantly higher than expected

by random in both species supporting a correspondence between

the PG and KG screenings of PPI space. This PG and KG data

overlap is significantly larger in yeast than in human, pointing to a

better functional characterization of the yeast PPI network and the

presence of larger dark areas in the human PPI network still

hidden from current experimental knowledge. We suggest that this

novel prediction set may be a valuable estimation of the relative

differences in ‘‘dark matter’’ of uncharacterised protein-protein

associations between both specie, and we show that this dark

matter contains key elements, such as hubs, with important

functional roles in the cell.

By analogy [35], ‘‘dark matter’’ in protein network models refers

to predicted protein-protein associations, whose existence has not

yet been experimentally verified. In this study, we suggest that dark

matter involves functional associations difficult to characterise by

current experimental assays making any network modelling of

organisms highly incomplete and therefore inaccurate.

The results are divided into four main sections in which the

predicted and experimental PPI models of human and yeast are

compared. The first section analyses the performance of the single

and integrated methods predicting the protein associations and

determines the correlation between the prediction scores and the

degree of accuracy and noise in the predictions. The second

Author Summary

To model accurate protein networks we need to extend
our knowledge of protein associations in molecular
systems much further. Biologists believe that high-
throughput experiments will fill the gaps in our knowl-
edge. However, if these approaches perform biased
screenings, leaving important areas poorly characterized,
success in modelling protein networks will require
additional approaches to explore these ‘dark’ areas. We
assess the value of integrating bio-computational ap-
proaches to build accurate and comprehensive network
models for human and yeast proteomes and compare
these models with models derived by combining multiple
experimental datasets. We show that the predicted
networks resemble the topological and error features of
the experimental networks, and contain information on
true protein associations within and beyond their consti-
tutive first order binary predictions. We suggest that the
majority of predicted network space is dark matter
containing important functional areas, elusive to current
experimental designs. Until novel experimental designs
emerge as effective tools to screen these hidden regions,
computational predictions will be a valuable approach for
exploring them.

Dark Matter in Protein Network Modelling
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chapter compares the topological network features of the predicted

and experimental PPI models at equivalent levels of accuracy and

noise. The third section searches for functional differences

between the predicted and experimental models looking for

specific functional areas which appear to be illuminated by the

prediction methods but elusive to the experimental approaches.

Whilst the final fourth section explores whether the predicted PPI

network graphs contain additional context-based information on

protein associations beyond the sets of predicted protein pairs used

to build the networks.

Results

PG model integration, benchmarking, and analysis
The different methods for predicting protein-protein interac-

tions and functional associations were run on the whole yeast and

human proteomes, generating four prediction datasets for each

organism, GECO, CODAcath, CODApfam and hiPPI (see the

section: Running the PG methods on the human and yeast

proteomes and section 1 in Text S1). Each of these methods

produces an untrained score value, which was normalized to a p-

value, reflecting the reliability of the predictions (see the section: P-

value calculation).

Benchmark datasets for each organism, comprising reliable

protein pairs based on Gene Ontology Semantic Similarity scores

(referred to as the Goss refined – Gossr datasets; see the section:

The GO Semantic Similarity refined dataset (Gossr) used for

validating the prediction methods), were used to assess perfor-

mance (note that the performance measured will depend on the

quality of the validation dataset; see section 2 in Text S1; [4]).

Precision values are estimated by comparing the methods

performance in predicting true PPI versus a random predictor,

used to calculate the FP (False Positive) rates (see the section:

Precision and Recall calculation). We find that for all methods the

p-values correlate inversely with the precision scores, in both

proteomes, as expected if genuine functional information is linked

to the prediction score (Figures 1a and b). It is possible that a

randomly selected PPI could be a TP by chance. However, this is

likely to be a rare event and in any case it will mean that we tend

to underestimate the performance of the methods as it would

mean we are overestimating FPs, from our random model (see

section 2 in Text S1).

The mutual information scores demonstrate the independence

of the 4 different prediction datasets (see section 3 in Text S1). The

p-values from the 4 prediction datasets were integrated using

Fisher and Simple integration, both of which are untrained

integration methods (see the section: Integrating the prediction

data).

Precision (TP/TP+FP) versus Recall (Recall considered as the

number of predicted hits) is plotted for yeast and human Gossr

validation (Figures 1c and d), for all the individual and integrated

methods in order to compare their statistical prediction power

Figure 1. Results of the benchmark studies for the individual prediction methods and the integrated methods. A and C plots are from
Yeast datasets and B and D are for Human results. A and B plots show precision versus p-values and C and D graphs show precision versus recall. Inset
to the C plot shows an enlargement to visualize the improvements obtained by using the Fisher integration in yeast.
doi:10.1371/journal.pcbi.1000945.g001
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(prediction power equals the area under the Precision vs. Recall

curves). The prediction powers of all of the integrated methods

outperform any individual method. Increase of the prediction

power following integration is especially pronounced in human.

Whilst less pronounced, the increase in yeast remains significant

above 80% precision (zoom over Figure 1c). At these higher

precision levels differences in the predictive powers become very

significant with the Fisher integration methods approximately

doubling the recall for a given precision over the best single or

simple integration methods (around 90,000 predictions with Fisher

compared to around 60,000 predictions with simple integration,

see the abscissas axis in zoom of Figure 1c).

We have performed additional validation of the Fisher method

using a set of physical interacting pairs as gold standards in yeast

and human (see section 4 in Text S1). Validation with the Int

(physical interaction) dataset in yeast (Figure S3a in Text S1)

assigns a higher precision $90% to the same predicted dataset of

around 90,000 top ranked Fisher predictions, which were

calculated with a precision $80% in the Gossr validation

(Figure 1a). Whilst in human the Int and Reactome_int (physical

interaction) validations (Figure S3b in Text S1) yielded precisions

of $76% and $82% for the same top ranked Fisher dataset that

was assigned a precision $80% in the Gossr validation (Figure 1b).

