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Abstract

Reinforcement learning (RL) provides an influential characterization of the brain’s mechanisms for learning to make
advantageous choices. An important problem, though, is how complex tasks can be represented in a way that enables
efficient learning. We consider this problem through the lens of spatial navigation, examining how two of the brain’s
location representations—hippocampal place cells and entorhinal grid cells—are adapted to serve as basis functions for
approximating value over space for RL. Although much previous work has focused on these systems’ roles in combining
upstream sensory cues to track location, revisiting these representations with a focus on how they support this downstream
decision function offers complementary insights into their characteristics. Rather than localization, the key problem in
learning is generalization between past and present situations, which may not match perfectly. Accordingly, although
neural populations collectively offer a precise representation of position, our simulations of navigational tasks verify the
suggestion that RL gains efficiency from the more diffuse tuning of individual neurons, which allows learning about rewards
to generalize over longer distances given fewer training experiences. However, work on generalization in RL suggests the
underlying representation should respect the environment’s layout. In particular, although it is often assumed that neurons
track location in Euclidean coordinates (that a place cell’s activity declines ‘‘as the crow flies’’ away from its peak), the
relevant metric for value is geodesic: the distance along a path, around any obstacles. We formalize this intuition and
present simulations showing how Euclidean, but not geodesic, representations can interfere with RL by generalizing
inappropriately across barriers. Our proposal that place and grid responses should be modulated by geodesic distances
suggests novel predictions about how obstacles should affect spatial firing fields, which provides a new viewpoint on data
concerning both spatial codes.
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Introduction

The rodent brain contains at least two representations of spatial

location. Hippocampal place cells fire when a rat passes through a

confined, roughly concentric, region of space [1], whereas the grid

cells of dorsomedial enthorhinal cortex (dMEC) discharge at the

vertices of regular triangular lattices [2]. Behaviorally, such codes

likely support decisions about spatial navigation [3–7], and more

particularly reinforcement learning (RL [8]) or learning by trial

and error where to navigate.

Here we investigate the appropriateness of the brain’s spatial

codes for learning value functions, guided by the influential use of

RL models across many varieties of decision problems in

computational neuroscience [9–11]. Although much work in these

systems tends to focus on the ‘‘upstream’’ mechanisms by which

place or grid fields are constructed from different sorts of inputs,

we focus instead on learning downstream from these representa-

tions (e.g., where place cells synapse on striatal neurons), to ask

what does this function suggest about or require from the spatial

representations. This provides a complementary perspective on

aspects of the neural responses, which, we argue, are well adapted

to support reinforcement learning.

Importantly, this exercise views the brain’s spatial codes less as a

representation for location per se, and instead as basis sets for

approximating other functions across space. In particular, most

RL models work by learning to represent a value function over state

space – a mapping of location to value. The value function

measures the proximity of locations to rewards, and in this way

can guide navigation towards reinforcement. Although a frequen-

cy-domain Fourier basis (often analogized to the grid representa-

tion [12,13]) and a space-domain impulse basis (an idealized place

map) are both complete representations for arbitrary functions

over space, efficient RL—in the sense of rapid generalization from

few experiences—depends on the features of the basis being well

matched to the function being learned [14–17]. For instance, just

as efficient visual representations are motivated by the fact that the

Fourier decompositions of natural images have most of their

power at low frequencies, so also value functions tend to change

smoothly across space: if a given location is near reward, then so

are nearby positions.
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Thus, it is intuitive (and our simulations, below, verify) that low-

frequency basis functions can speed up spatial RL by allowing

experience about rewards to generalize over larger distances.

However, we argue that considering generalization in the RL

setting suggests a crucial and underappreciated refinement of this

idea: in general, value functions are not maximally smooth over

space ‘‘as the crow flies’’ (i.e. Euclidean distance). Instead, value

functions exhibit discontinuities at obstacles, such as walls, which

help to guide navigation around them. Building on a variety of

work applying graph-theoretic distance metrics to different

problems in machine learning [14,15,17,18], much work in

reinforcement learning [14–17] suggests that the demand of

efficient generalization for navigation implies that basis func-

tions—here, place or grid fields—should modulate their strength

according to geodesic distance (i.e. the shortest navigable path

between two points, around obstacles) rather than Euclidean.

We formalize this idea in a model of grid and place cell

responses. The model and its simulations suggest novel predictions

about how grid cell and place cell firing fields should behave in the

presence of obstacles and other navigational constraints: in effect,

these should locally warp the geometry of the representation.

These predictions offer a new perspective on existing results, such

as the unidirectionality of place fields on the linear track [19–23]

and the behavior of grid cells in mazes [24].

Background and previous work
Place cells and grid cells. Pyramidal neurons in the rat

hippocampus have long been known to have firing fields in

localized areas of space [1,25,26]. While much research has

studied hippocampal neurons with small place fields [3,27–29]

(e.g., roughly the size of a rat) a range of place field scales have

been reported [30,31]. Recently, electrophysiological recordings

from a long linear track suggest that place cells in area CA3 are

multiscale, with size ranging up to approximately 10 meters at the

ventral pole of the hippocampus [30]. In addition, it has been

previously shown that changing environmental geometry can alter

the electrophysiological characteristics of place cells [32]. The

scale of the place fields was topographically organized in a manner

parallel to changes in scale of the afferent grid cell input [30].

Grid cell neurons in dorsomedial entorhinal cortex, a principal

input to the hippocampus, have firing fields whose hallmark is a

regular triangular lattice [2]. Furthermore, grid cells show a

variety of orientations, phases, and scales, with the relative size

varying topographically from small to large along the dorsomedial

to ventrolateral axis of the entorhinal cortex [2,33]. Interestingly,

the regularity of the firing field lattice can compress or expand

under changes in the recording enclosure’s aspect ratio [34], which

shows their firing fields are malleable with respect to the

environment’s configuration, similar to findings with place cells.

