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Abstract

Signal output from receptor–G-protein–effector modules is a dynamic function of the nucleotide exchange activity of the
receptor, the GTPase-accelerating activity of GTPase-activating proteins (GAPs), and their interactions. GAPs may inhibit
steady-state signaling but may also accelerate deactivation upon removal of stimulus without significantly inhibiting output
when the receptor is active. Further, some effectors (e.g., phospholipase C-b) are themselves GAPs, and it is unclear how
such effectors can be stimulated by G proteins at the same time as they accelerate G protein deactivation. The multiple
combinations of protein–protein associations and interacting regulatory effects that allow such complex behaviors in this
system do not permit the usual simplifying assumptions of traditional enzyme kinetics and are uniquely subject to systems-
level analysis. We developed a kinetic model for G protein signaling that permits analysis of both interactive and
independent G protein binding and regulation by receptor and GAP. We evaluated parameters of the model (all forward
and reverse rate constants) by global least-squares fitting to a diverse set of steady-state GTPase measurements in an m1
muscarinic receptor–Gq–phospholipase C-b1 module in which GTPase activities were varied by ,104-fold. We provide
multiple tests to validate the fitted parameter set, which is consistent with results from the few previous pre-steady-state
kinetic measurements. Results indicate that (1) GAP potentiates the GDP/GTP exchange activity of the receptor, an activity
never before reported; (2) exchange activity of the receptor is biased toward replacement of GDP by GTP; (3) receptor and
GAP bind G protein with negative cooperativity when G protein is bound to either GTP or GDP, promoting rapid GAP
binding and dissociation; (4) GAP indirectly stabilizes the continuous binding of receptor to G protein during steady-state
GTPase hydrolysis, thus further enhancing receptor activity; and (5) receptor accelerates GDP/GTP exchange primarily by
opening an otherwise closed nucleotide binding site on the G protein but has minimal effect on affinity (Kassoc = kassoc/
kdissoc) of G protein for nucleotide. Model-based simulation explains how GAP activity can accelerate deactivation .10-fold
upon removal of agonist but still allow high signal output while the receptor is active. Analysis of GTPase flux through
distinct reaction pathways and consequent accumulation of specific GTPase cycle intermediates indicate that, in the
presence of a GAP, the receptor remains bound to G protein throughout the GTPase cycle and that GAP binds primarily
during the GTP-bound phase. The analysis explains these behaviors and relates them to the specific regulatory phenomena
described above. The work also demonstrates the applicability of appropriately data-constrained system-level analysis to
signaling networks of this scale.
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Introduction

G protein-mediated signaling modules display a variety of

dynamic input-output behaviors despite their use of a single,

relatively simple biochemical mechanism. Signal amplification, the

ratio of effector proteins activated to agonist-bound receptors, can

vary from unity to hundreds. Activating ligands may bind

receptors with affinities ranging from picomolar through millimo-

lar. GAPs, which can accelerate hydrolysis of bound GTP over

2000-fold, can accelerate both activation and deactivation in cells

with variable inhibitory effect [1]. Activation and deactivation

rates upon addition and removal of agonist can thus range from

,10 ms to minutes.

Heterotrimeric G proteins convey signals by traversing a cycle

of GTP binding and hydrolysis: the GTP bound state of the Ga

subunit is active and deactivation is caused by hydrolysis of bound

GTP to GDP [2]. The rates of activation and deactivation, and

consequent effects on signal output at steady state, are regulated by

interactions of the Ga subunit with receptors [3], Gbc subunits

[4], GTPase-activating proteins (GAPs) [1] and multiple other

proteins [5]. The net effect of these inputs depends on the

identities of the individual proteins, their concentrations and their

own regulatory controls. Regulatory inputs to G protein modules

are interactive, and it has been difficult to establish quantitative

understanding of how they cooperate to control signal output.

While some signals, particularly G protein-gated channels, can be

monitored accurately in cells in real time, it has been harder to

quantitate the intermediary reactions of the GTPase cycle and

protein–protein binding or dissociation. Recently developed

optical sensors are promising [6–10] but still do not provide
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complete or simultaneous coverage of multiple events and often do

not provide absolute (i.e., molar) data. Conversely, quantitative

biochemical assays using in vitro reconstituted systems have

provided absolute biochemical data [11,12] but have not

adequately described the simultaneous regulatory interactions that

are so important. Consequently, quantitative understanding of the

dynamic behavior of an intact G protein module remains elusive.

