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Abstract

Oncolytic viruses replicate selectively in tumor cells and can serve as targeted treatment agents. While promising results
have been observed in clinical trials, consistent success of therapy remains elusive. The dynamics of virus spread through
tumor cell populations has been studied both experimentally and computationally. However, a basic understanding of the
principles underlying virus spread in spatially structured target cell populations has yet to be obtained. This paper studies
such dynamics, using a newly constructed recombinant adenovirus type-5 (Ad5) that expresses enhanced jellyfish green
fluorescent protein (EGFP), AdEGFPuci, and grows on human 293 embryonic kidney epithelial cells, allowing us to track cell
numbers and spatial patterns over time. The cells are arranged in a two-dimensional setting and allow virus spread to occur
only to target cells within the local neighborhood. Despite the simplicity of the setup, complex dynamics are observed.
Experiments gave rise to three spatial patterns that we call ‘‘hollow ring structure’’, ‘‘filled ring structure’’, and ‘‘disperse
pattern’’. An agent-based, stochastic computational model is used to simulate and interpret the experiments. The model
can reproduce the experimentally observed patterns, and identifies key parameters that determine which pattern of virus
growth arises. The model is further used to study the long-term outcome of the dynamics for the different growth patterns,
and to investigate conditions under which the virus population eliminates the target cells. We find that both the filled ring
structure and disperse pattern of initial expansion are indicative of treatment failure, where target cells persist in the long
run. The hollow ring structure is associated with either target cell extinction or low-level persistence, both of which can be
viewed as treatment success. Interestingly, it is found that equilibrium properties of ordinary differential equations
describing the dynamics in local neighborhoods in the agent-based model can predict the outcome of the spatial virus-cell
dynamics, which has important practical implications. This analysis provides a first step towards understanding spatial
oncolytic virus dynamics, upon which more detailed investigations and further complexity can be built.
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Introduction

Oncolytic viruses replicate selectively in tumor cells and have

been explored as a targeted treatment approach against cancers

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. In principle an oncolytic

virus will spread though the tumor cell population and lyse the

infected cells, leading to eradication or control of the tumor.

Because of the selectivity of such viruses for cancer cells rather

than normal human cells, side effects also should be less

pronounced than those associated with traditional treatments,

such as chemotherapy or ionizing radiation. Oncolytic virus

therapy has been explored in the context of several different virus

species. While some non-human viruses display natural selectivity

for cancer cells in humans [16], modern approaches use

genetically engineered viruses to achieve tumor selectivity. The

first engineered virus generated in the 1990s was a herpes simplex

virus-1 [17]. Engineered adenoviruses have been of major interest

in recent clinical trials, especially in the context of head and neck

cancer [15]. Indeed the adenovirus H101(Shangahi Sunway

Biotech, Shanghai, China) was approved in China for the

treatment of head and neck cancer in combination with

chemotherapy [18]. A variety of other virus types has also been

explored [19]. However despite initial promising results and

observations in the laboratory and clinic, oncolytic viruses have so

far failed to demonstrate sustained and reliable treatment success

[15].

Besides experimental research, mathematical and computation-

al modeling has increasingly become a tool to study the dynamics

of oncolytic viruses. Mathematical models can help us understand

the emerging properties of cancer-virus interactions, to interpret

experimental results, and to design new experiments. The first

mathematical models of oncolytic virus therapy considered

ordinary differential equations that described the basic interactions

between a replicating virus and a growing population of tumor

cells, and also immune responses [20,21]. Further work extended

this type of approach in a number of ways, describing different

scenarios and applying models to specific virus-tumor systems

[22,23,24,25,26,27,28,29,30,31,32,33,34,35]. One of the assump-

tions that is implicit in such modeling approaches is that cells and

viruses mix perfectly with each other (mass action). While this
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might hold true in the context of some in vitro experiments, and

while this might be a reasonable approximation of the dynamics

occurring in some non-solid tumors, the majority of tumors have

intricate spatial structures where cells and viruses do not mix well,

but where interactions are limited to local neighborhoods. Hence,

to gain a better understanding about the dynamics of oncolytic

viruses, spatially explicit models are required. While some spatial

modeling studies have been performed and have given rise to

interesting results [30,36,37,38], they commonly include, in

addition to basic spatial dynamics, one or more additional

assumptions that introduce further complexity.

We still do not, however, have a good understanding of the

basic principles that govern spatially restricted virus spread

through a population of target cells, what outcomes can be

expected, and what determines those outcomes. Obtaining such

basic knowledge is a necessary foundation for building predictive

models of virus therapy. This knowledge can be used as a basis for

examining the effects of further biological complexities on the

outcome of virus therapy, such as immune responses, tumor-

microenvironment interactions, cellular heterogeneity, cell-cell

interactions, among others. Therefore, the aim of this paper is to

study the basic dynamics of virus spread through a spatially

arranged population of growing cells in a simple setting. To

achieve this, we have constructed an in vitro experimental system

in which a fluorescent labeled virus spreads through a target cell

population in a two-dimensional geometry, such that an infected

source cell can transfer the virus only to target cells in the direct

neighborhood. Besides quantifying the number of infected cells,

this also allows us to track the emerging spatial patterns over time.

We found three distinct patterns of virus spread and determined

the frequency of their occurrence. An agent-based model was used

to simulate these experiments and to interpret the data. The model

can qualitatively reproduce the experimental observations and

suggests key parameters that determine the different growth

patterns. Using this model, we explore the implications of the

observed growth patterns for the long-term outcome of the

dynamics, and obtain insights about the conditions required for

the virus to drive the target cell population extinct in this setting.

This is a first step towards understanding the basic principles of

virus spread and the correlates of successful virotherapy in spatially

structured cell populations, and provides a basis for more detailed

explorations and for the incorporation of other complexities that

are relevant for virus-tumor dynamics in vivo.

Results

Experimentally observed patterns of virus spread
In order to examine spatial virus spread in a relatively simple

setting, we constructed a recombinant adenovirus type-5 (Ad5)

that expresses enhanced jellyfish green fluorescent protein (EGFP),

AdEGFPuci, and grows on human 293 embryonic kidney

epithelial (293) cells [39]. The experiment was set up such that

cells are arranged in a two-dimensional layer, and virus spread is

most likely to occur to neighboring cells. An agar overlay prevents

long-range spread of the virus away from infected cells in the

culture medium. This set-up allows us to not only quantify the

number of infected cells over time, but also the spatial patterns of

infected cells that are formed as the virus population expands. In

addition, we used fluorescent markers to visualize the spatial

distribution of all cells (infected and uninfected) by generating

HEK293-H2BmCherry cells, that stably express the core nuclear

histone protein H2B fused to mCherry (a highly photostable,

monomeric red fluorescent protein (RFP)) [40]. Thus, using

HEK293-H2BmCherry cells allows us to visualize all the cell

nuclei (i.e., intact cells) in any particular culture. The culture was

infected at a very low multiplicity of infection (MOI), such that any

area of infection resulted from a single ‘‘founder’’ infected cell.