Models of entorhinal grid cell. The discovery of grid cells

spurred a great deal of computational modeling, mostly targeted at

understanding their inputs and outputs. Specifically, much work

considers how the characteristic triangular lattice grid cell firing

fields arise [12,35–42] and how they might, in turn, serve as an

input representation for producing the spatially localized place

fields of hippocampal neurons [12,13,43–46]. Apart from these

representational questions, the primary functional question examined

in grid cell modeling concerns how the cells might participate in a

circuit for path integration [35,37–40,47]. The present work

considers a distinct, albeit nonexclusive, role for both grid and

place cells as potential basis sets for representing value functions in

spatial reinforcement learning. In the case of the grid cells, this

draws on the work of several authors [e.g. 12,13,48] who note an

analogy between the multiscale, oscillating grid cell basis and a

sinusoidal Fourier-like basis.

Models of RL in the brain. A great deal of modeling work in

neuroscience and psychology concerns the brain’s mechanisms for

RL, founded on the observation that dopaminergic neurons in the

primate midbrain appear to carry a reward prediction error signal

as used in temporal-difference (TD) RL algorithms [9–11]. A

typical architecture [e.g., 49] presumes that cortical neurons

provide sensory or state information; striatal neurons learn to map

this representation to a value function via dopaminergically gated

plasticity at the corticostriatal synapse. In such models, the cortical

‘‘state’’ representation provides a linear basis for representing the

value function: values in striatum are estimated as weighted sums

of cortical inputs. In the context of spatial tasks [3,50,51], it is

typically assumed that the relevant striatal subregion is the nucleus

accumbens, which is involved in locomotion [see 4] and that the

state input arises from the hippocampal place code.

Here, we revisit this architecture, focusing on the role of both

the hippocampal and entorhinal spatial codes as bases for building

the value function, in order to connect neural observations to work

in RL on advantageous representations for value function

approximation [14–17]. The main questions we investigate

concern the generalization properties of spatial basis functions,

and specifically how RL performance is affected by the distance

metric (Euclidean or geodesic) over space that they embody. To

illustrate the generality of these geometric ideas, we simulate our

Euclidean and geodesic models under the standard assumption

that place cells serve as the spatial representation for downstream

value function learning, and also show that the same geometric

conclusions hold even when taking the grid cell representation,

which have quite differently behaved firing fields, as a direct basis

for value learning. The latter hypothesis is clearly more

speculative, and would depend on the existence of direct

projections from the grid cells to the site of value learning, likely

nucleus accumbens, as well as those via hippocampus. Grid cells

are most commonly reported in the superficial layers (II–III) of

dMEC, which project directly to hippocampus [52] though they

have also been reported in deep layers [53,54], where intracortical

Author Summary

The central problem of learning is generalization: how to
apply what was discovered in past experiences to future
situations, which will inevitably be the same in some
respects and different in others. Effective learning requires
generalizing appropriately: to situations which are similar
in relevant respects, though of course the trick is
determining what is relevant. In this article, we quantify
and investigate relevant generalization in the context of a
particular learning problem often studied in the laboratory:
learning to navigate in a spatial maze. In particular, we
consider whether the brain’s well-characterized systems
for representing an organism’s location in space generalize
appropriately for this task. Our simulations of learning
verify that to generalize effectively, these representations
should treat nearby locations similarly (that is, neurons
should fire similarly when an animal occupies nearby
locations)—but, more subtly, that to enable successful
learning, ‘‘nearby’’ must be defined in terms of paths
around obstacles, rather than in absolute space ‘‘as the
crow flies.’’ These considerations suggest new principles
for understanding these spatial representations and why
they appear warped and distorted in environments, such
as mazes, with barriers and obstacles.

Grid Cells, Place Cells, & Reinforcement Learning
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and subcortical projections originate. Moreover, there is anatom-

ical evidence of projections from entorhinal cortex to nucleus

accumbens [53,55–57], with some connections possibly originating

from areas near those where grid cells are found [57]. Finally,

lesions in both areas demonstrate an involvement of entorhinal

cortex, not mediated via hippocampus, on instrumental (albeit, in

this case, not spatial) learning [58]. Note that our model’s

geometric predictions about how the grid cell representation

should behave do not depend on the idea that it serves as a direct

substrate for value learning: since the grid cell representation is

thought to serve as a precursor of the place cell representation

(though see [59,60]), it would be likely to share the same geometry

(geodesic or Euclidean) with that representation in any case.

Results

Euclidean grid cell and place cell like basis functions
First, we used TD(l) learning in three simple environments

(Figure 1A) to test the ability of multiscale grid cell- and place cell-

like basis sets to learn value functions in spatial RL (see Materials

and Methods). In order to verify the importance of generalization

over long spatial scales, we compared learning with the modeled

grid and place cell bases to a standard, tabular RL basis learning

the same task. This is like a place cell basis using only a single,

fixed scale of representation that is small with respect to the task-

relevant distances. The simulated agent had to learn to navigate

from a randomly chosen starting point to a goal state that

contained a reward. To quantify performance, the number of steps

needed to reach the reward was plotted as a function of the

training trial. Although our key qualitative points are robust to

changes in the free parameters (simulations not shown), to ensure a

fair comparison we optimized the learning rate (a crucial free

parameter) separately for each condition (i.e. basis function and

gridworld) to obtain its best performance. We additionally used the

TD(l) generalization of TD with a high value (0.9) of the eligibility

trace parameter l, since this provides another mechanism for

learning to generalize along trajectories and might, in principle,

help to compensate for the shortcomings of the tabular or

Euclidean bases.