All these validations indicate that Fisher p-values scores are also

linked to physical protein-protein interactions with a similar

consistent reliability of around 80% precision as shown in the

Gossr validation.

Fisher was also implemented to integrate similar datasets of

individual STRING ab-initio predictions (gene neighbourhood, co-

occurrence, fusion, and co-expression) in yeast and human.

FisherW integration of the STRING datasets showed a signifi-

cantly lower performance compared to the GECO, CODAcath,

CODApfam and hiPPI Fisher integration (see section 5 in Text

S1). Using Gossr as the training dataset, GECO, CODAcath,

CODApfam and hiPPI prediction datasets were also integrated by

Bayes (see section 6 in Text S1). Bayes integration produced

uneven results in yeast and human compared to Fisher, whilst

Fisher outperforms Bayes for the highest levels of precision in yeast

(see left side of the Figure S5a in Text S1), in human Bayes

performs better (see Figure S5b in Text S1). From these results we

observed that the Fisher integration yields a good performance

compared to using a trained method (i.e. Bayes), despite the fact

that the latter has benefit of learning from the experimental (KG)

information to predict PPIs.

In all cases (yeast and human) Fisher integration of the GECO,

CODAcath, CODApfam and hiPPI predictions was shown to be a

powerful combination which significantly increases the prediction

power without using any KG trained or supervised algorithms.

This premise is crucial if we aim to detect genuine similarities

between the PG and KG models, unbiased by overlap between

supervised predictions and their training sets (as would occur by

using a Bayes integration). Because of this the Fisher weighted

predictions were chosen for generating the PG network models

used in subsequent analyses of the networks.

Comparison of the topological features of the KG and PG
networks

To test whether the PG networks based on the binary

predictions share features with networks built on reliable KG

evidences, different topological parameters (see section 7 in Text

S1) were calculated and compared between PG and KG networks.

This analysis was carried out at different levels of significance in

the yeast and human proteomes.

Different PG networks were constructed from the binary

predictions by varying the link (edge) p-value cut-off. This was

done for a range of p-values from p-value#0.001 (PG0.001) to p-

value#1.0 (PG1.0). KG network models were also tested at

different levels of confidence based on the number of KG

evidences supporting the same protein-protein associations.

Mutual information calculation on the KG data showed broad

independence except for the Goss and Foss (FunCat semantic

similarity) datasets, therefore Goss and Foss evidences were

summed and considered as a single dataset of KG evidences.

Different KG networks were constructed by varying the minimum

number of independent evidences required to form an edge/link.

Random models were also generated for all the PG and KG

networks as described in the section: Network randomisation. The

PG, KG and their corresponding randomised networks, built at

different significance levels, provide comparable frameworks for

examining the topological properties of biological networks.

Real biological networks have been shown to have a scale-free

topology with a high degree of clustering [36]. Scale free networks

show, amongst other characteristics, a power law distribution in

the frequencies of connectivity of their nodes (ki) with values for

the exponent between 2 and 3 [37,38]. When the frequency

distribution for node connectivity (ki) is plotted for the PG and KG

networks, constructed at different confidence levels for yeast and

human, we observe a trend towards higher exponents in the fitted

power law functions as the network reliability increases (Figures 2a,

2b, 3a and 3b; and Figure S6a–Figure S8a in Text S1). The trend

toward scale-free organisation is more significant in yeast than in

human KG and PG models, with exponent values that get close to

2 for the most reliable network levels (see PG0.01 and KG$3 evid.

distributions in Figures 2a and b), whilst in human KG and PG

models the exponents are systematically lower than in yeast, at

equivalent levels of significance (Figures 3a and b).

Yeast and human KG and PG models show non-random

distributions of their degree (ki) frequencies for all levels of network

reliability tested, except for the lowest level (Figures 2 and 3,

compare plots a and b, c and d, e and f; and Figure S6, Figure S7

and Figure S8 in Text S1 compare plots a, b and c). In contrast to

the real PG and KG models the adjacency randomised networks in yeast

and human show a Gaussian distribution with node degree

(Figures 2 and 3, plots c and d versus a and b). A Gaussian

distribution is also observed in the p-value random models but for high

node degree only (Figures 2 and 3, plots e and f). A Gaussian

distribution, typical of random behaviour, is also observed for the

KG and PG networks built at the lowest level of statistical

reliability (compare PGtotal and KGtotal in Figures 2 and 3, plots a,

b, e and f). However, this Gaussian random distribution disappears

when edges with weaker statistical weight are removed in

increasingly more significant PG and KG networks, indicating

the correlation between edge statistical weight (p-values and # of

evidences) and the non-random scale free topology expected in

real biological networks.

Power-law degree distribution is a necessary but not a sufficient

characteristic of scale free networks. Therefore, other topological

features of the KG and PG networks were measured in order to

give more support to the hypothesis of scale free tendency for our

models. These included: average clustering coefficient; assortativ-

ity; or network hierarchy amongst other parameters described in

the section: Network topology structure characterisation and the

section 7 in Text S1.

The trend of increasing average clustering coefficient with

increasing network reliability (KG and PG network models built at

more highly significant p-values and # evidences levels) lends

further support to the scale-free organization of the KG and PG

Dark Matter in Protein Network Modelling
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networks in yeast and human (see Figure S6d–Figure S8d in Text

S1). Node assortativity (or preferential attachment of the nodes) is

another topological parameter that supports the scale-free trend of

the KG and PG models in yeast and human, (see section 11 in

Text S1, and Figure S9 and Figure S10 in Text S1; [36]). The

assortativity observed in KG and PG models indicates a network

organization close to a real network in stark contrast to the

random models [39,40].