Each culture contained several such founder cells that were

sufficiently separated from each other, allowing us to track

multiple growth foci across the dish. Details of the experimental

procedures are given in the Methods section. The earliest stages of

virus growth starting from a single founder infected cell were

characterized in detail in a separate study [39]. This gave rise to

the interesting observation that while virus extinction was a likely

event as long as the number of infected cells in a given area was

less than three, spreading virus growth was always observed once

the number of infected cells reached three or higher. In the current

study, we followed the growth of such spreading infections and

characterized the consequent growth patterns. We observe three

basic patterns of virus spread, which interestingly occur under

identical experimental conditions and even within the same

culture. They are shown in Figure 1A and described as follows. (i)

In the first pattern, the virus infection spreads rapidly outwards as

a ring, leaving no cells behind in the core of the ring (Figure 1A,

pattern (i)). This classic plaque pattern is observed in virus growth

experiments. We call this the ‘‘hollow ring’’ structure. In the

second and third patters there is viral spread, but it is limited. (ii) In

the second case, a ‘‘disperse’’ growth pattern is observed, where

the virus population expands as a mixed cluster of infected and

uninfected cells (Figure 1A, pattern (ii)). Finally, the virus

population expands as a thinner ring, but in contrast to the first

case, uninfected cells are left behind in the core of the ring

(Figure 1A, pattern (iii)). We call this the ‘‘filled ring’’ structure. A

limited growth pattern is magnified in Figure 1B, in which

uninfected cells are visible within the center of the virus infected

population. In the top right panel of Figure 1B, an AdEGFPuci

infected (fluorescent) cell is indicated (arrow, inf.), whereas an

uninfected cell in the center of the spreading infection does not

fluoresce green (arrow, un inf.). The same cells are indicated in the

middle right panel of Figure 1B, showing red fluorescence. In the

bottom left panel of Figure 1B, images of the top and middle

panels are merged; infected cell (arrow, inf.) fluoresces yellow,

Author Summary

Traditional chemotherapy of cancers is characterized by
strong side effects, while showing a low success rate in the
long term control of tumors. Besides small molecule
inhibitors, which have shown great promise, oncolytic
viruses present an emerging specific treatment approach.
They are engineered viruses that spread from tumor cell to
tumor cell, killing them in the process. Non-tumor cells are
generally not infected. While clinical trials have given rise
to promising results, reliable success remains elusive.
Besides experiments, computational approaches provide a
valuable tool to better understand the dynamics of virus
spread through a growing population or tumor cells.
Combining in vitro experimental approaches with compu-
tational models, we study the principles of virus spread
through a spatially structured population of cells, which is
of fundamental importance to understanding virus treat-
ment of solid tumors. We describe different growth
patterns that can occur, interpret them, and explore how
they relate to the ability of the virus to induce tumor
regression. We further define how these spatial dynamics
relate to settings where cells and viruses mix more readily,
such as in many cell culture experiments that are used to
evaluate candidate viruses.

Spatial Dynamics of Oncolytic Viruses
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while the uninfected cell, (arrow, un inf.) remains red. As

mentioned the area over which the infection spread remained

limited in patterns (ii) and (iii) and persisted throughout the

infection (through 19 dpi). In contrast, in pattern (i) the ring of

infected cells continued to spread outward as long as there was

space; cell clearing in the center of the plaque was apparent at

13 dpi, as shown in Figure 1A. Similar patterns of spreading

infection were also seen in Ad293 cells, a HEK293 cell derivative

optimized for adenovirus plaque assays. Overall, among 436

scored growth foci, the hollow ring structure was found in 45%,

and the limited patterns in 55% of cases.

In the following sections, we simulate these experiments with a

computational model. We examine conditions for the formation of

different patterns and examine implications of the different growth

patterns for the ability of the virus to eradicate the target cell

population.

An agent-based model of the experiments
Our in silico studies of the interactions between oncolytic viruses

and cancerous cells rely on the agent-based modeling technique,

where each cell is represented as an ‘‘agent’’ occupying a certain

position on a grid, and interacting with other cells according to

some (probabilistic) rules. Our modeling approach is spatial, that

is, it takes into account the spatial distribution of the uninfected

and infected cells

The model, based on previous work [41], describes target cell-

virus dynamics on a two dimensional grid that contains N6N

spots. Each spot is either occupied by a cell (infected or

uninfected), or it is empty. We model the development of the

populations in discrete time. Given the state of the system at time t,

a set of rules is applied to each spot, and this gives rise to the state

of the system at time t+1. At each time step, the grid is randomly

sampled N2 times. If the chosen spot is occupied by an uninfected

cell, it can die with a probability D, leaving the spot empty.

Alternatively, the cell can reproduce with a probability R, and a

destination spot is randomly chosen for the offspring from the set

of eight nearest neighboring spots. If the destination spot is empty,

the offspring is placed there, otherwise, no reproduction occurs. If

the chosen spot contains an infected cell, it can die with a

probability A, or attempt to transmit the virus with a probability B.

A destination spot is chosen randomly from the eight nearest

neighbors, and infection only proceeds when a susceptible cell is

present. Infected cells do not reproduce since adenoviruses lock

the cell in the S-phase for replication, thus preventing further

Figure 1. Observed patterns of AdEGFPuci infection in HEK293-mCherry cells. (A) HEK293-mCherry cells were infected at an MOI%1 and
tracked every 24 h beginning at 5 days post-infection when initial spread of infection had occurred. Three representative patterns of AdEGFPuci
infection were observed after at least 13 days post infection (pattern (i)) or as long as 19 dpi (patterns (ii) and (iii)) as shown in the micrographs
(1006). The left panels represent the detection of HEK293-mCherry cell nuclei in the culture (mCherry RFP), whereas the right panels depict the
identical field of view of HEK293-mCherry cells viewed for green fluorescence to detect cells infected with AdEGFPuci (EGFP). (B) Limited pattern (iii)
of HEK293-mCherry cells infected by AdEGFPuci. The top panels depict AdEGFPuci infected cells (EGFP-positive), the middle panels depict all the
HEK293-mCherry cell nuclei in the culture (mCherry RFP), and the bottom panels is the merge of those panels, illustrating infected vs. uninfected cells.
The panels on the left are micrographs taken at 1006 magnification; the right panels encompass the boxed area of the left images at 2006
magnification. The arrows in the right panels point to an AdEGFPuci infected cell (inf.) and an uninfected AdEGFPuci cell (un inf.) within the center of
the virus infected region of HEK293-mCherry cells at 19 dpi. The scale bar in both Figure 1A and 1B for the 1006 magnifications represents
671.12 uM, the 2006image scale bar is 335.48 uM. The scale bar in the 1006magnification defines the region of each micrograph needed to capture
the area of the infected cells of an individual infection (compare Figure 1A pattern (i) with patterns (ii) and (iii)).
doi:10.1371/journal.pcbi.1002547.g001

Spatial Dynamics of Oncolytic Viruses
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divisions [34]. The particular formulation of the infection process

used in this paper corresponds to virus transmission that is not

coupled with cell death, but simulations indicate that transmission

coupled to cell death does not qualitatively alter the results

reported here. For reference, parameters and their meaning are

summarized in Table 1.

Initial virus growth patterns
In this section, we explore the initial virus growth patterns. As

starting conditions we assume that the grid is filled with uninfected

cells and that a relatively small square of infected cells (30630

spots) is placed in the middle of the grid (which overall contains

3006300 spots). The emerging growth pattern depends on

parameters that influence the rate of virus spread, in particular

the probability for an infected cell to die, A, and the probability for

an infected cell to transmit the virus, B. The patterns that we

observe are presented in Figure 2.

In Figures 2a and b, the infected cell population expands as a

ring or wave that leaves no cell behind in its core. The two pictures

differ in the death probability of infected cells. In Figure 2a, the

probability for infected cells to die is relatively low such that during

the time frame of the simulation a hollow ring has not yet formed

and the infected cell population expands as a relatively solid mass.