As Figure 1B shows, the grid and place cell basis sets drastically

quicken learning the value function compared to the tabular code,

demonstrating the benefits of spatial generalization. Figure 2

illustrates the approximated value functions at different stages of

learning and qualitatively shows the importance of generalization.

In particular, the tabular basis does not take advantage of the

spatial structure to generalize quickly and must learn each state’s

value separately from its neighbors by a slow process of TD

chaining.

Figure 2 also hints at a subtler problem of overgeneralization in

Euclidean space. In particular, these grid and place cell basis

Figure 1. Euclidean spatial generalization benefits learning in simple navigation tasks. (A) Each column displays the gridworld
configuration whereby individual squares are discrete states, thick black lines are walls, and the star indicates the goal state with reward of 1. (B) Each
column shows performance measured as the mean number of steps to goal over 10,000 runs for the environment in the corresponding column in A.
The width of each line occupies at least the 95% confidence intervals on the means (range 3.9–4.4 steps). Within a given gridworld the different
colored lines represent different basis sets with black for tabular, blue for grid cells, and red for place cells.
doi:10.1371/journal.pcbi.1002235.g001

Grid Cells, Place Cells, & Reinforcement Learning
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functions tend to smear the value function across barriers, where it

should change sharply (arrows in Figures 2B and 2C, where the

effects are most apparent). Because of this, value is underrepre-

sented at states inside the walls (i.e. locations closer to the reward,

as in 2B) and overrepresented on the other side of the barrier (most

visible in 2C). This distortion remains at asymptote and is likely

not an artifact of insufficient experience.

While this flaw does not notably degrade performance in these

simple tasks, it can be detrimental when fine navigational precision

is required. To demonstrate this, we tested the models in three

environments that required the agent to navigate narrow halls or

openings, and thus learn precise state value representations

(Figure 3A). Here, the grid cell and place cell basis functions

performed poorly, and were outperformed by the tabular basis

(Figure 3B). Together, then, these simulations demonstrate that

generalization due to spatial representations like those seen in the

brain can help make reinforcement learning more efficient, but

also that such generalization has drastic (and, presumably,

behaviorally unrealistic) side effects, abolishing learning in tasks

where paths are narrow.

Geodesic grid cell and place cell like basis functions
In general, as can be seen directly in the recursive definition of

the value function, (Equation 1 in Materials and Methods), the

extent to which values are related between two states depends on

how closely they are connected by the state-state transition

probability function. Accordingly, work on value function

approximation for reinforcement learning has proposed [14–17]

that basis functions should be constructed to respect distance along

the state transition graph. For instance, in temporal prediction

tasks, value functions are smooth in time [61]. In a spatial task, the

transition dynamics imply that states have similar values when

they are near each other, but near as measured in geodesic (along-

path) distance, rather than ‘‘as the crow flies’’ (Euclidean distance).

Formally, geodesic distance measures the number of steps along

the transition graph needed to get from one state to another. A

basis over geodesic distances would treat states separated by a

boundary as comparatively far apart, enabling their values to be

discontinuous, whereas the Euclidean basis used above (and

ubiquitously to characterize the spatial extent of place and grid

fields) would inappropriately treat them as adjacent.

Figure 2. Qualitative comparison of learned value functions using tabular, Euclidean grid cell, and Euclidean place cell bases. In
each figure A–C, the column titles indicate the representation used to learn the value functions for a given gridworld configuration, and each row
corresponds to an environment. White lines are walls, discrete squares indicate states, and the gray scale from dark to light indicates low to high
value, respectively. To ease comparison between spatial representations within a given gridworld, the image brightness was normalized with respect
to the optimal value function. (A) Snapshot of value representation after 15 learning trials. (B) Snapshot of value representation after 25 learning trials.
(C) Snapshot of value representation after 50 learning trials. Notice that for both grid cells and place cells, the value representation bleeds across
walls, indicated by red arrows where the estimated value is too low (relative to ground truth) on the side of a wall nearer a reward or too high on the
far side.
doi:10.1371/journal.pcbi.1002235.g002
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These considerations suggest that for efficacious representation

of value functions over state space, the brain should adopt basis

functions that are smooth along geodesic rather than Euclidean

distances. In the open field there should be no difference between

geodesic and Euclidean representations, since these metrics

coincide there. However, if an environment has barriers, then

Euclidean and geodesic firing fields will differ. The effect of such a

difference should be to introduce geometric distortion into

geodesic firing fields nearby obstacles, where geodesic and

Euclidean metrics differ. Such a distortion can be characterized

(and indeed implemented) by mapping the original Euclidean

vector coordinates through an additional transform that accounts

for geodesic distance. However, in the present work our goal is to

investigate the brain’s spatial representations through the lens of

their downstream computations; thus, in contrast to much work on

the hippocampal system [12,35,36,40,43,44,47,48,62,63] we do

not focus on the ‘‘upstream’’ computations by which the grid or

place representations (or their hypothesized distortions) are

themselves computed from inputs. That is, we take geodesic or

Euclidean representations as a given and focus our analysis on

hypothesized learning that relies on entorhinal and hippocampal

outputs.

In particular, we modeled how basis functions would appear in

environments with barriers, if they followed a geodesic metric, by

evaluating Euclidean grid or place fields (characterized by spatial

grids or Gaussians) over a new set of x–y coordinates, chosen such

that their pairwise Euclidean distances approximated the states’

geodesic distances (see Materials and Methods). When viewed in

the original Euclidean space, the effect of barriers is to produce

geometric distortions, such as variations in grid orientation and

firing field shapes (Figure 4). As one might expect, the basis

functions tend not to cross walls and instead skirt along connected

paths.