Network hierarchy is another topological feature that can be

considered by using the logarithmic distribution of the clustering

parameter [41]. For all our KG and PG networks we observed a

flat distribution (no correlation between clustering coefficient

Figure 2. Yeast degree distribution for the various networks analysed. Panels A and B correspond to the KG and PG networks respectively,
the legend for these panels show the correlation coefficients and exponents corresponding to the linear regression fit of the data. The corresponding
randomised networks are shown below for KG (panels C, E) and PG (panels D, F) networks respectively. Panels C and D are from network
randomisations by the adjacency method (see the section: Network randomisation). Panels E and F randomisations are from the evidence and p-value
shuffling respectively.
doi:10.1371/journal.pcbi.1000945.g002
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and connectivity –ki-) implying a non-hierarchical organization,

since hierarchical organization exhibits a power-law distribution

of these two parameters (see section 12 and Figure S11 in Text

S1). This result, taken together with the observations on

clustering distribution, indicates a modular organisation of the

KG and PG networks [41]. This would explain why these

networks tend towards, but never completely reach a scale-free

distribution exponent [36]. The modularity of the KG and PG

networks (see section 13 and Figure S12 in Text S1) is also

supported by other conventional network parameter values

measured for these networks and presented in Table S3 and

Table S4 in Text S1, such as: network density; cluster average

(triangle formation likelihood); characteristic path length;

network radius; and diameter. Radius and diameter are only

Figure 3. Human degree distribution for the various networks analysed. Panels A and B correspond to the KG and PG networks respectively,
the legend for these panels show the correlation coefficients and exponents corresponding to the linear regression fit of the data. The corresponding
randomised networks are shown below for KG (panels C, E) and PG (panels D, F) networks respectively. Panels C and D are from network
randomisations by the adjacency method (see the section: Network randomisation). Panels E and F randomisations are from the evidence and p-value
shuffling respectively.
doi:10.1371/journal.pcbi.1000945.g003
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measured for the largest connected component of the network

[40,42].

Analysing the ‘dark matter’ in the PG models
KG models represent the known (experimentally determined)

protein associations while PG models represent sets of associations

predicted by ab-initio methods. We wanted to estimate the extent of

‘dark matter’ in the yeast and human networks by comparing how

much of the predicted network space was not covered by

experimental evidence in both specie. We also investigated the

presence of hubs in the PG dark matter and the functional

characteristics of these dark (hidden) hubs.

We used the most reliable (precision$80%) PG models (PG0.01

in yeast – about 90,000 pairs - and PG0.014 in human – about 106

pairs; see section 15 and Table S5 in Text S1) to estimate the

intersection with the KG models for the two organisms (Table 1).

In yeast, the percentage of edges (18%) overlapping between the

KG and PG models is larger than for the human models (1.34%;

Table 1). That is, 18% of the predicted protein-protein

associations in yeast PG0.01 model are backed by experimental

evidences in the KG set, which is a highly significant figure

compared to any of the random models (18.22/1.34 = 13.60 times

higher than R.1 model, and 18.22/4.26 = 4.28 times higher than

R.2 model; see Table 1).

The percentage of edge predictions, backed by experiments,

drops considerably for human. Only 1.4 percent of the predicted

protein associations (PG) were also present in the KG model

(Table 1). Although, the percentage of experimentally backed

predictions (1.34%) is significantly higher than expected by

random (1.34/0.08 = 16.75 times higher than R.1 model, and

1.34/0.29 = 4,62 times higher than R.2 model; see Table 1).

The density of the overlap between PG and KG in yeast (#Ed./

#Nod. = 7.6 in Table 1) is double the human value (3.5), and in

both cases is considerably more than the expected random density

(Table 1). Additionally, the percentage of proteins (nodes) in the

PG model without known experimental association in the KG

model is about 30 times smaller in yeast (105 nodes/4374 nodes

= .2.4% see Table S5 in Text S1) compared to the human PG

model (13,961 nodes/19,618 nodes = .71.2% see Table S5 in

Text S1).

These statistical analyses of the PG and KG intersections

indicate that about 82%, in yeast, and 98% of predicted protein

associations in human are not backed by experimental evidence in

the KG model, giving an estimate of dark matter in the yeast and

human protein networks. Only 2.4% of the PG proteins in yeast

are dark nodes (proteins without experimental association in the

KG model), whilst dark nodes constitute 71% in human.

Although PG and KG models explore significantly different

regions of protein binary association space, interestingly, given the

small intersections and density values, the PG and KG overlap is

still significantly larger than expected by random (Table 1),

indicating the overall coherence of the PG and KG models despite

the presumably huge size of real protein network space. It is likely

that protein network space is much larger in human than in yeast,

given their respective proteome sizes, which presumably explains

the higher proportion of dark matter in the human compared to

the yeast PG networks.

Enrichment of the degree of a node in the PG model (PGki_er)

was calculated in order to measure the difference in the

connectivity (ki) values for a protein in the PG and KG networks

(see the section: Calculating the PGki enrichment ratio and the

PG functional enrichment). A high PGki_er value indicates the

presence of a dark (experimentally hidden) hub, a protein with

many predicted associated proteins in the PG model and few, if

any, experimentally validated KG associations. Proteins in the

yeast and human PG models were ranked using their PGki_er

value, retrieving the top 10 ranked proteins for both organisms

(see Table 2) as the most likely representatives of predicted dark

hubs.

A common interesting feature of dark hubs, shown in Table 2, is

that almost all of them correspond to predicted proteins with only

electronically inferred or unknown functions in Uniprot. This is

expected for proteins which are absent from the KG model and

therefore have no associated functional evidence. This overrepre-

sentation of functionally unknown proteins in the set of dark hubs

is also supported by extensive functional annotation searches using

the DAVID algorithm [43] in yeast and human (see section 16 in

Text S1). Although enrichment in predicted datasets of unchar-

acterised proteins has also been observed in earlier studies by other

groups [31], it was not used to identify sets of dark hub proteins, as

in our study. Here, we identify highly connected and therefore

topologically important nodes in the PPI networks currently

lacking direct experimental information.

We analysed the top 10 dark hubs in the yeast PG network using

functional annotation inferred by homology, these proteins

correspond mainly to membrane embedded proteins, although

there are also proteins related to other disparate functions, such as:

transcription factors, RNase (probably involve in siRNA degrada-

tion processes), sporulation, and various enzymes (see Table 2).