Computational modeling is used frequently to clarify mecha-

nistic thinking about complex biochemical systems, including G

protein signaling. Quantitative models can potentially combine

information on individual reactions to simulate the behavior of a

complex system, or use system-level data to test the validity of a

proposed mechanism. The work of Linderman and colleagues, for

example, has provided consistent examples of these approaches to

G protein signaling [13–16]. The G protein-mediated yeast

pheromone response has also been the focus of significant

modeling efforts because of its presumed paucity of off-pathway

inputs [17–19]. In at least one case, the failure of a simple model of

this pathway motivated discovery of a novel mechanism for

feedback regulation and subsequent refinement of the model [17].

However, modeling of G protein modules has often been

descriptive, with parameters arbitrarily chosen for a few reactions

such that model output mimics an experimental result. Alterna-

tively, the inner workings of the G protein module itself have been

condensed into an arbitrary function of agonist concentration and

receptor regulation to allow analysis of a downstream event such

as Ca2+ release or protein phosphorylation or, even more distal,

transcription.

A major problem in developing quantitative models of G protein

modules has been accurate assignment of parameters to the many

processes that are known to occur. These include both the GTPase

cycle reactions and the multiple protein-protein interactions that

govern these reactions. This problem is significant because local

protein concentrations at the plasma membrane and the regulated

association of these proteins are both unknown, either for resting

cells or during dynamic signaling. In this study, we have used

purified proteins, heterotrimeric Gq, m1 muscarinic acetylcholine

receptors and phospholipase C-b1, reconstituted at uniform and

controllable concentrations into unilamellar phospholipid vesicles,

to overcome this first limitation. We estimated formation of multi-

protein complexes according to their individual activities.

The second major problem in modeling signaling through G

protein modules is the difficulty in assigning correct, or even

plausible, values of rate or equilibrium constants for the reactions

included in the model. Despite their apparently small size, an

informative model of a single G protein module will contain

multiple parameters that are not readily accessible from individual

measurements. These parameters may vary widely among

different modules (receptors, G proteins, GAPs), which prohibits

most literature-mining approaches. If all or most of the relevant

parameters are not individually available for the module of

interest, then an adequately large and diverse dataset must be

produced to allow parameters to be fit to the data.

Last, even with a presumably adequate dataset, the numerical

fitting process that extracts values for the parameters and

subsequent validation of the fit are both central problems in

modeling signaling systems. We have adapted and extended

several approaches to deal with the difficulty of fitting a model

with a fairly large number of parameters using a modest amount of

data. We present a modestly complex model of signal output in a

G protein model that contains many of the salient regulatory

interactions that characterize G protein signaling. We used steady-

state GTPase data to support a Metropolis-Monte Carlo fitting

strategy, and argue that most parameters are reasonably assigned,

with statistical data to help qualify fits for individual parameters.

The resultant parameter set shows that receptor accelerates

both GDP dissociation and GTP binding, and that GAPs

potentiate the receptor’s nucleotide exchange catalyst activity.

Further, the model argues strongly that GAP activity indirectly

favors continued binding of receptor to G protein throughout the

GTPase cycle, thus further potentiating the receptor’s activity.

Such indirect stabilization of receptor-G protein binding, referred

to as kinetic scaffolding to distinguish it from direct interaction,

was suggested as a mechanism for how a GAP can accelerate

deactivation upon removal of agonist without substantially

inhibiting signaling [1,11,16,20]. Model-based simulation of signal

output describes how GAPs combine these mechanisms to

independently control signal amplitude and kinetics.

Results

Fitting the Model Using Steady-State Kinetic Data
The biochemical model of the GTPase catalytic cycle (Figure 1)

includes GTP binding, hydrolysis of bound GTP and simultaneous

release of inorganic phosphate (Pi), and the dissociation of GDP.

At each stage of the reaction, G protein is allowed to bind agonist-

liganded receptor, GAP or both. Receptor is assumed to be agonist

bound and active at all times; agonist-stimulated GTPase data

were obtained in the presence of saturating carbamylcholine

(1 mM). Possible dissociation of Gbc from Ga and protein

oligomerization were not included (see Discussion). All reactions

were considered to be reversible to allow imposition of path-

independence constraints on closed reaction loops during the

fitting process (see below). For the same reason, even presumably

unlikely reaction paths were retained to create symmetry in the

reaction map. For calculation of G protein activation (see below),

all GTP-bound species were considered to be equally active, and

fractional activation was calculated as the fraction of all species

that contain bound GTP.