We tested the geodesic bases in the environments that stressed

importance of along-path generalization (Figure 3A). As can be

seen, the geodesic bases alleviated the poor learning caused by the

indiscriminate generalization of their Euclidean counterparts

(Figure 3B). Since the geodesic grid cells and place cells generalize

using the state transition graph, they learn at least as fast as the

tabular TD control (Figure 3B). Figure 5A–C depicts typical value

functions at different stages of training using the geodesic basis

functions (25 trials for Figure 5A–B, 50 trials for Figure 5C). Also

note that both the Euclidean and geodesic bases used the same

multiple granularities and tiling, with the sole difference the

distance metric used. To test the role of multiple tilings in learning,

we performed follow-up simulations for each of the six gridworlds

using three different tiles bases. While the tile bases often learned

faster than the tabular basis (which one would expect), overall the

Figure 3. Geodesic representation required for learning when value function has sharp discontinuities in Euclidean space. (A) Each
column displays the gridworld configuration whereby individual squares are discrete states, thick black lines are walls, and the star indicates the goal
state with reward of 1. (B) Each column shows performance measured as the mean number of steps to goal, over 10,000 runs for the environment in
the corresponding column in A. The width of each line occupies at least the 95% confidence interval on the means (range 3.2–4.5 steps). Notice that
the collapse of learning, present in the Euclidean grid cells (labeled euc) and place cells (blue and red), is recovered by their geodesic counterparts
(labeled geo, yellow and green, respectively).
doi:10.1371/journal.pcbi.1002235.g003
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geodesic bases tended to perform best (data not shown). Together,

these simulations demonstrate the representation benefits con-

ferred by geodesic generalization, in particular how generalization

along paths rather than across walls solves the problem of

overgeneralization interfering with learning in the presence of

obstacles. That the same qualitative results hold up using both

grid-cell-like and place-cell-like representations points to their

generality. In simulations not shown here, we also produced

similar results using an overlapping tile code at a variety of single

scales [8], suggesting that the results relate to spatial generalization

per se and not to the multiscale nature of the (biologically inspired)

bases used here.

Modeling previous grid cell and place cell data
The foregoing simulations suggest that to support efficient

navigation, the brain’s spatial representations should generalize

according to a geodesic rather than a Euclidean metric. Of course,

these two representations coincide in the open field, where most

studies have been conducted. However, we believe our model’s

predictions are consistent with a number of studies where

researchers recorded neurophysiological activity while rats foraged

in environments containing barriers. Here we compare our model

to examples from three studies [24,64,65].

Skaggs & McNaughton [64] recorded place cells as rats moved

between two separate enclosures that were connected by a narrow

corridor (schematized in Figure 6, top; cf. Figure 4 in [64]).

Although this was not the major experimental question of the

study, the narrow corridor provides a good test for our model’s

prediction that place fields should track along paths rather than (as

a Euclidean place field predicts) across barriers. In the examples

reproduced here, for instance, place cell spikes are almost

exclusively confined to either the connecting corridor’s entrance

(Figure 6A, left) or the pathway between the two rooms (Figure 6A,

right). The spikes do not generalize across the walls separating

parts of the environment, but instead appear to track along paths

around them (Figure 6), even though a standard isotropic

Gaussian place field over Euclidean coordinates would clearly

not respect these barriers. The data are, however, similar to place

field responses from the geodesic model in a similar environment

(Figure 6, bottom).

In another study [65], a place field was first recorded in an open

box and again after adding a barrier to the enclosure (Figure 7A;

cf. to Figure 8 in [65]). Recorded hippocampal place cell responses

in the open field vanished immediately when the firing field was

bisected by a wall [65], Figure 6A. The geodesic model of neural

spatial representation provides an elegant, intuitive account for

why the place field disappears, whose graphical intuition is

displayed in Figures 7A–B. In an environment without walls, one

can think of the recorded place cell activity being measured over

evenly spaced locations in 2D enclosure (Figure 7A, left). Once a

barrier is introduced that bisects the field, the nearby locations on

adjacent sides of the wall are pulled apart, which changes the

spacing between neighboring points compared to its Euclidean

counterpart. Locations on either side of the wall are far, in

geodesic terms, from each other, and from the center of a place

field centered in the wall itself. As a result, a sinkhole is created

that swallows the place field in the geodesic coordinate space, thus

muting its activity (Figure 7A–B).

Similar results were also seen in a recent study of how place cell

firing fields changed when mazes were reconfigured [66]. In

particular, this work replicated the phenomenon of place fields

diminishing or disappearing near newly introduced obstacles, and

verified (as in our simulations) that such changes predominate near

newly introduced obstacles. The study also demonstrates a rarer,

complementary phenomenon whereby the introduction of obsta-

cles caused firing to increase or even new place fields to appear, as

verified in our simulations. In our model (Figure 8), increased

firing is the flip side of responses diminishing for neurons coding

‘‘holes’’ in geodesic space; it occurs when geometric distortion

‘‘pushes’’ locations into areas previously off the map.

Finally, Derdikman et al. [24] recorded from grid cells as a

rat ran along a hairpin maze. Figures 1 and 2 from [24] show

typical grid cell firing fields in an open field and again in a

hairpin maze. The standard hexagonal pattern of responding is

Figure 4. Example geodesic transformations of grid cells and place cells. (A) Geodesic coordinates for different environments. (B) Single
grid-cell using respective geodesic coordinates. Each grid cell generated using the same spacing, orientation, and relative spatial phase. (C) Single
place-cell using respective geodesic coordinates. Each place cell generated using the same mean and variance.
doi:10.1371/journal.pcbi.1002235.g004

Grid Cells, Place Cells, & Reinforcement Learning
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extremely distorted; instead, responses tend to track along the

hallways but not to cross walls, and firing fields are similar

between alternate arms. Grid cells simulated in the geodesic

space share a number of these characteristics (Figure 9), though

not (as discussed below) all of them. One limitation of the model

is that it does not capture the repetitive place field firing

observed by Derdikman et al. [24].