Enrichment bias in ‘‘integral to membrane proteins’’ is statistically

significant in the yeast dark hubs dataset comparing the extremes

of the PGki_er ranked list with the DAVID algorithm (see section

16 in Text S1). Functions for the top 10 dark hubs in humans are

even broader than in yeast including proteins with Fibronectin

domains, kinases with presumably sensor or motor functions, an

Ecto-59-nucleotidase probably involved in extracellular nucleotide

catabolism [44], a transcription factor, and a matrix metallopepti-

dase amongst other proteins of completely unknown function (see

Table 2).

In order to study possible bias in the functional niches

highlighted by the PG predictions but absent in the KGs,

functional enrichment in the yeast and human PGki_er ranked

lists was estimated using the GOrilla server [45] and the

annotations of the respective proteomes in the GO database

Table 1. PG and KG networks intersection analysis.

Type Networks # Edges # Nodes #Ed./#Nod. %PGe

Yeast Real KG/PG0.01 17,373 2,293 7.6 18.22

R. 1 KG/PG0.01 1,280 2,707 0.5 1.34

R. 2 KG/PG0.01 4,062 4,279 0.9 4.26

Human Real KG/PG0.014 14,048 3,958 3.5 1.34

R. 1 KG/PG0.014 898 1,111 0.8 0.08

R. 2 KG/PG0.014 3,073 5,633 0.5 0.29

From left to right: the yeast and human data division; Type, real data or random
model; Networks, intersections of network models; # Edges, number of protein
pairs in the intersections; # Nodes, number of different proteins (nodes) in the
intersections; #Ed./#Nod., or network density is ratio of the number of edges
divided by the number of nodes; %PGe, percentage of the PG model’s edges
backed by the KG model. R. 1, p-values random model and R. 2, adjacency
random model (see the section: Network randomisation) the randomisation
process was realized over the matrix of possible binary associations of all the
proteins (nodes) in the PG and KG models. Calculation of intersections for the
random models went through 1,000 iterations. For further statistics see Table S2
in Text S1.
doi:10.1371/journal.pcbi.1000945.t001
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examined (see Table 3). Functional enrichment at the top of

the ranked lists implies the existence of dark functional niches

which are more accessible to ab-initio predictions than to

experiments.

GOrilla did not find any significant functional enrichment bias

(P-value.E-9) in the yeast ranked list, but detected enrichment of

some GO terms in the human ranked list associated with

particular biological processes and molecular function categories

in GO (see Table 3). Dark (or experimentally hidden) functional

niches in the human PG models correspond to key biological

processes such as kinase driven regulation through protein amino

acid phosphorylation and the regulation of GTPase mediated

signalling, including the regulation of Ras protein signal

transduction. The ATP binding GO molecular function enrich-

ment is mainly associated with enrichment of kinases.

Functional association predictions based on context
information in the PG networks

If the reliable PG0.01&0.014 pairwise predictions capture a

significant percentage of true functional relationships and the

PG0.01&0.014 networks show most of the topological properties of

KG networks, it is reasonable to expect that the topology associations

in these PG0.01&0.014 networks will resemble real biological networks.

In other words, we should be able to exploit information on the

context of a protein (i.e. connections in the network) to predict

associations it has with other proteins sharing a similar context.

In order to test this hypothesis, functional predictions were

generated for additional protein pairs, by comparing the

interactions of the respective proteins in these pairs, in the PG

networks. The results were then validated using the gold standard

KG protein pairs’ datasets.

Table 2. Ten top proteins in the yeast and human PGki_er ranked lists.

Yeast Prot. Acc. N. KG ki PG ki PG ki_er R. Gene name Uniprot descriptions

Q07928 0 213 213 1 GAT3 GATA-type zinc finger: transcription factor activity
(Inferred from electronic annotation). Unknown
function.

P47055 0 201 201 2 LOH1 Multi-pass membrane protein. Possibly involved in
maintaining genome integrity

A6ZR40 0 189 189 3 SCY_1587 Predicted protein, unknown function.

Q12079 0 188 188 4 YPR027C Multi-pass membrane protein. Uncharacterized
membrane protein YPR027C

P53964 0 187 187 5 YNL033W Single-pass membrane protein. Uncharacterized
membrane protein YNL033W

P47056 0 172 172 6 YJL037W Multi-pass membrane protein. Uncharacterized
protein YJL037W

P09937 0 171 171 7 SPS4 Sporulation-specific protein 4. Not essential for
sporulation. Might be a component of the cell wall.

P32643 0 163 163 8 TMT1 Trans-aconitate 3-methyltransferase. Inducted during
amino acid starvation.

A6ZV06 0 155 155 9 SCY_2239 Predicted protein with alpha/beta hydrolase fold,
unknown function.

A6ZP11 0 151 151 10 SCY_5229 Predicted protein with a Nucleotide binding domain
potentially found in RNases, unknown function.

Human Prot. Acc. N. KG ki PG ki PG ki_er R. Gene name Uniprot descriptions

Q6ZP81 0 2597 2597 1 - Highly similar to Homo sapiens titin (TTN), with
Fibronectin type III domain. Unknown function.

Q9UM08 0 2214 2214 2 HGC6.3 Unknown function

Q9BZ69 0 1860 1860 3 P143 Predicted membrane protein with histidine kinase
domain, two-component sensor activity (Inferred
from electronic annotation). Unknown function.

Q0VAC6 0 1828 1828 4 SUMF1 Unknown function

Q5JRQ2 0 1796 1796 5 NT5E 59-nucleotidase, ecto (CD73). Hydrolase activity;
nucleotide catabolic process.

Q96F04 0 1759 1759 6 MMP28 Matrix metallopeptidase 28. Predicted protein with a
putative peptidoglycan binding domain.

Q3KR05 0 1702 1702 7 NEU4 Sialidase 4. Unknown function.

Q32MK0 0 1660 1660 8 MYLK3 Putative myosin light chain kinase 3. May play a role
in smooth muscle contraction.