The kinetic model for G protein signaling (Figure 1) includes 48

parameters, first- and second-order rate constants, only a few of

Author Summary

Throughout the eukaryotes, G proteins convey information
from receptors for diverse stimuli—neurotransmitters,
hormones, light, odors, and pheromones—to intracellular
regulatory proteins collectively known as effectors. G
proteins function by transiting a dynamic cycle of
activation and deactivation. Receptors accelerate activa-
tion, which allows G proteins to regulate effectors, and
receptors thus increase signal output. GTPase-activating
proteins, GAPs, accelerate deactivation. GAPs can thus
attenuate signaling, but GAPs can also accelerate signal
termination when stimulus is removed without inhibiting
signal output while stimulus is present. Surprisingly, some
effectors are also GAPs for the G proteins that activate
them, essentially turning off their activator. We developed
a mathematical model that describes control of G protein
signaling by receptor and GAP and used experimental data
to determine its important parameters. We show that GAPs
actually potentiate G protein activation by receptor, a
previously unsuspected effect. Further, GAPs indirectly
stabilize receptor–G protein binding during stimulation,
which we had previously predicted based on inconsisten-
cies among other experimental results. The present results
elucidate how GAPs can independently control signaling
kinetics and amplitude and thus clarify how effectors can
both respond to G proteins and act as G protein GAPs.

Coordinate Regulation of G Protein Signaling
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which have been determined directly. We therefore fit all the

parameters to a relatively large and diverse set of steady-state

GTPase rates determined in a purified and reconstituted system in

which protein concentrations were known and where data could

be obtained over a wide dynamic range. Data for fitting came

from 8 scans of GTPase activity as the concentration of one assay

component, GTP, GDP or GAP, was varied from zero to

saturation in the presence or absence of saturating agonist (Table

S1; Figure 2). Data were fit simultaneously to minimize the cost

function, defined as the sum of the squares of deviations between

experimental data and data predicted by the model (Materials and

Methods). Values for the 48 kinetic parameters were adjusted

simultaneously by constrained simulated annealing to best match

all available data while satisfying thermodynamic constraints (path

independence, i.e. cyclicDG = 0, for all potential cycles; and net

DGhydrol for GTP [21]). The progress of cost minimization for a

typical fitting run is shown in Figure S2. The cost function is

initially quite high (off-scale in Figure S2) and decreases rapidly.

The initial decrease is followed by relatively quick adjustments of

the parameters interspersed with long metastable stages, reflecting

occasional escape of the Monte Carlo search from local minima in

the cost manifold. Improvement in the fit is negligible past a few

thousand iterations. To further test the adequacy of the Monte

Carlo search, it was repeated with thermodynamic constraints

applied as a quantitative penalty for nonconformance in the cost

function rather than as an absolute constraint (Materials and

Methods) (Figure S3). In this case, initial convergence was slower,

but subsequent enforcement of strict thermodynamic constraints

decreased the value of the cost function to a level similar to that

achieved if thermodynamic constraints are applied throughout the

fitting process. Because this more ergodic search method did not

lead to lower values of the cost function, it is likely that imposing

path-independence constraints initially does not seriously limit the

ergodicity of the fitting process.

The initial test of such a modeling process is the ability of the

model to simulate experimental data using the parameter set

determined by fitting (Figure 2). Simulations based on the model

and parameters derived from 41 fitting runs (Table S2)

approximated the experimental data well over a 105-fold range

of GTPase activities and a wide variety of experimental conditions.

Values of Km for GTP, Ki for GDP and EC50 for the GAP activity

of PLC-b1 were all matched closely in each experiment. Relative

increases and decreases in activity were also simulated well, as

were curve shape and steepness. The largest recurrent discrepancy

between data and prediction was in the absolute value of the

maximal activity. Disagreement was negligible in some experi-

ments, but was significant in others. In part, this reflects real

difficulty in fitting such a diverse dataset, but it also arises from

variation in specific activity among the experiments. The data

were obtained using several preparations of m1AChR-Gq vesicles

that varied in maximum specific activities, with standard deviation

of ,40% among 13 batches of vesicles prepared during the study.

Variation between fits and data in Figure 2 are within this margin.

The values of the rate constants obtained by fitting the steady-

state rates also compare well with those few that have previously

been determined directly in pre-steady-state kinetic measurements

[12] (Figure 3). For five reactions, nucleotide association and

dissociation and GTP hydrolysis, agreement was within a factor of

4. The direct determinations were performed with different

preparations of vesicles and by different investigators. Agreement

is thus even more striking. Importantly, the pre-steady-state kinetic

data were not used in the present fit. The rate constants obtained

here also compare well with predictions from data obtained in

non-identical preparations (detergent-solubilized proteins, free

Gaq subunits, etc.) [11,12,22,23].