In Figure 2b, the death probability of infected cells is higher such

that during the time frame of the simulation a hollow ring has

formed. In Text S1 we derive an approximate growth law for these

scenarios. The total number of cells is proportional to
e{At{1zAt

A2
, such that for short time-scales (or smaller death

rates) the growth is quadratic in time, and for longer times scales

(or larger death rates) it is linear in time. This is exactly what is

observed. Figure 2a, characterized by smaller values of A, shows a

growth law of the infected cell population that is close to quadratic.

In Figure 2b, where the death rate is larger, the infected cell

population grows linearly once the hollow ring is present. Note

that these two scenarios are identical in principle because in

Figure 2a, the formation of the hollow ring requires more time

(and a larger grid). The higher the death rate of infected cells, the

faster the ring is formed, and the faster the growth law changes

from square to linear. Lowering the rate of virus spread

(decreasing the value of B and increasing the value of A) gives

rise to patterns of a different nature.

In Figure 2c, uninfected cells are left behind in the core of the

expanding ring. When they grow and become infected by virus, a

coupled expanding ring of uninfected and infected cells forms.

This can occur repeatedly, giving rise to concentric rings. The

persistence of cells in the core of the ring is probabilistic in nature,

and that is reflected in the growth laws that are observed in

multiple runs of the simulation. In cases where uninfected cells are

not left behind inside the ring, the infected cell population grows

linearly. When concentric rings do occur, the growth becomes

quadratic.

Finally, no expanding ring structure is formed in Figure 2d

because the viral spread kinetics are even slower. Instead, the area

of virus growth is characterized by a mix of infected and

uninfected cells that expands over time. In this case, quadratic

growth of infected cells is observed (see Text S1). Note that if the

viral spread kinetics are in the lower end of this spectrum, it is

possible to observe a variation of this pattern, shown in the inset of

Figure 2d: While the spreading infection leaves uninfected cells

behind, the viral spread kinetics are too low to maintain significant

numbers of infected cells throughout this area. Most of the infected

cells will be at the outer edge of the infection due to a higher

density of target cells. In this case, a relatively thin, ring-like

structure can be formed, with a large area of uninfected cells

remaining in its core. This pattern, however, is temporary. With

time, one of two scenarios can be observed. A mixed pattern can

be generated, characterized by a large number of uninfected cells

and a low number of infected cells, because the virus eventually

spreads to the remaining susceptible cells. Alternatively, there is a

chance that the virus population goes extinct due to the slow rate

of spread. Long term outcomes are discussed further below.

Figures 2a and b qualitatively correspond to experimental

pattern (i), the hollow ring structure. Figure 2d corresponds to

experimental pattern (ii), the disperse growth structure. The

pattern shown in the inset of Figure 2d likely corresponds to

experimental pattern (iii), where a limited ring with mainly

uninfected cells in its core temporarily forms before either

developing into a mixed pattern or resulting in virus extinction.

According to this interpretation, the experimentally observed

patterns (ii) and (iii) are variations of the same theme. The

concentric rings observed in the model simulations are not found

in the experimental data. This is not surprising because they only

occur in relatively narrow parameter regions in the model.

In order to go beyond the qualitative comparison of model and

data, we fit the model to two sets of experimental data, one

showing an expanding hollow ring, and the other the disperse

growth pattern. A least squares algorithm (see Text S1) was used to

fit the number of infected cells over time, and a relatively good fit

was obtained for both cases (Figure 3). The types of spatial patterns

that emerged matched the observed ones qualitatively (Figures 4

and 5). While this procedure found best fitting parameter values,

their biological meaning remains questionable, since different

parameter combinations can give rise to similarly good fits. A

more solid validation would require an independent estimation of

parameter values, and a subsequent generation of the predicted

growth patterns. Due to the complexity of the experimental

observations, this is not currently possible and is discussed in detail

below. The fitting procedure does, however, indicate that the

model is at least consistent with experimental data.

Growth patterns and the extinction of cells
Here, we explore the long term dynamics, investigating how the

above described patterns play out and correlate with the overall

outcome if both the uninfected and infected cell population can

expand in space. We seek to define conditions under which the

virus can eliminate the target cell population in this system. All

simulations are started with a small number of infected cells placed

in a compact vicinity into a larger space filled with uninfected cells,

which is in turn embedded into an even larger ‘‘empty’’ space (for

the exact initial conditions for particular cases, see appropriate

figure legends). In contrast to the simulations reported above, here

we go beyond the initial virus growth stage, and focus on time-

scales where the population of target cells experiences significant

changes (grows in size in the absence of infection). The outcomes

of this system include extinction of the target cells and thus the

Table 1. Parameters of the model.

Parameter Meaning

R Division probability of uninfected cells

D Death probability of uninfected cells

B Probability for an infected cell to transmit the virus

A Death probability of infected cells

doi:10.1371/journal.pcbi.1002547.t001

Spatial Dynamics of Oncolytic Viruses
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virus; extinction of the virus and persistence of the target cells;

coexistence of virus and target cells. The dependency of these

outcomes on the parameters is shown in Figure 6, which is the

result of at least 104 instances of the simulation, where the log10 of

all the parameters was varied between 24 and 4. Figures 7 and 8

show corresponding spatial and temporal patterns. We examine

the outcomes first in a relatively small 30630 grid, and

subsequently in a larger, 3006300 grid.

Small grid. In the 30630 grid, the following outcomes are

found (Figure 6a, and Figures 7 & 8).

Two types of target cell extinction can be observed, both

associated with the initial ‘‘hollow ring’’ structure. According to

pattern A, virus-mediated target cell extinction, both the

target cell and the virus populations spread outward in space as a

wave, but the virus wave overtakes the target cell wave, leading to

extinction of both populations. Pattern B, boundary-mediated
extinction, represents weaker viruses compared to case A. In

pattern B, the virus wave catches up with the target cell wave,

leaves no uninfected cells behind in its wake, but fails to eliminate

the target cell wave. Instead, the two waves travel together with the

same velocity until the boundary in reached. The target cell

population can escape the virus only by spreading outward. Once

the boundary is reached, this is not possible anymore, explaining

the extinction. Note that although real tumors are capable of

Figure 2. Initial virus growth dynamics in the agent-based model. Each row represents one case, characterized by a certain parameter
combination. The left graph shows the spatial pattern. Green indicates uninfected cells, red infected cells, and grey empty spots. The middle graph
shows the number of infected cells over time. The different lines represents 100 different instances of the simulation with the same parameter
combination. The right graph shows the square root of the number of infected cells over time, again showing lines for 100 different runs. If this graph
is linear, we observe quadratic or ‘‘surface’’ growth. Two basic types of initial growth are observed. Cases (a) and (b) show the formation of a ring
structure, characterized by an initial phase of quadratic growth, and a subsequent phase of linear growth. In (a) the death rate of infected cells is
lower, thus requiring a longer period of time until a hollow ring is formed. Hence, the duration of the quadratic growth phase is relatively long,
almost the entire duration of the simulation presented here. Eventually, however, it will transition to linear growth, as exhibited in case (b),
characterized by a faster death rate of infected cells. Case (d) shows a disperse growth law. No ring structure is formed. The virus population leaves
behind susceptible cells, thus leading to a mixed pattern and quadratic growth. The small graphs depict a variation of this outcome which occurs if
the viral spread rate is at the low end of the spectrum. Due to a higher number of target cells at the edge of the infection area, significant number of
infected cells are only found there, and we observe a ring-like structure with a mass of uninfected cells in the center (upper small graph). Over time,
the dynamics develop into a mixed pattern with low levels of infected cells (lower small graph), or the infection goes extinct. Case (c) lies in between
the hollow ring and the mixed pattern. Initially a ring structure is formed, resulting first in quadratic, then in linear growth. However, on rare occasions
uninfected cells remain in the wake of the expanding virus population, thus leading to concentric rings. While this does not happen in all instances of
the simulations, when it does occur, the growth law transitions back from linear to quadratic. Parameter values were chosen as follows. (a) R = 0.5;
D = 0; B = 0.6; A = 0.601. (b) R = 0.5; D = 0; B = 0.6; A = 0.62. (c) R = 0.5; D = 0; B = 0.6; A = 0.628. (d) R = 0.5; D = 0; B = 0.6; A = 0.7. The small graphs in (d) are
characterized by R = 0.04, leading to fewer target cells in the area of infection and thus to slower viral spread.
doi:10.1371/journal.pcbi.1002547.g002