Discussion

Although researchers widely assume that reinforcement learning

methods such as temporal difference learning subserve learned

action selection in the brain [9–11], it is less clear how tasks

involving many structured states can be represented in a way that

enables these methods to learn efficiently, due in large part to the

curse of dimensionality. In computer science, stylized spatial

navigation (gridworld) problems are the classic domain for

studying this issue, since the state space is large but transparently

visualized and manipulated [8]. Here we consider rodents’ neural

representations of spatial location from this perspective, treating

them as basis functions for downstream reinforcement learning in

high-dimensional state spaces and asking how well adapted they

are to this role. Though previous modeling work has not

extensively considered the constraints on the brain’s location

codes implied by this function, much work has more or less

implicitly exploited the idea that unlike the tabular basis often

assumed in simple RL, the spatial extent of place fields can help to

cope with the curse of dimensionality by allowing learning to

generalize between nearby locations [3,50,51] even over multiple

scales [30].

The present study extends this idea to consider such

generalization in light of work on efficient representation in

machine learning [14–17]. These theoretical considerations,

illustrated and verified by our simple simulation results, suggest

that to enable efficient representation of value (or other) functions

over space, grid and place fields should operate in a distorted

geometry: generalizing according to geodesic (on-path) rather than

Euclidean (as-the-crow-flies) distances. Although these two dis-

tance metrics coincide in the open field, they differ in the presence

of boundaries. The geodesic metric predicts that grid and place

fields should not spill across walls but should instead track along

paths, and should also exhibit geometric distortions, such as

Figure 5. Qualitative comparison of learned value functions using tabular, geodesic grid cell, and geodesic place cell bases. In each
figure A–C, the column titles indicate the representation used to learn the value functions for a given gridworld configuration (denoted by row).
White lines are walls, discrete squares indicate states, and the gray scale from dark to light indicates low to high value, respectively. To ease
comparison between spatial representations within a given gridworld, the image brightness was normalized with respect to the optimal value
function. (A) Snapshot of value representation after 25 learning trials. (B) Snapshot of value representation after 25 learning trials. (C) Snapshot of
value representation after 50 learning trials. In contrast to Euclidean bases, the geodesic representation does not smear value across walls but instead
tracks around them.
doi:10.1371/journal.pcbi.1002235.g005

Grid Cells, Place Cells, & Reinforcement Learning
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altered grid orientation, near boundaries. We have reviewed data

from a number of experiments that seem largely in accord with

these predictions. It should be noted that these predictions are all

at the neural level, and could be most directly tested quantitatively

by simply examining whether neural firing is modulated more

reliably with distances measured by either metric: e.g., regressing

distance (computed according to either definition) from a place

field’s center on firing rate.

By contrast, since our argument is primarily one about learning

efficiency (which is difficult to quantify behaviorally, since it is

affected by many factors), our model does not make categorical

behavioral predictions. Our simulations (Figure 3) demonstrate

that simple TD models with Gaussian place fields (like that of [3])

can entirely fail to solve simple navigation problems involving

narrow apertures or hallways. However, the fact that rats do not

exhibit such problems of course does not by itself demonstrate that

the brain adopts the same solution for this problem as the one we

propose. Also, to focus on our main questions of interest, we omit

many features that other models use to explain various behavioral

phenomena of navigation, among them mechanisms for allo-

centric route-planning (important for quick goal learning [3] and

for planning shortcuts [67]) and localization driven by combina-

tions of cues and path integration [4,68], both issues we discuss

further below.

The concept of geodesic generalization provides a formal

perspective on spatial representation which is different from, but

complementary to, much other work in this area. Whereas much

experimental and theoretical work on the hippocampal formation

concerns essentially sensory-side questions—how place or grid

cells combine different sorts of inputs to produce their instanta-

neous representations, or to learn them over time—we attempt to

isolate the downstream question of how the resulting representa-

tions serve downstream learning functions. To this end, we do not

address the input-side question of how the hypothesized distorted

spatial representations are themselves produced from more

elementary inputs. We only assume, abstractly, that the basis

functions are computed on the fly from a learned map of the

barriers in the environment. In sparse environments such maps

could easily be learned from observation in a single trial, and may

implicate the ‘‘border cells’’ of entorhinal cortex [69]. All this

leaves open the opportunity, in future work, for studying how the

input- and output-side perspectives relate: whether the mecha-

nisms studied by previous authors might be made to produce or

approximate representations of the sort we envision. For instance,

in the geodesic view, place fields tend to be unidirectional on the

linear track [70,71] because the states of passing through them

facing either direction are far apart in the state transition graph of

a shuttling task. In input terms this more abstract relationship

Figure 6. Example of geodesic place cell model qualitatively capturing recorded place cell data. (A) Data adapted and replotted from
[64]. Light blue shows presence of rat, red & yellow indicate action potentials of a two hippocampal place cells, and dark blue are areas rat did not
visit. (B) Simulated geodesic place cell firing fields roughly resemble data in A (left and middle). The black to white color scale represents low to high
firing rates.
doi:10.1371/journal.pcbi.1002235.g006
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between states may be reflected in these situations being visually

distinct [70,71] or anchored to a different prior reference point

[72].