Fitting is a stochastic process that, upon repeat, converges to

different minima of comparable cost in a complex manifold. For

these datasets, multiple fitting runs yielded a family of parameter

sets with cost functions in the range 650–800 (not shown). The

extent of variation among repeated fits reflects the size of the error

on each parameter (Figure 3). For some of the parameters,

reproducibility was excellent, but for others error was large. Error

may reflect the absence of necessary data or experimental error,

but an additional difficulty in fitting some parameters arises from

the structure of the model. To allow imposition of path-

independence constraints, the model contains all possible interac-

tions of proteins and nucleotides, including species that are

quantitatively negligible and reactions that do not contribute

detectably to flux through the GTPase cycle. Thus, some

individual rate constants cannot be fit well, and some pairs of

forward and reverse rate constants that describe rapid equilibria

are poorly fit because the data only constrain their ratios.

To evaluate possible sources of errors associated with some of

the parameters, we repeated the fitting process with synthetic data

and asked whether the fitting process could accurately return the

parameters used in the synthesis. Simulated data equivalent to the

original experimental data were generated using the model and a

chosen parameter set. To simulate experimental noise, Gaussian

errors (standard deviation/mean = 10%) were convoluted with the

predictions. The parameter set returned in this process simulated

the synthetic data extremely well, and did not show the significant

errors in maximal velocity observed when the real data were fitted

(not shown). The parameter set obtained by fitting synthetic data

was then compared with the set used in its generation (Figure 4A).

The histogram shows that 32 of the 48 constants were fit to within

10-fold of the generating value, with 19 within 2-fold. Examina-

tion of the outliers indicates that they describe reactions that either

are not appreciably populated or are much faster than the reaction

that they precede, and therefore could not be constrained. The

fitting process is thus adequate to determine most parameters well,

and those that are not well fit do not contribute appreciably to

overall flux through the GTPase cycle. To see whether rapid

equilibria contribute to error in evaluating individual kinetic

constants, we also compared the fitted equilibrium constants for

each reaction (i.e., the ratios of forward and reverse rate constants)

with the values used to generate the synthetic data (Figure 4B).

Deviations from the generating values were fewer and smaller,
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Figure 1. Thermodynamically complete model of the GTPase
reaction catalyzed by G protein (G) and regulated by the
reversible binding of receptor (R) and/or GAP (A). Reactions and
related rate constants are named ‘‘a’’, ‘‘r’’, ‘‘t’’ and ‘‘d’’ for association of
GAP, receptor, GTP (T) and GDP (D); ‘‘p’’ denotes GTP hydrolysis. The
numeric subscript in the figure specifies the reaction shown. All
reactions are reversible. (A second subscript in Table 1 and Figure S1
specifies association (‘‘1’’) or dissociation (‘‘2’’). For hydrolysis rate
constants (‘‘p’’), ‘‘1’’ indicates GTP hydrolysis and ‘‘2’’ indicates
synthesis.)
doi:10.1371/journal.pcbi.1000148.g001
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indicating that equilibrium constants were constrained by the

thermodynamic relationships used to construct the model. The

quality of the fit was further assessed by thermal ensemble analysis

[24] (Text S2). The analysis consists of generating statistically

equivalent fits to the data and measures the extent to which

parameters are coupled (Text S2). We found lack of generalized

mixing suggesting (1) a reasonable match between the model and

the underlying phenomena, (2) the absence of severe over- or
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Figure 2. Agreement of simulations (blue) with GTPase rate data (black). Steady-state GTPase activity (moles GTP hydrolyzed/min/mole Gq;
6SD) was measured in the presence or absence of 20 nM PLC-b1 (‘‘+GAP) and/or 0.1 mM carbachol (‘‘+R’’) at varied molar concentrations of GTP, GDP
or phospholipase (Table S1 for details). The family of simulations was generated using 41 sets of rate constants obtained from individual fits to the
data. Note different scales on the V axes. Values of Km for GTP, and its regulation by receptor and GAP, and for the EC50 for PLC-b1 are consistent with
previously published results [11].
doi:10.1371/journal.pcbi.1000148.g002
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under-parameterization, and (3) the availability of sufficient data

for accurate determination of many of the parameters.

Cooperative Interactions of G Protein, Receptor, and GAP
The parameter set shown in Figure 3 and Table S2 provides the

first reasonably complete set of experimentally determined rate

constants for a G protein signaling module, and thus provides

insights into regulatory interactions that were not previously

accessible. While the parameters are interpretable only to within

the errors of the fit, several novel observations stand out at this

level.