Spatial Dynamics of Oncolytic Viruses
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Figure 3. Two different experimentally observed time series of adenovirus (AdEGFPuci) growth on human 293 embryonic kidney
epithelial cells, arranged in a two dimensional layer. The number of cells was determined by measuring the fluorescent area of the infected
cell population, divided by the fluorescent area of individual infected cells, using Photoshop (see Methods as well as Text S1). The graph is based on a
single experimental run. The area however, was measured independently four times, giving rise to the plotted error bars. The black middle line
through the data represents the time series predicted by the agent-based model, using a parameter combination that was obtained by a least
squares fitting procedure. Since the model is stochastic, the predicted time series represents the average over 1000 instances of the simulation. The
upper and lower lines show the standard deviations added to and subtracted from the average. (a) This experiment shows virus growth characterized
by the formation of a ring structure. Consequently there is a relatively short phase of quadratic growth, followed by a transition to linear growth. (b)
This experiment shows disperse virus growth characterized by quadratic growth throughout time. The corresponding observed and predicted spatial
patterns are shown in Figures 4 and 5. Values for parameters R, B, and A were obtained from the fitting procedures and are given as follows: (a)
R = 0.18, B = 0.26, A = 1.8561022. (b) R = 0.19, B = 0.52, A = 0.12. The parameter D was kept constant at D = 0. For further details of the fit, including initial
conditions and the time step of the simulation, see Text S1.
doi:10.1371/journal.pcbi.1002547.g003

Figure 4. Observed (a) and predicted (b) spatial pattern of adenovirus (AdEGFPuci) growth for the experiment that exhibits a ring
structure (time series given in Figure 3a). The predicted spatial pattern is the result of an individual run of the agent-based model with the
parameter combination obtained from the model fitting procedure. Snapshots in time are shown, representing days 7, 9, 11, and 13 post infection. (a)
The area of green fluorescence is shown, expressed by the infected cells, thus documenting the spatial spread of the virus through the population
target cells arranged in a two dimensional setting. (b) In the computer simulation, green indicates infected cells, red infected cells, and grey empty
spots.
doi:10.1371/journal.pcbi.1002547.g004

Spatial Dynamics of Oncolytic Viruses
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breaking out of homeostatic control and spreading beyond the

‘‘carrying capacity’’ of their environment, boundary-mediated

extinction can still take place. Genetic transformations associated

with waves of clonal expansion or induction angiogenesis generally

happen on longer time-scales. Therefore, it is realistic to assume

the existence of some geometric constraints (even temporary).

Pattern B represents the situation where extinction is a

consequence of such spatial constraints.

Another type of outcome is the coexistence of infected and

uninfected cells, which is shown in pattern C, constant density
coexistence. As the virus population spreads out in space, it

leaves behind uninfected cells with a high probability, leading to

the disperse pattern of initial expansion and the absence of any

clear traveling waves. Instead, the expanding virus population

leaves behind a mix of both populations, which eventually is found

across the whole space and is characterized by an equilibrium

density that is determined by the parameters of the system, while

the populations settle around a stochastic steady state.

Finally, there are two types of virus extinction patterns. Pattern

D, virus extinction despite invasion, represents a virus

extinction regime where the virus can initially invade the target

cell population, but does not persist in the long term. The virus

reduces the target cell population, and subsequently goes extinct.

This leaves the uninfected cell population to grow unopposed. The

stronger the virus (lower value of A/B), the less likely this is observed

in this regime, because the uninfected cell population is more likely

to be driven extinct before the virus population hits extinction. The

second extinction pattern E, lack of invasion, is observed when

the virus population cannot invade the target cell population and

goes extinct (spatial and temporal pattern not shown).

Analytical insights: global outcome can be predicted by

the local dynamics. Although the spatial stochastic predator-

prey system studied here exhibits a variety of patterns, its dynamics

can be understood by studying the local interactions of the agents.

The idea of a ‘‘characteristic scale’’ has been proposed in the

literature in the context of different predator-prey models [42]

where the system’s behavior was found most predictable on an

intermediate scale defined by the agents’ motility and interactions.

In [43], it was shown that in a class of systems exhibiting

oscillatory dynamics, the functional forms governing the local

predator-prey interactions at those characteristic scales are the

same as the ones describing a perfectly mixed, mass-action system,

but contain different parameters. This allowed the authors to

approximate the long-term dynamics of the spatial system at large

scales with a temporal predator-prey model describing local

interactions. In this paper we will build on this idea, and show that

the global outcomes of the spatially-distributed system can be

predicted by utilizing the laws of local dynamics, see Text S1 for

more details.

We start from the well-known system of ordinary differential

equations that can be derived for our agent-based model if no

spatial restrictions were in place, and reproduction and infection

events were driven by laws of mass-action:

dS

dt
~RS 1{

SzI

K

� �
{

BSI

K
,

dI

dt
~

BSI

K
{AI ,

ð1� 2Þ

where the number of uninfected cells is denoted by S, and the

number of infected cells by I. In these equations, K has the

meaning of carrying capacity. This well-known modified Lotka-

Volterra system [44,45] is characterized by two equilibria: (i) The

Figure 5. Observed (a) and predicted (b) spatial pattern of adenovirus (AdEGFPuci) growth for the experiment that exhibits a
disperse growth pattern (time series given in Figure 3b). The predicted spatial pattern is the result of an individual run of the agent-based
model with the parameter combination obtained from the model fitting procedure. Snapshots in time are shown, representing days 7, 10, 11, and 12
post infection. (a) The area of green fluorescence is shown, expressed by the infected cells, thus documenting the spatial spread of the virus through
the population target cells arranged in a two dimensional setting. (b) In the computer simulation, green indicates infected cells, red infected cells, and
grey empty spots.
doi:10.1371/journal.pcbi.1002547.g005
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uninfected population persists at carrying capacity, while the virus

population is extinct, i.e. S(0) = K, I(0) = 0; (ii) Alternatively, the

virus establishes a successful infection, such that S(1) = AK/B,

I(1) = RK(B2A)/B(R+B). The latter equilibrium is stable if the

basic reproductive ratio of the virus is greater than one, which is

equivalent to the inequality A,B. The approach to the

Figure 6. Dependence of outcomes on parameters in the agent-based model for (a) a relatively small 30630 grid, and (b) a relatively
large 3006300 grid. The plot is the result of at least 104 instances of the simulations, where the log10 of the parameters was varied between 24
and 4. The simulations were started by placing a small number of infected cells (565 cells) into a larger space filled with infected cells (13613 cells).
Identical results were observed over a very large range of initial conditions (differences were only observed if the initial number of cells is such that
immediate stochastic extinction is likely, which are not regions of interest with respect to our study). Blue indicates coexistence of virus and cells. Red
and orange indicate extinction of the cells and thus the virus. Red is used if extinction occurs before the boundary of the system has been reached,
while orange is used if extinction occurs after cells have reached the boundary of the system. Grey indicates extinction of the virus while cells persist.
Above the white line and below the black line, the ‘‘local’’ equilibrium number of uninfected and infected cells, respectively, is greater than one. This
derives from ordinary differential equations that describe the dynamics within local neighborhoods where all cells can interact with each other (see
Text S1). Below the yellow line, the virus can successfully invade its target cell population. This invasion threshold was determined by numerical
simulations. The capital letters indicate different spatial patterns that are described in the text and in Figure 7. In these simulations, the probability for
an uninfected cell to die was kept constant at D = 0.
doi:10.1371/journal.pcbi.1002547.g006