More generally, unlike idealized RL models [3,51], theories of

how place cells arise from sensory inputs (e.g. via competitive

learning [70,71], or self-organizing maps [73]) do not necessarily

imply the isotropic Gaussian firing fields we criticize, and thus may

also offer (more mechanistic) explanations for phenomena such as

place fields not crossing walls. It remains to be seen to what extent

such local learning rules can be massaged to produce maps that

accord with the globally geodesic ideal. However, such unsuper-

vised learning models tend to envision that representations are

acquired incrementally over time, which stands in contrast to our

assumption (supported by data such as place field changes

occurring immediately when barriers are added [65]) that the

geodesic basis is computed on the fly with respect to the current

barrier locations. A different mechanism that could be useful in

producing geodesic firing fields is the ‘‘arc length’’ cell posited by

Hasselmo [63,74], a circuit for computing along-path distance

using oscillatory interference mechanisms related to those thought

to be involved in grid formation. This mechanism has already

been used to explain several examples of context-dependent firing

of hippocampal neurons similar in spirit to the phenomena we

consider here.

The behavior of the entorhinal representation also raises

interesting questions about the relationship between input- and

output-side considerations. To start, it is often assumed that the

place code is built up by linear combinations of grid cell inputs,

e.g. by a sort of inverse Fourier transform [13]. In such a model, it

can be shown (and simulations, not shown, verify) that place cells

will inherit the geometry of their grid cell inputs. For this reason,

we suggest that grid cells are likely to use a geodesic metric even if

they do not directly serve as a basis for value function learning (but

only indirectly, as a basis for geodesic place cells). However, this

exposes some tension between the output-side imperative of

generalization for RL, which we have argued calls for geodesic

distortions, and the input-side implication of the system in path

integration (i.e. tracking vector coordinates in a path-independent

manner) [35,37–40,47,75], which is an inherently Euclidean

operation.

In this respect, the recent results of Derdikman et al. [24]

showing distorted and fractionated grid fields in a hairpin maze

seem difficult to reconcile with a global Euclidean path integrator

(since the hairpin barriers do not change the Euclidean

coordinates), and at least qualitatively more in line with the

geodesic view. One possible path toward reconciling these

considerations is to consider a sort of hierarchical representation

that treats the environment as a collection of rooms (in the hairpin

Figure 7. Geodesic spatial representation models can also account for the disappearance of place fields when a wall bisects the
firing field. Muller & Kubie [65] observed that place fields disappeared when bisected with a wall. (A) Graphical intuition of the effect adding a wall
has on the coordinates and hence the place cell firing properties. In the left panel are 20 by 20 evenly sampled points in an open square environment.
Shown in the right panel are the geodesic transformed coordinates for a 20 by 20 state environment when a single vertical barrier bisects the middle
section of the gridworld. Underlying each of the coordinates is a model place cell’s firing field in Euclidean space (low to high firing represented by
dark to light grayscale). (B) Left panel shows an open field place field, while right panel shows a geodesic place field for coordinate shown in A. Both
simulated firing fields used the geodesic place cell model. Compare to Figures 8 and 9 in [65].
doi:10.1371/journal.pcbi.1002235.g007
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maze, hallways) whose interrelationships are represented as by a

geodesic graph, but with (disjoint) Euclidean representations

maintained within each of them. This has resonance with multi-

level navigation models from animal behavior (e.g. [68]), with

multiple map views of hippocampus [72], and, also, mechanisti-

cally, with some of the more detailed aspects of the Derdikman

[24] data that are not captured by our model. Most importantly,

the Derdikman data suggest that the grid phase resets and

‘‘anchors’’ at left or right turns, producing similar patterns in

alternating arms and suggesting a possible mechanism for

separating adjacent hallways’ representations. Such heuristics for

grid resetting and anchoring (and also stretching) [24,34] may be

able to produce a ‘‘good enough’’ approximation to the geodesic

metric, at least in some environments, and have been examined in

much more detail in more biologically detailed modeling of the

task [38]. One sign of approximations is where they break down.

In this respect, it is interesting that the rather extreme case of the

hairpin maze results in badly fractionated downstream place fields

Figure 8. Example of geodesic place cell model qualitatively capturing recorded place cell data. (A) Two example environments used in
[66]. Maze on the left was used for training & exploration and maze on the right was used for testing whether the rat learned to take the shortcut
route. (B) Geodesic embedding of mazes shown in A. Underlying each of the coordinates is a place field. (C) Example place field computed using
coordinates shown in B; the place field center and half-width was the same in each condition. The geometric distortion in the coordinates introduced
the wall can lead to increased activity in the geodesic place cell model.
doi:10.1371/journal.pcbi.1002235.g008
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as well [24], a phenomenon not predicted by the exact geodesic

model. Finally, unlike our full model, a resetting mechanism would

not in itself seem to explain phenomena related to barriers within a

room, such as those we illustrate in Figure 7. A fuller

understanding of these sorts of mechanisms demands additional

research, both experimental and theoretical.

Our simulations also demonstrate that the grid representation

itself is a suitable basis for value function learning, even without an

intermediate place cell representation. On one level, these results

serve to underline the generality of our points about geometry and

generalization, using a rather different basis. More speculatively,

they point to the possibility that the grid representation might

actually serve such a role in the brain, echoing other work on the

usefulness of this Fourier-like basis for representing arbitrary

functions [12], particularly (as also for standard uses of Fourier

representations in engineering for compressing images and sounds)

smooth ones. However, although a few studies have demonstrated

anatomical connections from the entorhinal cortex to striatum

[55–57,76], grid-like responses are less often reported in the deep

layers that give rise to these subcortical projections (though see

[53,54]).

Finally, although for simplicity and concreteness we have

focused on the principles of value function generalization in the

context of a particular task (spatial navigation) and algorithm

(TD(l) learning), many of the same considerations apply more

generally. First, across domains, in computational neuroscience,

the need for (temporally) smooth basis functions been suggested to

improve generalization also in learning about events separated in

time rather than space [61], though there is no obvious

counterpart to the geodesic distance metric in this setting.

Second, across algorithms, TD-like learning mechanisms also

likely interact with additional ones in the brain, and the core

considerations we elucidate about efficient generalization due to

appropriate state space representations crosscut these distinctions.