First, examination of the rates of nucleotide binding and release

indicate that the salient function of receptor is to open an

otherwise inaccessible (‘‘closed’’) nucleotide binding site on Gq to

permit GDP/GTP exchange. In addition to accelerating GDP

dissociation, receptor also markedly accelerates both GDP and

GTP association (Table 1). Receptor thus promotes GDP/GTP

exchange by two distinct mechanisms. It accelerates GDP

dissociation over 104-fold and GTP association more than 103-

fold. Receptors have been thought to act by binding G protein

negatively cooperatively with respect to nucleotides; i.e., that

receptor decreases affinity for GDP by increasing the dissociation

rate (Kassoc = kassoc/kdiss). In the case of the M1 muscarinic receptor

and Gq, the decrease in affinity for GDP (,3-fold) is dwarfed by

acceleration of GDP dissociation (,20,000-fold; because GDP

binding to the open site is also fast).
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Figure 3. Rate constants for the Gq-catalyzed GTPase cycle obtained by fitting steady-state kinetic data. Points show log-average
values of parameters (6SD; Table S2) from 41 stochastic fitting searches performed as described in the Materials and Methods. Reactions are
numbered and defined in Figure 1 and Figure S1. The letter and first number define the reaction and the second number defines forward (1) or
reverse (2) rate constants. Red points are values determined previously by direct pre-steady-state measurements [12,55]. The reaction scheme at the
top color-codes rate constants according to the relative sizes of their confidence limits (Table S2): red, ,106; blue, ,206; black, .206.
doi:10.1371/journal.pcbi.1000148.g003
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Opening and closing of the nucleotide binding site is also

reflected in the remarkably slow nucleotide association rates

observed in the absence of receptor. The slow basal association

rate constant for GTP, ,500 M21?s21, is particularly striking, but

all GDP and GTP association rate constants are less than

104 M21?s21 without receptor stimulation. Receptor increases

the association rates about 104-fold to 106–107 M–1?s21, values

that are more commonly observed for binding of small ligands to

proteins. Taken together with the slow rates of spontaneous

nucleotide dissociation, the slow association rates indicate that the

nucleotide binding site on Gq is essentially closed in the absence of

receptor and that receptor stabilizes the open conformation

regardless of whether GTP, GDP or no nucleotide is bound (see

Discussion).

Second, comparison of the rate constants for nucleotide exchange

shows that GAP potentiates the ability of the receptor to accelerate

the dissociation of bound GDP by about 20-fold (Table 2). Thus,

even though GAP has negligible effect on GDP binding by itself, its

facilitation of GDP/GTP exchange helps minimize potential

inhibition of signaling during stimulation by receptor. GAPs were

not previously known to modulate GDP binding [1,25], but this

effect was probably overlooked because GAPs do not bind tightly to

GDP-bound G protein; the RGAD complex will only be formed

during steady-state GTPase turnover. GAP displays little effect on

Figure 4. Reconstruction of model parameters by fitting synthetic data. Synthetic data similar to those of Figure 2 were generated by
simulation and imposition of Gaussian noise. The synthetic data were then used for fitting to create a new best-fit parameter set. The histograms
show the ratios of reconstructed parameters to the parameters used to generate the synthetic data. Only one fitting run was used to produce these
values. (A) Rate constants. (B) Equilibrium constants. The reaction scheme at the top color codes rate constants in red if they were re-fit to within 10-
fold of their original values.
doi:10.1371/journal.pcbi.1000148.g004

Table 1. Effect of receptor on nucleotide exchange kinetics and equilibria

Reaction kassoc (M21?s21) +Rec/–Rec kdissoc (s21) +Rec/–Rec Keq (M21) +Rec/–Rec

t1 5.06102 2.261028 2.361010

t2 (+A) 3.86102 6.4610210 5.961011

t3(+R) 1.76106 3.46103 1.961022 8.66105 8.96107 3.961023

t4(+A,+R) 2.16106 5.56103 3.261022 5.06107 6.66107 1.161024

d1 3.66103 1.561025 2.46108

d2(+A) 6.86103 3.761025 1.86108

d3(+R) 2.16107 5.86103 2.861021 1.96104 7.56107 3.161021

d4(+A,+R) 1.56106 2.26102 4.7 1.36105 3.26105 1.761023

Rate constants are log average values from Table S2. ‘‘+Rec/–Rec’’ indicates ratios of parameters for Gq that is bound and not bound to activated receptor. ‘‘+R’’ and
‘‘+A’’ label parameters for Gq bound to receptor or GAP.
doi:10.1371/journal.pcbi.1000148.t001
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the rate of GTP dissociation because the binding of GAP and GTP

to G protein is positively cooperative [1].