Spatial Dynamics of Oncolytic Viruses

PLoS Computational Biology | www.ploscompbiol.org 8 June 2012 | Volume 8 | Issue 6 | e1002547



coexistence equilibrium can be either monotonic, or can involve

damped oscillations.

While these properties of the virus-cell system are well-known, it

is usually thought that the ordinary differential equations can only

be applied to a well-mixed system, and fail to describe a spatially-

distributed system of cells. Contrary to this, Figure 6 demonstrates

that, if interpreted correctly, the above system can explain a lot of

the patterns that arise in the spatial agent-based model. Let us

think of the carrying capacity coefficient, K, as the size of the

‘‘local neighborhood’’ where cell-to-cell interactions happen in a

spatial model. In our case, this neighborhood consists of K = 9 cells

(a cell plus its eight nearest neighbors, the relevant characteristic

scale of our spatial model). Equations (1–2) with the modified

parameter K are capable of informing us of the local equilibrium

density of the infected and uninfected cells, which in term is

correlated with the expected long term behavior of the spatial

system.

In equations (1–2), the number of uninfected cells at the

equilibrium (the value S(1)) is proportional to K. In order for this

equilibrium to be biologically meaningful, this value must be

greater than one cell. The equation S(1) = 1 defines the white line

in Figure 6. Similarly, the number of infected cells in local

neighborhoods must be greater than one, which yields the black

line, I(1) = 1. We can see that the coexistence region in Figure 6a

(regime C) corresponds to the parameters for which both

equilibrium values are larger than one; it is enclosed by the lines

S(1) = 1 and, I(1) = 1 obtained directly from the cancer-virus

equations. The white line S(1) = 1 outlines the lower boundary of

the coexistence region, while the black line I(1) = 1 defines the

upper boundary. (A more precise definition of the upper bound of

the coexistence region is given by the yellow line in Figure 6a,

below which the virus is strong enough to invade the cell

population).

Thus, in the spatial system, target cell extinction is observed if

the local equilibrium number of uninfected cells is less than one

(regions A & B, Figure 6a, below white line). Extinction of virus

only is observed either following initial invasion if its local

equilibrium is less than one (region D, Figure 6a, area encased by

white, black and yellow lines) or if invasion is impossible (region E,

Figure 6a, above yellow line). The finding that equilibrium

properties of simple ODE models that describe the dynamics in a

small local neighborhood can predict the outcome of the spatial

system has important practical implications. Note however that

this method is unable to explain all the details of the diagram in

Figure 6. In particular, the proximity of the black (I(1) = 1) line to

the boundary between regions A and B is purely coincidental. The

equilibrium analysis predicts extinction in regions A and B, but

cannot distinguish between virus-mediated extinction (A) and

boundary-mediated extinction. We will return to this aspect of the

diagram armed with the tools from PDE analysis, see below.

Large grid. In a larger, 3006300, grid (Figure 6b, and

Figures 7 & 8), the basic patterns found in a small grid are still in

Figure 7. Seven spatial patterns observed in the agent-based model. For each pattern, four snapshots in time are shown. Green indicates
uninfected cells, red infected cells, and grey empty patches. See corresponding capital letters in Figure 6, showing in which parameter regions the
individual patterns are observed. The time series that are associated with the individual patterns are shown in Figure 8. See text for details. The
simulations were run on a 3006300 grid. The simulations were started by placing a small number of infected cells (565 cells) into a larger space filled
with infected cells (13613 cells). Parameters were chosen as follows: (A) R = 0.013; D = 0; B = 0.14; A = 0.003; (A1) R = 0.15; D = 0; B = 0.32; A = 0.007; (B)
R = 0.014; D = 0; B = 0.015; A = 0.00056; (B1) R = 0.04; D = 0; B = 0.032; A = 0.0016; (C) R = 0.014; D = 0; B = 0.032 ; A = 0.008; (D) R = 0.0002 ; D = 0;
B = 0.019 ; A = 0.0032 ; (D1) R = 0.069 ; D = 0; B = 0.64 ; A = 0.18.
doi:10.1371/journal.pcbi.1002547.g007
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place, but additional complexity is observed. In the parameter

space where target cell extinction happens in the smaller grid,

regions of coexistence can occur. In pattern A1, the expanding

virus wave proceeds initially as a ‘‘hollow ring’’ structure, catches

up with the target cell wave, leaves no uninfected cells in its wake,

but only partially breaks the target cell wave. The virus is not

efficient enough to eliminate the target cell wave, as observed in

pattern A, but still strong enough not to leave it intact, as observed

in pattern B. The partially broken wave structure allows the

uninfected cells to escape not only outward, but in all directions.

Hence, local extinction combined with continuous target cell

movement away from the virus leads to persisting moving fronts,

which can go extinct and give rise to new fronts over time. Thus,

more extensive population fluctuations are observed in the long

run (Figure 8). This is the well-known regime of global persistence

despite local extinction which is an important basis for the

argument that space promotes coexistence [46]. The levels at

which the uninfected cell population persists, however, are

relatively low (Figure 8). A sufficiently large grid size is required

to observe this behavior, such that enough space is available for

the moving target cell fronts to persist. We refer to pattern A1 as

low-level target cell persistence. Region B1 shows a different

reason for target cell persistence at low levels, a pattern we call

concentric rings, which corresponds to the concentric ring

pattern of initial virus spread described earlier. When the virus wave

expands, the probability to leave behind uninfected cells is

proportional to the local equilibrium number of uninfected cells.

In the region where this equilibrium number is just slightly below

one, this does not occur often enough to be observed on a small grid.

On a larger grid, however, it can be observed. These infrequent

events lead to renewed target cell growth, followed by virus growth,

and a new wave structure is formed. This can lead to the occurrence

of concentric expanding rings. With time, stochasticity breaks the

ring structure, leading to traveling fronts that eventually go extinct,

but occasionally leave behind uninfected cells to form new fronts,

thus persisting in the long term. Consequently, populations show

more extensive fluctuations around characteristic steady state values

(Figure 8). For lower values of A/B, the local equilibrium number of

uninfected cells becomes too low for this to be observed in the grid

size under consideration. Finally, in region D1, low-level virus
persistence, global persistence of the virus despite local extinction

is observed, leading to relatively strong population fluctuations

(Figure 8). While the virus invades the target cell population, it

converges to its local equilibrium value that is less than one.

However, movement through space before extinction occurs allows

coexistence if the grid is sufficiently large. For lower values of R/B,

the local equilibrium number of infected cells is too low to observe

this outcome even in the context of the larger grid.