For instance, value functions may also be updated using replay of

previously experienced trajectories (e.g., during sleep) [28,51]. In

models, this is typically envisioned to operate by the same TD

learning rule operating again over the replayed experience

[51,77], and thus should imply parallel considerations of efficiency

with respect to the number of replayed experiences required for

convergence depending on the generalization characteristics of the

basis. More distinct from these models, since the work of Tolman

[67] it has been believed that spatial navigation may in part be

accomplished by map-based route-planning processes that in RL

terms correspond to model-based algorithms [78–82] rather than

model-free algorithms like TD learning. These algorithms plan

routes from a learned representation of the state transition matrix

and rewards, typically using variants of the value iteration

algorithm to compute state or action values. The core of this

process is the iterative evaluation of Bellman’s equation (Equation

1 in Materials and Methods), the same equation sampled with

each learning step of TD. Thus, there is reason to think that

efficient value iteration (here defined as fast convergence of the

value function over iterations) will analogously occur when the

update is over state representations that provide better general-

ization over states at each step. In all, then, although we exemplify

them in a highly simplified model, the principles of state

representation for efficient reinforcement learning are quite

general.

Another issue arises when considering the present model in light

of model-based RL. One of the hallmarks of model-based

planning (and the behavioral phenomena that Tolman [67] used

to argue for it, albeit not subsequently reliably demonstrated in the

spatial domain), is the ability to plan novel routes without

relearning, e.g. to make appropriate choices immediately when

favored routes are blocked or new shortcuts are opened.

Interestingly, rather than by explicit replanning, some such

behaviors could instead be produced more implicitly by updating

the basis functions to reflect the new maze, while maintaining the

weights connecting them to value. This is easy to demonstrate in

the successor representation [16], a model closely related to ours.

To behave similarly, the present model would require additional

constraints to ensure the basis functions corresponding to different

mazes are interchangeable, but this would be one route toward

explaining shortcut phenomena in this framework. More gener-

ally, because the present proposal uses a state transition model,

implicitly, to generate a basis function that is then used with

model-free learning [see also 16,83,84], it resembles something of

a cooperative hybrid of model-free and model-based techniques

somewhat different from the competitive approaches suggested

elsewhere [78].

Materials and Methods

Value functions and spatial reinforcement learning
We simulate value function learning in a gridworld spatial

navigation task in order to compare linear function approximation

over several different spatial basis sets [8]. Our model learns to

estimate the value function over states (i.e., positions in the grid),

defined in the standard way as the expected future discounted

reward:

V (s)~r(s)zc
X

s0
P(s0js)V (s0) ð1Þ

To simplify notation, we omit the dependence of these

quantities on the action policy throughout. The model learns

approximations to these values by learning a set of N linear

weights w1…N for N spatial basis functions w1…N(s) defined over the

Figure 9. Example of geodesic grid cell model qualitatively
capturing recorded grid cell data. Derdikman et al. [24] recorded
while a rat explored a hairpin maze and observed fractionated grid cell
firing fields that were phase locked to alternating arms of the maze.
Shown is an example geodesic grid cell firing field for a similar hairpin
maze that resembles that used in [24]. The black to white color scale
represents low to high firing rates.
doi:10.1371/journal.pcbi.1002235.g009
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entire state space. The estimated value is thus:

V̂V (s)&
XN

i~1

wiwi(s) ð2Þ

We use a simple temporal-difference algorithm with eligibility

traces [8,85] to learn weights. Specifically, at each run upon

visiting state s receiving reward r(s) and transitioning into state s9,

for each basis wi, weights wi are updated at each time step using the

following algorithm:

d~r(s)zcV̂V (s0){V̂V (s)

e/clezwi(s)

wi/wizade

ð3Þ

This is just the version of the familiar TD(l) rule for linear value

function approximation, with free parameters a (learning rate), l
(trace decay rate), and c (discount factor).

Gridworld simulations
We tested the model in 20-by-20 (M = 400 states) gridworlds in

which the agent could move in any of the four cardinal directions,

unless a wall blocked such a movement. Agents were started at a

random location (i.e. state) at each trial, and had to reach the goal

state, which was the only state with a reward, r(s) = 1. Individual

trials ended when the agent reached the goal state, which was

absorbing, or the maximum number of actions allowed, which was

500.

For simplicity, as described above the agent learns the value

function over states and uses this to guide actions toward the goal,

rather than directly learning the full Q-function over states and

actions. This is because, in a spatial gridworld task, the state-

action-state transition model is transparent, so we assume the

agent evaluates the value Q̂Q(s,a) of each action in a state as the

value V̂V (s0) of the appropriate neighboring state [86]. Since the

computation of Q involves a single step of what amounts to model-

based lookahead, the approach is not as purely model-free as

standard Q-learning or actor-critic algorithms. As with eligibility

traces, we include this elaboration because it slightly improves

generalization between states and actions, and might thus reduce

the need for the sorts of basis-function-based generalization

mechanisms we argue for.

The agent chooses actions according to a softmax policy, i.e.

P(ajs)~ebQ̂Q(s,a)
.P

j ebQ̂Q(s,aj ), where actions unavailable (due to

walls) are not considered and b is the inverse temperature that

balances the amount of exploration and exploitation in action

selection. For these simulations, the inverse temperature was fixed

to b = 80 (a factor calibrated to provide a reasonable explore/

exploit balance in choice probabilities given the scale of the action

values learned). To maintain such balance, because each grid-

world had a different distance between the goal state and other

states, for each environment the discount factor was scaled to

c = 0.9d/c so that each gridworld had the same value range. Here, d

is the shortest maximum distance from any state to the goal, across

all gridworlds tested, and c is the maximum interstate distance for

a given gridworld (range 26 to 105 states). In order to compare

fairly the different basis functions, the learning rate a was chosen

for each condition and each basis set to minimize the mean

number of steps to termination over a fixed number of trials, using

a grid search in the range [0,1]. All simulations and analyses were

performed using Matlab (Natick, MA).