The parameter set also indicates that receptor and GAP bind G

protein negatively cooperatively, and that cooperativity depend on

the binding of GDP or GTP (Table 3). Receptor and GAP

reciprocally decrease the affinity of Gq for each other by 25-fold

when GTP is bound and by ,120-fold when GDP is bound, but

there is essentially no cooperativity displayed for binding to

nucleotide-free Gq. The most striking result of this interaction is

the rapid dissociation of GAP from the receptor-Gq–GDP

complex after GTP is hydrolyzed. The t1/2 for GAP dissociation

is about 300 ms, about 90-fold faster than in the absence of

receptor (Table S2). In contrast, GAP dissociation from GTP-

bound Gq is slow, about 170-fold slower than hydrolysis, such that

essentially every GAP binding event results in GTP hydrolysis. In

summary, GAP dissociates virtually immediately after GTP

hydrolysis during receptor-mediated signaling, and is thus

potentially available to accelerate hydrolysis on other G proteins.

The nucleotide-dependent, negatively cooperative binding of

receptor and GAP to G protein also helps determine the reaction

pathway through the GTPase cycle: what intermediate species are

populated and for how long (Figures 5 and 6; see below). For

example, GTP accelerates the dissociation of receptor from G

protein by ,70-fold whereas GDP has a much smaller effect. This

difference further biases receptor-promoted GDP/GTP exchange

toward the forward (activating) direction. Qualitatively, destabili-

zation of receptor binding by nucleotides confirms the observation

that nucleotides drive dissociation of receptor from G protein [26].

Coordinate Regulation of Signal Output by Receptor and
GAP

To examine the overall regulatory behavior of the G protein

module, we used the complete reaction model and average fitted

parameter set to simulate signal output as the fraction Z of all G

protein complexes to which GTP is bound. Figure 5A shows a

contour plot of fractional activation at steady-state as a function of

varying concentrations of receptor and GAP, using typical in vitro

assay conditions to allow us to compare prediction with

experiment (300 nM GTP, 10 pM GDP, no Pi). At low

concentrations of active receptor, signal output is predictably

low regardless of GAP concentration. In the absence of GAP

(bottom of figure), increasing the concentration of receptor raises Z

to about 93% activation. At saturating concentrations of GAP (top

of figure), Z increases with increasing concentrations of active

receptor to about 4% of maximal activation. This limiting value

reflects the ratio of the rates of GTP hydrolysis to GDP/GTP

exchange when GAP and receptor are both bound to G protein

throughout the catalytic cycle. At high receptor concentration

(right side), increasing concentrations of GAP causes Z to fall from

85% to 12%. These transitions are relatively smooth, although

slopes are asymmetric and steeper than predicted by a Hill

coefficient of 1. The values of Z at the corners agree with analytical

calculations, which are only possible at these limits. While the

precise output obviously depends on the values of the rate

constants, the overall topography of this plot had sufficient

similarity among fitted parameter sets to indicate that errors in the

fit do not modify the essential behavior of the model.

The most striking feature of the Z contour plot lies in the region

where the concentrations of G protein, receptor and GAP are

similar. Here, Z contour lines are contorted and create an abrupt

transition, a ‘‘ridge’’ at which activity peaks and then declines with

increasing concentration of receptor. In a few locations, increasing

the concentration of receptor causes Z to decrease, and in a tiny

region, increasing the concentration of GAP actually increases Z.

This unintuitive topography is not idiosyncratic to the average

parameter set, but appears in various shapes for all the parameter

sets obtained with repeats of the fitting procedure. To clarify the

origin of this behavior, we calculated the fluxes and steady-state

concentrations of intermediates at locations on either side of the

ridge to determine what reactions and molecular species

contribute to Z near the ridge (Figure 5C; see Figure S5 and

Figure S6 for examples). To the left of the ridge, the major

reaction path is RGRRGTRGTRGDRRGDRRG. GT is the

major activated species. The receptor dissociates upon GTP

binding and reassociates after hydrolysis, the mechanism referred

to as collisional coupling [27]. GAP is not significantly involved in

the reaction scheme and Z is low. Figure 5B indicates that the

major active species is GT in this region. Across the ridge, the

reaction pathway becomes a comparable mixture of

RGRRGTRRGDRRG and RGRRGTRRGATRRGADR
RGDRRG. Species RGT is the major active species (Figure 5A).

Receptor remains bound throughout the GTPase cycle, and

significantly, GAP is recruited to the receptor–G protein complex

during the GTP-bound phase (Table 1). Z has a higher value

despite involvement of the GAP in net GTPase turnover. The

ridge thus reflects the coincidence of the peak in the concentration

of GT in a region where the concentration of RGT is increasing

significantly (Figure 5B).