Figure 8. Typical time series corresponding to the spatial patterns presented in Figure 7, based on a single run of the spatial agent
based model, assuming a 3006300 grid. See text for details. Parameter values and initial conditions are given in Figure 7.
doi:10.1371/journal.pcbi.1002547.g008
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This analysis shows that increasing the grid size allows more

complex outcomes to occur and increases the parameter region in

which the cell populations persist. The additional patterns that

emerge in larger grids are variations of those found in the smaller

grid and involve non-equilibrium persistence, where extinction

occurs locally, but movement through space allows cells to

temporarily avoid extinction. These dynamics are well document-

ed in the ecological literature [46]. Besides allowing cells to move

through space, a larger grid size also increases the chances that

certain rare events can occur. For example, boundary-mediated

extinction (pattern B, Figure 6) is less likely to occur in large grids.

The larger the grid the higher the probability that uninfected cells

are left in the core of the ring before the uninfected cell population

has moved to the boundary and is eliminated by the virus. All

these non-equilibrium persistence outcomes in larger grids,

however, are characterized by persistence of the cells at very low

levels, which can be considered controlled persistence and does

not involve uncontrolled cellular growth. Therefore, the outcome

can still be predicted by the ‘‘local mass action equilibrium values’’

discussed above: if the local equilibrium of uninfected cells,

predicted by the ODEs, is less than one, we can expect either

extinction or controlled persistence. If the local equilibrium of

uninfected cells is greater than one, we can expect to see

uncontrolled cellular growth. The lower the local equilibrium of

uninfected cells the less likely controlled persistence occurs and the

more likely extinction is observed. However, this could not be

demonstrated systematically for larger grids due to the extensive

computational costs involved.

The long term outcomes shown in Figure 7 are obviously

related to the initial growth patterns described in Figures 1 and 2.

Patterns A, A1 and B in Figure 7 arise out of the hollow-ring

structure. Pattern B1 in Figure 7 emerges from the concentric ring

structure. Patterns C, D, and D1 are consequences of the disperse

growth pattern/filled ring structure, which for faster viral spread

rates typically leads to coexistence of the virus and cell

populations, while extinction of the virus population can be

observed for smaller virus spread rates.

Analytical insights: a metapopulation and a PDE

description. To gain further understanding of the complex

dynamics exhibited by the spatial stochastic agent-based simula-

tions, we have implemented several analytical tools. While some of

them such as the pair approximation method [41,47,48,49,50] did

not prove particularly useful (see Text S1), other methodologies

provided interesting insights which we briefly describe below.

A metapopulation approach is a modeling technique which

allows us to study dynamics in a spatial setting. The model consists

of a collection of n local patches. Within individual patches, local

dynamics occur according to mass-action rules. The patches are

coupled to each other by populations migrating between them.

Here, we consider a one-dimensional stochastic metapopulation

model where populations in a given patch can only migrate to the

nearest patches. Local dynamics are described by a stochastic

version of predator-prey interactions of equations (1–2) (see Text

S1 for details). Uninfected and infected cells migrate to the two

nearest patches with rates mS and mI, respectively. The inclusion of

migration is an assumption which we only made in the

metapopulation model, and not in the agent-based model. In the

agent-based model, populations move through space by individ-

uals placing their offspring to the nearest neighboring spots. This,

however, is not possible in the metapopulation setting. We assume

that the migration rates are equal to each other, mS = mI. In this

case, no additional asymmetries are introduced that are not found

in the agent-based model. This difference in information

transmission through space (via divisions and infections in the

agent-based model, and via explicit migration between patches in

the metapopulation model) is the reason why the local rates of

division, infection, and death in the metapopulation model are not

the same as the agent-based model parameters R, B, and A. In

order to distinguish the rates in the two models, we will denote the

rates of division, infection and death in the metapopulation model

by symbols r, b, and a. The carrying capacity of a local patch is

denoted by k.

Restricting the model to a one-dimensional setting greatly

speeds up computing times while allowing us to verify our main

results in the context of this model. A full analysis of the stochastic

metapopulation dynamics, including a two-dimensional setting,

will be provided in a subsequent paper.

As initial conditions we assume that in a subset of adjacent local

patches in the middle of the metapopulation, target cells are

present at their infection-free equilibrium levels. The rest of the

patches are initially empty. A small amount of infected cells are

placed into the middle patch, and the infection is allowed to spread

from there (See appropriate figures for exact initial conditions).

Figure 9 shows the diagram of various outcomes observed in this

model, and it is remarkably similar to the diagrams produced by

the agent-based models. The same basic outcomes are observed:

extinction of the target cells and consequently the infected cells;

extinction of the infection and persistence of the target cells;

coexistence of infected and uninfected cells. As before, there are

two modes of extinction: in scenario MA, the virus is sufficiently

strong, such that when it expands as a wave, it leaves no target

cells behind in its wake, and overtakes the expanding target cell

wave, leading to extinction of both populations. In scenario MB, a

Figure 9. The phase diagram of the metapopulation model
showing different outcomes of the dynamics depending on the
parameters. The plot is a result of at least 104 instances of the
simulations, where log10 of the parameters was varied between 24 and
4. The metapopulation consisted of 100 local populations or spots, each
characterized by a carrying capacity k = 100. In the middle spot, the
simulation was started with 30 infected and 70 uninfected cells. In the
subsequent five spots to the left and to the right of the middle spot, the
uninfected cell population was at carrying capacity, without the
presence of infected cells. The rest of the spots were initially empty.
Blue indicates coexistence of virus and cells. Red and orange indicate
extinction of the cells and the virus. Grey indicates extinction of the
virus while cells persist. Above the white line and below the black line,
the local equilibrium number of uninfected and infected cells,
respectively, is greater than one. Below the yellow line, the virus can
successfully invade its target cell population, derived from the basic
reproductive ratio of the virus. See text for more details and a
description of all the outcomes.
doi:10.1371/journal.pcbi.1002547.g009
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weaker virus can still expand as a wave, leave no susceptible cells

in its wake, and catch up with the target cell wave. However, it

fails to destroy the target cell wave. Instead, the two waves travel

together with the same velocity until the boundary is reached, at

which point extinction occurs. In region MB1, the same basic

dynamics occur as in region MB. However, the traveling waves

can split and travel independently in different directions, thus

avoiding extinction when the boundary is reached (i.e. before a

wave hits the boundary and goes extinct, it gives rise to another

waves that travels independently). Thus, while local extinction

occurs, the populations are maintained globally through the

traveling waves. In region MC we observe ‘‘true coexistence’’,

where populations eventually persist locally across most of the

patches. Finally, virus extinction can be observed either following

initial invasion (region MD) or if the local basic reproductive ratio

of the virus is less than one resulting in failure to invade (region

ME).

In full analogy with the agent-based simulations, the results of

metapopulation simulations can be described by looking at the

equilibrium values for infected and target cells in local patches. We

solve equations (1–2) where the carrying capacity is given by that

of a local patch, and plot the lines corresponding to S(1) = 1 and

I(1) = 1, see the white and the black lines in Figure 9 respectively.

Like in the case of the agent-based model, the local equilibrium

theory is unable to predict the boundary between regions A and B.

To bridge this gap of understanding, we turn to a different set of

tools.