Q4ZG20 0 1657 1657 9 TTN Putative uncharacterized protein TTN. Unknown
function.

Q96CP1 0 1602 1602 10 RELA Predicted protein with a transcription factor Rel
homology domain (RHD)

From left to right: Prot. Acc. N., Protein accession number in Uniprot database; KGki , protein connection degree (ki) in the KG network; PGki, protein ki in the PG
network; PGki_er, protein ki enrichment ratio in PG compared to KG network; R., rank in the PGki_er list; Gene name in Uniprot and Uniprot functional description.
doi:10.1371/journal.pcbi.1000945.t002
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This context analysis of the PG networks [32], which involves

making predictions based on predictions, is what Mathematical

Logic terms a second order analysis. The PG0.001&0.0014 pair-wise

predictions’ datasets used to build the networks in first place are

considered the first order predictions in this work (see section 17 in

Text S1).

Comparison of the association profiles identified 1,668,584

protein pairs in yeast and 49,117,115 protein pairs in human

sharing at least one third of their interacting proteins in the

PG0.01&0.014 network matrices. The similarity scores of the profiles

were validated using the different KG datasets i.e. Int, Kegg, Goss,

Foss, Reactome, and Reactome_int (see Figure S14, Figure S15,

Figure S16, Figure S17, Figure S18, Figure S19, and Figure S20 in

Text S1) and the integrated and refined KG$2 evidences dataset

(Figure 4). Bits and specific bits similarity scores (see the section:

Second order predictions from the PG networks: Measuring the

similarity of protein interaction profiles) positively correlate with

an increase in precision for all the KG datasets (see Figure S14,

Figure S15, Figure S16, Figure S17, Figure S18, Figure S19, and

Figure S20 in Text S1) and the refined KG$2 dataset (Figure 4).

Bits and specific bits scores show very similar behaviour in all

the KG datasets most probably due to the large set of potential

random interactions in both PG matrices that make it very

unlikely that two proteins would share a significant number of

interactions by chance (see section 18 in Text S1).

First order predictions based on Fisher scores yielded about

90,000 predictions in yeast with a precision$80% (see Figure 1),

while second order predictions only yielded 95 predictions at the

80% precision level in the KG$2 validation dataset (Figure 4b)

and 8,390 predictions maximum in the single evidence KG

datasets (Kegg validation recall in yeast; see Figure S18b in Text

S1). The same observation is valid for human with about

1,000,000 hits at 80% precision level in the Fisher first order

predictions and only 889 second order predictions at 80%

precision in the KG$2 validation (Figure 4c) and a maximum

of 118,800 predictions in the single KG datasets (Reactome

validation recall in Figure S19f in Text S1). Since second order

predictions are predictions performed over first order predictions,

there is likely to be an accumulation of second order error over the

primary error, lowering the general performance. Nevertheless, a

common observation in all the validations is that the PG0.001&0.0014

networks have second order functional information of real

biological value absent in the first order predictions. Although,

using context does not predict many more interactions, this

analysis is important because it confirms that the topology of our

predicted network has real biological meaning.

Discussion

The scoring functions of the three ab-initio methods (GECO,

CODA and hiPPI), showed close correlation with precision in

predicting true, functionally associated proteins (Figure 1). The

correspondence of the p-value scoring functions with prediction

reliability and also the complementary nature of the prediction

datasets, suggested by their independent mutual information,

enabled the Fisher integration method to perform well. Fisher

meta-statistic, untrained, integration of the four datasets (GECO,

CODAcath, CODApfam and hiPPI) yielded a significant increase

in prediction power within the yeast and human proteomes,

adding value beyond any single method or the sum of all of them.

Fisher integration thus allowed us to build comprehensive

PG0.01&0.014 integrated models independent from the KG data,

and at highly reliable precision levels (80%) for yeast and human.

While the KG network models contain much of the current

knowledge on protein functional associations provided by

disparate experimental resources, in yeast and human, the PG

models represent sets of predictions inferred by the integration of

different ab-initio (non-experimental) methods. Experimental (KG)

and predicted (PG) networks share all of the main topological

features explored in this work. In summary the node ki degree

distribution, assortativity, clustering distribution, and clustering

average coefficient for each of the PG and KG networks

demonstrate a trend towards a scale-free organization as network

confidence increases. KG and PG are both non-random networks,

both in the connectivity and in the statistical weight distributions of

their edges (Figures 2 and 3; sections 8–13 in Text S1).

Table 3. Human PGki_er ranked list enrichment analysis in the GO database.

Biological process GO term name GO code P-value N B n b E.

Protein amino acid phosphorylation GO:0006468 7.63E-22 12769 508 991 111 3

Regulation of small GTPase mediated signal
transduction

GO:0051056 1.64E-13 12769 124 982 39 4

.Regulation of Ras protein signal transduction GO:0046578 2.27E-10 12769 85 982 28 4

Molecular function GO term name GO code P-value N B n b E.

Protein kinase activity GO:0004672 3.62E-21 12769 480 991 10 3

.Protein serine/threonine kinase activity GO:0004674 4.83E-14 12769 349 984 75 3

.Protein tyrosine kinase activity GO:0004713 2.73E-10 12769 146 972 37 3

GTPase regulator activity GO:0030695 7.06E-13 12769 319 908 63 3

.Guanyl-nucleotide exchange factor activity GO:0005085 1.92E-11 12769 123 982 36 4