Table 2. Effect of GAP (A) on exchange catalyst activity of
receptor (R)

Reaction
kassoc

(s21) +A/–A
kdissoc

(M21?s21) +A/–A
Keq

(M21) +A/–A

t1 5.06102 2.261028 2.361010

t2 (+A) 3.86102 0.76 6.4610210 0.03 5.961011 26

t3 (+R) 1.76106 1.961022 8.96107

t4 (+A,+R) 2.16106 1.2 3.261022 1.7 6.66107 0.73

d1 3.66103 1.561025 2.46108

d2 (+A) 6.86103 1.9 3.761025 2.5 1.86108 0.77

d3 (+R) 2.16107 2.861021 7.56107

d4 (+A,+R) 1.56106 0.071 4.7 17 3.26105 0.004

Rate constants are taken from Table S2. ‘‘+A/–A’’ indicates ratios of parameters
with and without saturating GAP (A). Note that GAP (A) increases the affinity of
Gq for GTP and decreases the affinity for GDP.
doi:10.1371/journal.pcbi.1000148.t002

Table 3. Effect of receptor on affinity of Gq for GAP

GAP Binding to Keq (M21) +Rec/–Rec

Gq 3.76105

Gq-GTP 9.66106

Gq-GDP 2.86105

Rec-Gq 5.66105 1.5

Rec-Gq-GTP 3.96105 0.041

Rec-Gq-GDP 2.36103 0.008

Values for Keq are calculated from Table S2. Because the model is
thermodynamically complete (Figure 1), effects of GAP on binding of receptor
to Gq are identical to those shown here for effects of receptor on binding of
GAP to Gq.
doi:10.1371/journal.pcbi.1000148.t003
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The change in pathway is governed by choice of the reaction that

follows the branch-point species RGT (Figure 5A and 5C). With

increasing concentration of receptor, net flux switches from

RGTRGT to RGTRRGAT and RGTRRGD as the concentra-

tion of receptor crosses the ridge. The peak in activity reflects the

transient accumulation of GT as the concentration of free R increases

and drives GDP/GTP exchange but before it reaches the level at

which GAP is recruited. Above the Z ridge, flux through the GTPase

cycle is maintained entirely by complexes that include receptor; i.e.,

where receptor remains bound throughout the catalytic cycle.

The occurrence of a ridge in Z with increasing receptor

concentration, rather than a monotonic increase, is caused by the

negatively cooperative binding of receptor and GAP to G protein

(described above). The importance of this mechanism is indicated

by the location of the ridge in the R-A plane. It lies just to the left

of the line [A]tot = [G]tot2[R]tot, where the sum of the concen-

trations of total receptor and total GAP equals the concentration

of total G protein. This straight line appears as a curve on log–log

plots (Figure 5A). Negatively cooperative binding of receptor and

GAP to G protein make accumulation of RG and GA species far
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Figure 5. Steady-state activation of Gq under experimental conditions in reconstituted vesicles. (A) Fractional activation, Z, of
1.661024 M total Gq was simulated at varying total concentrations of receptor and GAP using the rate constants in Table S2, 0.3 mM GTP and
negligible GDP and Pi. Note that molar concentrations of proteins are calculated in the annular volume of the membrane, but concentrations of
nucleotides and other small molecules are calculated according to aqueous volume. (B) Steady-state concentrations of GTP-bound species (right axis)
and Z (left axis) are plotted as functions of the total receptor concentration in the presence of 4.761026 M GAP, indicated by the black line in (A).
Concentrations of GAT and RGAT are not visibly different from zero. (C) Net fluxes (mM/s) for the reactions occurring after the branch-point species
RGT are computed along the line shown in (A).
doi:10.1371/journal.pcbi.1000148.g005
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more likely than accumulation of RGA species and thus causes the

abrupt shift of pathway and consequent peak in G protein

activation. The crest of Z is displaced from the line because the

GTPase cycle is not at equilibrium under steady-state reaction

condition.