The advantage of a metapopulation model is that partial

differential equation (PDE) techniques can be used to approximate

some aspects of the dynamics, and to obtain further analytical

insights into the behavior of the system. Although PDEs of

reaction-diffusion type fail to describe stochastic phenomena such

as extinction, they provide valid information in the regimes where

one observes wave propagation. One can model the spatial

dynamics by the following equations,

LS

Lt
~Ds+2SzrS 1{

IzS

k

� �
{bSI ,

LI

Lt
~DI+2I{aIzbSI ,

where parameters r, b, a, and k are the rates of division, infection

and death, and the local carrying capacity. They are the same as in

the metapopulation model. The first term in both equations

describes diffusion of the target and infected cells respectively. The

diffusion coefficients are related to the migration rates as

DS~mSh2,DI~mI h2, and h is the scaling factor describing the

spacing between individual patches. Let us assume that initially we

have a region that contains infection (nonzero I) immersed in a

larger region where target cells are at their carrying capacity with

no infected cells (S = k, I = 0), which in turn is immersed in an

infinitely-large domain with S = I = 0. Both the target cells and the

infected cells will spread outward. Initially, the front of the S-wave

will be ahead of the front of the I-wave. The speed of propagation

of the two waves, vS and vI, can be calculated by standard methods

described e.g. in [51]. We have the following estimates:

vS~2
ffiffiffiffiffiffiffiffi
DSr
p

, vI~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DI (bS(1){a)

p
,

where S(1) is the equilibrium value of S. The validity of these

estimates has to be questioned as it is well-known that noise can

significantly modify the propagation velocity [52]. Comparison

with numerical results shows that despite the stochastic nature of

the underlying metapopulation system, the wave velocities

calculated from the deterministic PDEs are in a good agreement

with computational results for the propagation speed.

Using the above estimates, we can identify the conditions under

which the wave of infected cells destroys the wave of target cells,

leading to virus-mediated extinction (regime MA), as opposed to

the scenario where the two waves travel together (boundary-

mediated extinction, region MB). If the wave of infected cells

travels faster than the wave of target cells (vS.vI ), the I-wave of

infected cells will eventually catch up with the S-wave. Once the I-

wave reaches the S-wave, the infected cells start lowering the level

of the target cells at the front. As the level of target cells lowers, the

velocity of the I-wave decreases (as follows from the formula for vI

above). Therefore, as the region of infected cells expands toward

the boundaries of the growing target cell region, the density of

target cells decreases, and the wave of infected cells gradually slows

down, until the speed of the I-wave becomes equal to the speed of

the S-wave. From the equation vS = vI we obtain a measure of the

target cell density of the expanding wave (where we set Ds = DI):

H~
rza

b
:

Note that in this formula we set Ds = DI to match our symmetric

model; the more general quantity for the nonequal rates is given

by H~ (Ds=DI )rzað Þ=b. The knowledge of H helps us estimate

the fate of the wave of target cells after the infection reaches it. Will

the virus destroy the target cells, or will the two waves continue to

propagate together until the boundary is reached? In Figure 9, the

green line corresponds to a constant value H = 1, such that to the

left of this line, virus-mediated extinction is more likely (regime

MA), and to the right of this line, we expect boundary-mediated

extinction regime (MB).

The above considerations help explain the qualitative shape of

the phase diagram for the agent-based model. While establishing

the exact match between the agent-based model and the

metapopulation model goes beyond the scope of this paper, the

above arguments demonstrate that

(1) the patterns observed hold both in agent-based and in

metapopulation models,

(2) the local equilibrium argument allows us to map out many

important features of the system’s phase space in both models

(which is especially surprising in the case of the agent-based

model),

(3) the PDE approach allows us to explain (and predict

quantitatively in the case of metapopulation modeling) the

front-propagation aspects of the dynamics.

Discussion

We used a newly designed virus, AdEGFPuci, replicating on

293 embrionic kidney epithelial cells in order to study the spatial

dynamics of virus growth in a two-dimensional setting in which a

source cell transmits the virus to target cells in the immediate

vicinity. We found that when the virus is placed into the midst of a

target cell population, the initial growth pattern can be divided

into two categories. Either the infected cells expand as a wave and

eventually form a hollow ring, or the hollow ring is not formed and

we observe cells remaining in the core of the ring which can lead

to a disperse growth pattern. An agent-based model was used to

qualitatively simulate these experiments. The model produced the

Spatial Dynamics of Oncolytic Viruses

PLoS Computational Biology | www.ploscompbiol.org 12 June 2012 | Volume 8 | Issue 6 | e1002547



same types of patterns found in the experiments and model fitting

to the experimental data has shown that our description is

consistent with observation. The data, together with the model,

gave rise to a number of insights. When a ring is formed, the initial

virus growth is quadratic and then becomes linear. In the absence

of a ring, the entire virus growth is quadratic. These growth

patterns are obviously related to and have implications for the

dynamics of viral plaque formation, which have been previously

investigated mathematically from other angles [53,54,55]. Initial

virus growth patterns are correlated with the long-term outcomes

of the dynamics. If a disperse growth structure is formed,

persistence of the target cells at high levels is the only outcome,

corresponding to definite treatment failure. On the other hand, the

long-term outcome of the dynamics when a ring structure is

formed includes extinction or low-level persistence of the target

cells. In the best case scenario (which corresponds to parameter

region A in our notations), the wave of infected cells catches up

with the spreading target cells and drives the cell population

extinct, which is the most desirable treatment outcome. Low-level

persistence occurs when the virus wave fails to overtake and

eliminate the target cell wave, resulting in a non-equilibrium

persistence situation that requires larger grids in the model. These

outcomes are likely to be relevant to tumors since the number of

cells in a tumor is significantly larger than the number of cells

present in any of our simulations. Cell persistence in this case,

however, occurs at relatively low levels and this can be thought of

as controlled persistence. Since a tumor is less likely to cause

morbidity or mortality in such a state, this outcome can be

considered as partially successful treatment.

An important theoretical finding is that the outcome of the

spatial system (extinction versus persistence) can be predicted well

from the local dynamics, characterized by the interactions among

neighboring cells. In our model, this is given by the neighborhood

of 363 spots. This result suggests that ordinary differential

equations, which describe mass action dynamics, can be a valid

approach to study the correlates of successful virus therapy even

for tumors that exhibit spatial structure. The results of such

approaches have to be correctly interpreted to include the notion

of local neighborhoods. If interpreted correctly, insights gained

from such previous modeling studies are applicable to the

treatment of spatial tumors. In addition, this result tells us that

simple in vitro experiments (where viruses and cells mix well) can

be used to compare the basic replication and spread efficiencies of

different viruses, and that this directly correlates with their ability

to fight a spatially structured tumor. Of course, the correlates of

successful treatment derived from such simple modeling studies are

qualitative in nature. That is, it is for example possible to predict

the effect of increasing a certain parameter, such as the death rate

of infected cells, on the outcome of treatment. However, predicting

whether or not virus treatment will result in the eradication/

control of tumor cells is a very difficult problem, and so far no

modeling approach exists that is suited to perform this task. Not

only do we lack sufficient biological information, the same

biological processes can be described mathematically in different

ways, adding uncertainty to these models. As a next step it will be

important to examine whether the global spatial dynamics can still

be predicted from local mass-action dynamics in models when

further complexity is introduced, including three-dimensional

spatial structures, immune responses, physical barriers to spread,

or cell populations with differential susceptibility to infection. If

our result holds, then relatively simple ordinary differential

equation models can be used to guide the exploration of other,

more complex modeling approaches, as well as the design of

experiments aimed at evaluating candidate viruses.