.Small GTPase regulator activity GO:0005083 1.59E-10 12769 211 982 47 3

ATP binding GO:0005524 4.61E-25 12769 1097 991 190 2

For the Biological processes and Molecular functions GO categories, from left to right: GO term name, name of the enriched GO term; GO code, the term’s code in the
GO database; P-value, is the enrichment p-value computed according to the GOrilla server [45]; N, is the total number of genes in the ranked list; B, is the total number
of genes associated with the specific GO term in the whole ranked list; n, is the total number of genes in the selected top of the list; b, is the number of genes in the
selected top of the list associated with the specific GO term; E., Enrichment (N, B, n, b) = (b/n)/(B/N). Parent-child relationships between GO terms are indicated with the
‘‘.’’ symbol.
doi:10.1371/journal.pcbi.1000945.t003
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Different data integration methods are applied for reducing

noise (error) in the KG and PG models, thereby generating

analogous frameworks for the KG and PG models built at different

reliability levels. In the KG models the associated error is inversely

correlated to the number of evidences supporting a given protein-

protein association. Reducing error by summing evidences is

analogous to the repetition of experiments carried out in standard

experimental protocols [3]. In the PG models, the Fisher method

reduces noise by integrating the weighted (p-value) evidences

within a probability space which has finer resolution than the

presence/absence binary space used in the KG models. Gaussian

distributions, typical of random network topologies, appear in the

high node (ki) connectivity part of the plots for the least reliable

KG and PG models, disappearing in the KG and PG models built

at higher levels of reliability (see Figures 2 and 3). This indicates

that errors in determining true protein associations are common to

both KG and PG models and that the KG and PG network

topologies respond in the same way to analogous methods for

reducing noise (data integration). We also observed that the

topology of the PG0.01&0.014 models have functional information of

real biological networks beyond first order binary predictions (see

Figure 4; and section 18 in Text S1).

Since one of the prediction methods, hiPPI, exploits available

experimental data by inheriting experimentally validated interac-

tions between homologous proteins there may be some concern

that the dependency of the hiPPI predictions on some of the KG

datasets could bias the PG network models so that the features

resemble those of experimental KG networks. Addressing this

possibility we repeated the main analyses of this work excluding

the hiPPI predictions and demonstrated that the similarity of the

PG and KG models remained and is therefore not due to any

circular information or bias. This confirms our previous

observations and conclusions of our work (see section 21 in Text

S1).

Coverage of reliable PG0.01&0.014 predictions by KG datasets

appears much higher in yeast (18%) than in human (1.34%) for all

the analysed cases (Table 1), highlighting the better network

characterisation in the yeast proteome network. 82% of the

predicted associations in yeast were not backed by any KG data

indicating considerable dark matter in the yeast PG network.

These figures are even higher for human; where a 98.5% of

predictions are absent from the KG databases. Although low

overlaps between high-throughput experimental datasets is not a

surprising observation, the relative differences in the amount of

dark matter found for yeast and human hint at important

differences in the progress of our knowledge of these two

organisms’ PPI networks. The dark matter in the PG models of

yeast and human contains hubs (i.e. dark hubs) which are key for

network integration and functioning and which seem to be

involved in disparate functions in both organisms (Table 2). In

Figure 4. PG networks functional context validation by the KG$2 evidences dataset. These plots present the precision value (y-axis)
versus specific bits similarity score between the interaction profiles of the protein pairs (x-axis in plots A and C) and versus Recall (# of pairs
predicted, x-axis in plots B and D) in yeast (plots A and B) and human (plots C and D) PG 0.001&0.0014 networks. The gold standard dataset used, KG$2
evidences, is described in the section: Validation of the second order predictions for the PG networks.
doi:10.1371/journal.pcbi.1000945.g004
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yeast dark hubs include many membrane embedded proteins with

unknown functions. Membrane proteins are usually more poorly

characterised than soluble proteins, due to the current design of

experimental techniques, and therefore prediction methods could

assist in characterising associations for these proteins.

For human, the top ranked dark hub dataset (see n column in

Table 3) is significantly enriched in kinases and GTPase/Ras

regulatory proteins associated with important biological regulatory

pathways. These results reveal the existence of key regions (i.e dark

functional regions) belonging to protein network functional space

that are poorly characterised by experimental sciences but highly

represented in the PG models. As for the membrane proteins in

yeast, predictions of these proteins would be helpful in identifying

associations which currently elude experimental approaches. It is

quite well known that current experimental high-throughput

datasets show limitations with respect to coverage and also

systematic errors. For example, Y2H does not perform well on

membrane-associated proteins and transient interactions tend to

be under-reported [34]. This observation agrees with our analyses,

which shows that dark hubs are particularly enriched in integral

membrane proteins and transient interactions such as those

involved in kinase mediated regulation, a mechanism over-

represented in the Ras signalling pathway.

Dark matter may even be more extensive than suggested by the

initial comparison of PG and KG models. KG and PG models

both show a non-hierarchical structure, as shown by the clustering

parameter distribution (Figure S11 in Text S1), whilst preserving a

highly modular structure (Table S3 and Table S4 in Text S1).

Since all the functional modules must ultimately be integrated

within a functioning organism, the high modularity and non-

hierarchical structure suggests that our PG and KG models are

incomplete lacking proteins (nodes), and protein-protein associa-

tions (edges) still uncharacterised in our KG and PG models.

Since much of the PG network is dark matter containing hubs

and other important functional regions not easily reached by

current experimental designs (especially in more complex

organisms like human), and since the PG models show the most

important properties of real, biological networks, resembling the

properties observed in the KG models, we can conclude that the

yeast and the human PG networks are valuable models, akin to the

currently more accepted KG models, for investigating the

properties of real biological networks, complementing and

completing experimental studies in Systems Biology.

Materials and Methods

Ab initio methods used for building the Predictograms
(PG methods)

Overview of the Methods. Homology inherited Protein-

Protein Interaction (hiPPI) method, scores potential protein-

protein interactions based on their homology to known interacting

protein pairs; Co-Occurrence Domain Analysis (CODA) method,

looks for and scores protein pairs in a given target genome (e.g.

yeast or human) found as fused (Co-Occurring) domain architec-

tures in homologues from genomes of 575 different species; Gene

Expression COmparison (GECO) method, measures the correla-

tion of gene expression profiles between protein pairs (detailed

explanation of the ab initio methods in section 1 in Text S1).