Basis functions
We compare the model’s learning using several different linear

basis sets. Each basis is an M (states)6N (basis functions) matrix,

with each column wi defining a function over the states. Bases were

constructed as below, and lastly each row of the matrix was

normalized by its L2 norm. This ensures that the learning rate

parameter a in the update rule (Equation 3) has a consistent

interpretation (as a fractional stepsize) between different states and

basis sets.

Tabular. The tabular basis is the M-by-M identity matrix,

with one function corresponding uniquely to each state. It is easy

to verify that using the identity basis that the value prediction and

update equations (Equations 2 and 3, respectively) reduce to

standard TD(l) learning. In other words, the tabular basis is 1 at

the current state and zero for all other states, thus the learned

weights correspond directly to the values learned through standard

TD(l).

Place cell. We used isotropic 2D Gaussian basis functions at

different standard deviations to model a multiscale place cell basis.

Such a representation ignores the possibility that individual basis

functions have multiple fields [e.g. 87], a condition we explore

using a grid cell-like basis. Each Gaussian was evaluated over all

x–y locations in the grid, where a given pair of coordinates

corresponded to a single, unique state. Standard deviations were

chosen to be 0.25, 0.15, 0.1, and 0.075 (expressed as fractions of

the environment width, i.e. 20 states), such that the scales of the

place cell firing fields roughly equaled the scales of individual

nodes in the grid cell basis (see below). The center locations were

evenly tiled in the gridworld’s x–y coordinates, with the smaller

functions distributed more densely (with 25, 49, 100, and 225

functions going from large to small scale) to produce a regular

tiling of the state space. We also included a constant function, for a

total of 400 bases.

Grid cell. We used the sum of three 2D spatial cosine waves

to model a hexagonal grid cell-like basis, akin to previous models

of grid cell responses [12,13]. Following the approach of Blair

et al. [12] a given basis function was represented as:

wi(s)~
X3

j~1

cos(s:f i,j{pi,j)zci ð4Þ

Here, the state s is expressed as a 2-vector of x–y coordinates on

the gridworld; and a particular basis function wi is defined by its

phases pi,j, orientation hi, and spacing li. Together, the grid

orientation and spacing determine the vectors fi,j onto which the

planar cosine wave is projected. In particular, to produce a given

grid orientation, hi, the directions of the three vectors fi,j are taken

as hi+p/2, hi2p/6, and hi+p/6. The vectors f i~ f i,j

�� �� determine

the periodicity of a given grid cell according to fi = 4p/(li3
0.5)

[12,36,39], where li controls the space between simulated firing

fields. For the waves to interfere constructively and produce a grid

pattern, the three phases relate as pi,1+pi,2 = pi,3.

We produced a basis set of 400 grid cell-like functions, using all

combinations of four orientations hi (0, p/12, p/6, and p/4), four

node spacings li (4/(3n) environment widths for integers n = 1–4),

and 25 different spatial phases evenly sampling the 2D space of

phases pi,1 and pi,2 each between 0 and 2p. We also included a

constant function, for a total of 401 bases. Finally, we ensured that

the basis functions were non-negative (directly representable with
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firing rates) by adding an appropriate constant ci~ minswi(s)j j.
For all basis sets used (tabular, place cell, and grid cells), the

weights for each basis function were learned independently.
Geodesic transformation. To modify basis sets to respect

the wall layout of a particular grid task, the Euclidean x–y

coordinates for each state were transformed such that their

pairwise distances approximately reflected geodesic distances (i.e.

distances along paths that respect boundaries) in the gridworld.

The basis functions were then evaluated at these transformed

coordinates. Specifically, coordinates were transformed in a

manner analogous to the ISOMAP algorithm [54]. Floyd’s

Algorithm [88] was used to generate an M-by-M dissimilarity

matrix, containing for each pair of states, the shortest-path

distance (measured as the number of states) between them along

the state adjacency graph. For the gridworlds shown in Figure 8,

there are disconnected components on the state graph, which

implies infinite geodesic distances between components and causes

the next step of multidimensional scaling to be inestimable. To

maintain the environment’s integrity, we capped these infinite

pairwise distances at their corresponding Euclidean distances.

Next, we estimated a set of Euclidean coordinates (i.e., an x–y

pair for each of the M states) whose Euclidean inter-state distances

approximated the geodesic distance matrix. This was accom-

plished by applying non-classical multidimensional scaling (Ma-

tlab, mdscale) to the dissimilarity matrix, using Sammon’s

nonlinear stress criterion [89] as the objective function. Insofar

as these new coordinates differ from the original geodesic

coordinates for a state, they reflect the distorted geodesic

geometry. Using this transformed set of x–y coordinates, we then

reevaluated the grid cell-like and place cell-like basis sets using the

same sets of parameters (phase, spacing, and orientation) as in the

Euclidean cases. Note that we specify field size as a fraction of

environment width, and this remapping may stretch the

environment. In this case, we scaled bases as fractions of the

maximum of environment width or height, thus producing a basis

scaled appropriately for the transformed environment.

We computed this transformation once for each environment,

producing a static basis set over which to perform reinforcement

learning. Realistically, the animal would have to learn the state

transition function (i.e., the location of barriers) in order to

compute the basis, and the firing fields would be expected to

change as this state transition model was learned. However, since

in our environments obstacles are sparse and observable from a

distance, the true transition matrix (and the basis implied) should

be entirely learned during the first trial in any of our

environments.

Ground truth. Ground-truth value functions were computed

for the optimal policy using dynamic programming over a tabular

basis.
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