To put this work in the context of the existing literature, we note

that experimental research has made much progress in the

construction of viruses, in elucidating the molecular biology of

virus replication in tumor cells, and in investigating clinical trials

and correlates of success for several different types of candidate

viruses and different tumors. Yet, the complex and multi-factorial

interactions between viruses, their target cells, and other relevant

components make it difficult to predict the outcomes of such

dynamics, an area where mathematical tools can be of great help

to complement experimental analysis, interpret data, and make

experimentally testable predictions. In the recent years, there have

been several mathematical/computational studies which exam-

ined spatially explicit models in more or less complex settings,

taking into account an array of relevant factors that might affect

the in vivo virus spread through a tumor [30,34–36]. Here, we took

a step back and examined the basic spatial dynamics between a

virus and its susceptible tumor cells, ignoring more complex

factors such as the immune system, tumor vascularization, or

physical barriers to virus spread within tumors. In principle, the

simpler setting allows for more solid experimental testing and

validation of models. As it turns out, the dynamics in such a

simplified setting already exhibit very complex behavior, and it is

imperative to gain a thorough understanding of such a basic

system before venturing on towards more comprehensive scenar-

ios. This paper provides a first step to such an understanding.

Due to the complexity of the experimentally observed dynamics,

further questions remain that are subject to ongoing investigation.

The most puzzling observation was that identical experimental

conditions, using the same virus-target cell system, gave rise to

different patterns of virus growth. This indicates the existence of so

far unidentified factors that influence virus spread in this in vitro

system. It is possible that initial events, stochastic in nature, might

determine the remaining fate of the virus population. One

hypothesis is that infection of cells triggers the production of

anti-viral factors by the infected cell, which could induce an anti-

viral state in neighboring cells. An example of such a factor could

be interferons. Indeed adenovirus infection has been reported to

induce interferon beta production [56], and 293 cells respond to

interferon beta by activation of interferon-responsive genes

(System Biosciences. Interferon Response Detection Kit – User

Manual. Mountain View, CA). Cells in the anti-viral state can

have both a reduced susceptibility to infection and/or an increased

death rate through the induction of apoptosis if they do become

infected [57]. In such a setting, it is possible that a race occurs

between the spread of the virus and the anti-viral factors to

neighboring cells. The population that initially gains the upper

hand in this race could determine the emerging pattern of virus

growth. The hollow ring structure could be formed if the virus out-

runs the anti-viral factors, and the disperse growth pattern could

be observed if the virus population fails to do so. While parameter

estimates from the model fit to the data remain inconclusive, the fit

accounted for the disperse pattern through an increased death rate

of infected cells, which might suggest that apoptosis significantly

contributes to the anti-viral state. This concept could also explain

the observation that the area of infection remains limited when the

disperse growth pattern is found in the experiments. In our model,

which does not take into account such anti-viral factors, the

infection area continues to grow, albeit slowly. Interferons have

been shown to influence the development of plaques before in the

context of herpes simplex virus [58], and the dynamics have been

examined with a similar modeling approach [59]. In this study,

however, different dynamics and outcomes were observed.

The finding that different patterns can form in identical

experimental conditions also blocks our ability to turn our model
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into a truly predictive one. This would require parameters to be

measured independently in the experimental system, and to

demonstrate that these parameters yield a satisfactory fit of the

model to the data. However, the dynamics are most likely

characterized by different parameter combinations in the context

of the different observed patterns. Before we fully understand the

reasons for the various patterns, parameterization of the model

remains an impossible task. Nevertheless, the model analysis

presented here does highlight the parameters that determine the

different outcomes, which guides our search for the responsible

mechanisms. Identifying these mechanisms still requires extensive

work which goes beyond the scope of the current paper.

We conclude that the dynamics of virus spread in the simplest

spatial setting can be very complicated. We interpreted these

dynamics with a computational model, and shed light onto the

meaning of the different spatial patterns observed. We further

found theoretically that mass-action dynamics in local areas can be

indicative of the outcome of virus spread in a spatially structured

cell population. This suggests that previous insights, gained from

the analysis of ordinary differential equations, remain relevant for

the spread of viruses in a spatial setting.

Methods

Mathematical/computational approaches
Both an agent-based model and a metapopulation model were

used to examine the spatial dynamics of virus spread through a

population of growing target cells. Analytical and computational

methods are described in detail in the Text S1.

Experimental approaches
Cell culture and adenovirus infections. Human 293

embryonic kidney epithelial cells (HEK293 or Ad293 cells –

Agilent Technologies) were grown in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal bovine serum

(FBS). All cells were cultured at 37uC, 95% humidity, and 5%

CO2. HEK293-H2BmCherry cells stably express the core nuclear

histone H2B fused to monomeric red fluorescent protein mCherry

[40] and were selected for and maintained using 400 ug/mL

G418 supplemented in the culture medium. A recombinant

adenovirus type-5 (Ad5) that expresses enhanced jellyfish green

fluorescent protein (EGFP), in which the EGFP gene driven by the

immediate early promoter of human cytomegalovirus (CMV) was

substituted into the E1A and E1B regions (AdEGFPuci), was

previously described [39]. AdEGFPuci viral stocks, with titers of

109–1011 pfu/ml, were obtained. The plaque assays were done as

follows; 24 h prior to infections, 56105 Ad293 cells were seeded

onto 60 mm gridded dishes. 24 h post seeding (cells density of

,70–80% confluence) 1 ml of serially diluted AdEGFPuci stocks

(,102–101 pfu/ml dilutions) were applied directly to the cell

monolayers and incubated while rocking at 37uC, 95% humidity,

and 5% CO2 for 1–1.5 h. Subsequently, non-absorbed virus was

aspirated, and the cell monolayer was overlaid with 3 ml of 0.65%

agarose in 16DMEM/10%FBS. AdEGFPuci infected cells were

cultured under the above conditions (less rocking) for at least 20

days, and the cells were fed by overlay with 2 ml–0.65% agarose/

16DMEM/10%FBS every 3–4 days.

Quantification of AdEGFPuci plaque develop-

ment. AdEGFPuci infected cells were scanned under UV

illumination daily (1006 magnification) using an Axiovert 200 M

phase-contrast fluorescent microscope (Zeiss, Germany). Each grid

was scored for the presence of green (virus-infected) cells and

developing plaques were monitored for at least 20 days. Fluorescent

images of AdEGFPuci infection that gave rise to plaques were

recorded at 24–48 h intervals and montages of the recorded plaques

were compiled using Microsoft PowerPoint. The rate of plaque

expansion from AdEGFPuci infections was quantified by measuring

the area of GFP fluorescence observed per day using Adobe

Photoshop version 7.0. Briefly, each AdEGFPuci plaque image

recorded was analyzed in Photoshop by selecting a green color

range of moderate to low intensity to ensure the majority of the GFP

expressing cells in the plaque was encompassed. The number of

pixels displaying the selected color range of green fluorescence was

defined as the area of GFP fluorescence in each plaque assayed. We

analyzed several of the plaques at least three times to determine the

average area of GFP fluorescence in each plaque/day. The area of

GFP fluorescence from a single infected AdEGFPuci cell was

quantified similarly and used to estimate the number of green (virus-

infected) cells in the developing plaques. To calculate the number of

fluorescent cells in the plaques using Photoshop, first the area of an

individual cell fluorescing above a threshold was obtained from

analyzing four independent cells at day 7 (the first day plaque was

recorded). The mean area of fluorescence from the entire plaque

was then divided by the mean area of fluorescence from an

individual cell to derive the number of cells in the plaque. Standard

deviations were then calculated by standard methods.

Supporting Information

Text S1 Mathematical details underlying the results presented in

this paper. This file contains details about mathematical and

numerical methods that were used to analyze the computational

models.

(PDF)
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