Running the PG methods on the human and yeast
proteomes

The GECO, hiPPI, CODAcath and CODApfam methods were

run against all sequences in the human (Homo sapiens) and yeast

(Sacharomyces cerevisiae) proteomes (detailed datasets information in

section 19 in Text S1). Proteome files were downloaded from the

Integr8 database June 2007 (section 19 in Text S1). GECO

retrieved 26,292,126 protein pairs of predictions for human and

10,371,735 for yeast with total sequence coverage of 21% and

81.5% respectively. hiPPI yielded 86,099 protein pairs of

predictions for human and 12,070 for yeast, with total protein

sequence coverage of 31% and 56.6% respectively. CODAcath

yielded 32,259,881 and 678,928 predictions (coverage 39% and

36.4%) for human and yeast respectively. Whilst CODApfam

generated 24,984,943 and 336,781 predictions (coverage 57% and

58.4%), for human and yeast respectively.

Calculating p-values for the predictions and data
integration

P-value calculation. A score for the cumulative frequency

distributions was calculated for each of the four prediction datasets

(GECO, hiPPI, CODAcath and CODApfam) using the curvefit

tool from MATLAB. The particular Probability Density Functions

(PDF) associated with the score distributions for each of the four

methods was calculated in order to translate the scores into p-

values. Right tailed Ztests were performed to ensure that the PDF

distributions of the PG datasets fit random Gaussian distributions

with different means m (null hypothesis) at 5% significance level for

accepting the null hypothesis being false (see section 20 in Text

S1). Generally, the p-values constitute a normalised measurement

for comparing the performance of different PG methods.

Statistical dependence between the prediction

datasets. Mutual information was calculated between the

prediction datasets, to detect potential dependencies. The small

values calculated for the mutual information (or conditional

dependency) between pairs of predictors, indicated that the

datasets were largely conditionally independent (Table S1 in

Text S1).

Integrating the prediction data. The p-values from each

method were integrated using two methods: Simple integration,

and Fisher weighted (Fisher_W) [12]. The simple integration

method was done by selecting the most significant prediction

(lowest p-value) from all the prediction methods. Fisher_W

formula introduces a weight correction -wi- to sum prediction p-

values -Ln(pi)- in order to maximize the overall statistical power.

{2 Si:::nwi ln pið Þ

The weights for the Fisher_W method were calculated using a

MATLAB script. This consisted of simultaneously running a Monte

Carlo Method of 5th order [46,47] and Enhanced Simulated Annealing

(ESA) [48] functions. The weights were calculated so as to

maximize the statistical power and confidence. Normalised p-

values were calculated based on the score distributions of the

integrated methods (Simple_and Fisher_W datasets) using the

same methodology explained above for the independent PG

datasets. The whole PG matrix in yeast contained 10,642,398

pairs and in human 70,908,243 pairs.

The GO Semantic Similarity refined dataset (Gossr) used
for validating the prediction methods

We benchmarked our predictions using the highest quality

annotations of yeast and human proteomes in the Gene Ontology

(GO) database [26]. GO provides annotation codes which enable

the selection of protein annotations based on quality and evidence

source (see further details in section 14 in Text S1).

The GO terms’ Semantic Similarity (Goss) scores were

calculated for all versus all protein pairs in human and
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yeast proteomes as described by Lord et al. 2003 [49], using the

GO relational graph implicit in the GO ontology file (GO

ontology files; OBO v1.0 format 30th-October-2008; http://www.

geneontology.org/). Sets of protein pairs with significant Goss

score (Goss$4.0; [50]) in the refined sets of GO annotations were

selected as validating datasets for the yeast and human protein pair

predictions. These protein pair sets are referred to Goss refined

(Gossr) datasets.

Precision and recall calculation
Precision was calculated as the ratio of accumulative TP/

TP+FP at different prediction p-values, where TP (True Positives)

is the rate of hits predicted within the validation dataset of true

protein binary associations (e.g. Gossr, see section above), and FP

(False positive) is the average rate of hits predicted from 1000

random models of the same validation dataset.

The FP are the randomly selected PPIs above different scoring

thresholds (i.e. prediction p-values). The FPs are calculated as an

average of 1000 random validation iterations to estimate the errors

(deviations) associated with the calculation. We then compare the

relative differences in the TP and FP rates in the ranked prediction

list, obtained by using our predictor and a random approach. For

example, a precision $90% associated with a p-value#0,001

means we find 9 times more TPs in the set of predictions with p-

value#0,001 than a random predictor does by chance. In our

analyses the precision (ie TP/TP+FP) will always tend to 50%

because we select the same number of FPs from our random

predictors as given by the integrated prediction method.

Using a random model for benchmarking it is possible that a

randomly selected PPI could be a known TP, by chance, although

the probability is expected to be very low since the space of known

PPI (TPs) is much lower than the space of random PPIs pairs

considering all possible combinations. It is also likely that any of

the gold standard datasets, or combinations of them, do not

contain all the true PPIs taking place in nature. Therefore it is not

possible to correctly estimate FPs in the ranked predictions, based

on pairs absent in the validating datasets (ie many of these FPs may

be currently uncharacterised TPs). In any case, the consequence of

considering TPs as FPs in the random validation model used in

this work is conservative, giving an underestimate of the

performance of our predictor (see section 2 in Text S1).

Although recall is usually defined as the TP/(TP+FN) ratio,

since not all the true PPI are known in our validation model, we

can not reliably estimate the FN rates. Therefore, in this work

Recall is calculated as the accumulated number of predicted hits

by a given method, at different p-value levels.

Predictogram (PG) construction
Yeast and human PG protein networks were built based on the

binary protein prediction data selected at different discrete

Fisher_W p-value statistical significance levels. Fisher_W predic-

tions were chosen because these gave the best results from the

benchmarking. Various PG networks were generated over a range

of predicted p-value cut-offs. The p-value cut-off used to generate

a given PG network is specified in the subscript of its name. For

example if a p-value cut-off #0.01 was used the PG network was

termed PG0.01.

Knowledgegram (KG) construction
The construction of KG protein networks for human and yeast

proteomes was based on the existence of protein functional links.

For the interaction databases HRPD [30], MINT [29], Intact [28]

evidence of a protein interaction gave an evidence score of 1. For

the pathway resources, Reactome [24] and Kegg [25], shared

pathway membership was sufficient for an evidence score of 1. An

extra Reactome_Int dataset was built based on physical protein

interaction evidence in Reactome. Binary protein associations in

GO and FunCat were identified using the Semantic Similarity

score calculated using the ontology association graphs in GO and

FunCat [27] respectively. For sets based on GO (Goss datasets) we

used all the annotations in GO in order to maximise coverage of

GO functional space within the KG networks. These Goss datasets

are therefore expected to contain more noise that the refined

Gossr datasets used to validate the methods (see PG methods’

validation section above). Semantic similarity values were

calculated with the Resnik method [49,51] as described in the

section above: The GO Semantic Similarity refined dataset (Gossr)

used for validating the prediction methods. Sets of protein pairs

with significant functional associations (Goss$4.0; [50]) gave a

score of 1. A Foss (FunCat semantic similarity) significant set was

obtained from the FunCat [27] database. Foss score was calculated

using the same process as GO with the Resnik method. Int dataset

was generated by the union of all the above datasets excluding

Goss, Foss, Kegg and Reactome.

A cumulative score was associated with each edge (functional

link) to represent the number of independent resources with

evidence of the functional link between the two proteins. The KG

models statistics are shown in Table S5 in Text S1.

Network randomisation
Two different randomisation procedures were implemented.

The first method randomised the p-values associated with edges in

the PG network and the # of evidences associated with edges in

the KG models, whilst keeping the same pairs of connected nodes

in the matrices. These models are referred to as p-values random

models and they were built to analyse the distribution of the

statistical weights associated with protein edges (p-values and # of

evidences related to edges) compared to random behaviour. The

second randomised model, referred to as the adjacency random model,

was generated by randomly distributing all nodes, p-values and #
of evidences in the PG and KG pairs-wise datasets. Any new self-

associations in the PG network datasets produced by the

randomisations were removed. The adjacency random models were

built to analyse the distribution of edges and p-values in the KG

and PG models compared to random behaviour. Both models

went through 1000 randomisation iterations.

Network topology structure characterisation
In order to compare the PG/KG networks generated by this

study several different network statistical features were calculated.

Topological parameters included the node degree connection (ki)

[37,38], degree correlation (assortativity) [37–40], clustering

distribution [41,52] and average clustering coefficient [37].

Distance based metrics to characterise the networks included the

characteristic path length , [37], radius, diameter and eccentricity

[42] (see section 7 in Text S1).

Calculating the PGki enrichment ratio and the PG
functional enrichment

In order to determine whether some nodes had elevated degree

connections in the PG, the relative enrichment of the node degree

connection (ki) for nodes in the PG network compared to the KG

network was calculated for all the nodes (proteins) using the

following formula: PGki_er (pi) = (PGki2KGki)/(KGki+1)
where PGki_er is the PGki enrichment ratio of the protein pi,

PGki is the ki value of the protein pi in the KG network and KGki

is the ki value of the protein pi in the KG network. Yeast and
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human proteins were ranked using the PGki_er parameter values

and the ranked lists were used as input for the GOrilla web server

(http://cbl-gorilla.cs.technion.ac.il/). GOrilla is a tool for identi-

fying and visualizing enriched GO terms in ranked lists of genes

(Eden et al. 2009, [45]).

Second order predictions from the PG networks:
Measuring the similarity of protein interaction profiles

For each protein pair, the vectors of interacting proteins, within

the PG0.01 in yeast and the PG0.014 in human network matrices

(0,01 and 0,014 cut-offs relate to 80% precision in yeast and

human respectively), were compared using different similarity

measures, such as: bits, specific bits and congruence. These

similarity scores, which are calculated over the PG network matrices, are

termed second order predictions (see section 17 in Text S1).

The bits score formula is b(p1,p2) = b1, where p1 and p2 are the

two proteins compared and b1 is the number of shared interacting

proteins between the two proteins’ interaction vectors in a given

PG network matrix. The specific bits score was calculated using

the following formula: s(p1,p2) = b1?[2log(b1/(b1+b2))], where p1

and p2 are the two proteins compared, b1 is the number of shared

interacting proteins, and b2 is the number of non-shared

interacting proteins between the two compared proteins in the

PG networks. Congruence is a similarity measure between pairs of

protein interacting vectors that was calculated as described in

Lehner [53]. Bits and specific bits scores were calculated for the

yeast and human PG networks; whilst congruence calculation was

only performed for yeast since the size of the human PG0.014

network matrix (13,961613,961, see Table S5 in Text S1) was too

large to make it feasible to implement the combinatorial

calculation implicit in the congruence measure.

Validation of the second order predictions for the PG
networks

Second order predictions were ranked based on the different

similarity score values (see section above) from the most significant

to the least significant. Validation was performed using as true

positives (TP) protein pairs from the KG matrices in yeast and

human respectively (Int, Goss, Foss and Kegg in Yeast and Goss,

Foss, Kegg, Int, Reactom_Int, and Reactome in Human; see the

section above: Knowledgegram (KG) construction) mapped to

pairs in the ranked lists. An extra gold standard dataset of mapped

true positive hits was built using those pairs present in two or more

KG datasets (KG$2). False positive (FP) sets were obtained by

mapping the same KG gold standard datasets on randomised lists

of second order predictions ranked lists, with 1,000 random

iterations in yeast and 500 in human (fewer times in human

balancing the sample size against computational cost).

Precision and recall parameters were calculated as described

above, the precision mean and error (standard deviation) values

were calculated based on the TP and the different accumulated

random FP distributions. In order to present representative results

values with standard deviations more than 1/3 of the mean were

ignored, as they were due to the small size of the TP and FP

samples at the beginning of the accumulated distributions (for

further details see section 18 in Text S1).

Supporting Information

Text S1 Supporting information.

Found at: doi:10.1371/journal.pcbi.1000945.s001 (4.01 MB PDF)
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