G Protein Activation under Cellular Conditions
We also used the model and parameter set to simulate G protein

activation under typical cytoplasmic conditions—0.2 mM GTP,

0.02 mM GDP, 1 mM Pi [28] (Figure 6). Activation of Gq

responds to receptor and GAP in a pattern generally similar to that

seen under laboratory assay conditions, but the higher cytoplasmic

concentration of GTP allows substantial activation by receptor at

high GAP concentrations. Signal output is thus significant,

Z,0.25, even in the presence of saturating GAP. Output remains

high in the presence of GAP because GTPase flux is almost

entirely from the RGA–.RGAT–.RGAD–.RGA pathway

over a large part of the R-A plane (Figure S6, Figure S7, and

Text S3). Given this pathway, high values of Z result in part from

the GAP’s potentiation of receptor-promoted GDP release (Table

S2). GAP exerts this effect under cytoplasmic conditions because,

at 0.2 mM GTP, nucleotide-free G protein binds GTP quickly (t1/2

,2 ms) and because GAP does not dissociate appreciably. Equally

important, receptor remains bound because GTP is hydrolyzed

rapidly, before appreciable receptor can dissociate, and therefore

catalyzes GDP/GTP exchange promptly after hydrolysis. The

principal potentiating effect of cytoplasmic GTP concentration is

thus to support continued association of receptor, GAP and G

protein during the GTPase cycle.

A novel and unintuitive result of this simulation is the decline

and subsequent increase in Z at high receptor concentrations as

the concentration of GAP is increased. As shown in Figure 6, Z is

minimal at about 1024 M GAP and increases at higher GAP

concentrations. This effect is not predicted for lower concentra-

tions of GTP and is relatively small for the conditions and

parameters used here. The occurrence and extent of this behavior

depends sensitively on multiple rate constants, as do the relative

plateau values of Z at high and low GAP concentration. In

general, the ability of GAP to increase fractional G protein

activation at high concentrations depends on its potentiation of the

receptor’s exchange catalyst activity and its indirect stabilization of

receptor binding to G protein, as discussed above. Its mechanism

is discussed in the Text S3.

GAP Promotes Fast G Protein Deactivation upon Signal
Termination

In cells, GAP activity often accelerates signal termination when

agonist is removed but does not inhibit signaling significantly while

agonist is present [1]. To determine whether this behavior is

accurately predicted by the present model and to study its

mechanism, we simulated signal termination upon removal of a

rapidly dissociating agonist by first allowing the system to reach

steady state and then instantaneously setting the concentration of

activated receptor to zero (Materials and Methods). We first

scanned the receptor and GAP concentrations shown in Figure 6

for regions where increasing the GAP concentration causes

minimal inhibition but significantly accelerates signal termination.

Quantitative search criteria were chosen to mimic published

experiments (reviewed in [1]; see legend to Figure 7), but their

exact values are not crucial (results not shown). As shown in the

inset to Figure 7, addition of GAP can accelerate deactivation with

minimal steady-state inhibition at all concentrations of active

receptor. A wide range of initial and final GAP concentrations also

meet the initial criteria. This behavior is thus robust to initial

conditions. Within this region, addition of GAP can accelerate

signal termination up to 180-fold, which actually exceeds the

acceleration that has been observed in cells.

Figure 7 shows the deactivation time course for a representative

simulation that compares signal termination at high and low

concentrations of GAP, shown as red dots in the inset. The higher

GAP concentration accelerated Gq deactivation more than 15-

fold, measured as time to 50% of initial activity, but inhibited

receptor-stimulated G protein activation by only 5%. Qualitatively

similar behaviors are observed over much of the area of Figure 6,

indicating that fast termination combined with minimal inhibition

is a common outcome of G protein GAP activity.

Neither termination time course in Figure 7 is monoexponen-

tial, and complete deactivation is markedly delayed at the lower

GAP concentration (right inset). Some GAP activity thus appears

to be required for reasonably fast decay of signal output to basal

levels. Simulations with intermediate GAP concentrations (not

shown) indicate that GAPs can also facilitate return to basal

activation without accelerating signal termination to the extent

shown in Figure 7, and a variety of termination behaviors can be

observed at different points on this activation surface. While

multiphasic decay of G protein signals has also been observed

experimentally, we do not know whether the separate phases in

Figure 7 correspond to specific cellular turn-off events.

Flux analysis of the deactivation events indicates that there is a

single mechanism for accelerated signal termination by GAPs. At

low GAP concentrations, the species RGT and RGAT both

contribute significantly to activity in the presence of activated

receptor. Upon removal of receptor, GT and GAT are rapidly

created. GAT is then rapidly deactivated at a rate of 8.6 s21 (p21 in

Table S2), the initial phase of deactivation. The second, very slow

phase is deactivation of GT. In contrast, at higher GAP

concentrations almost all G protein activity is due to RGAT.

When activated receptor is removed, the GAT that is formed

hydrolyzes rapidly to cause fast deactivation. While deactivation is
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Figure 6. Steady-state activation of Gq under cellular condi-
tions. Fractional activation Z was simulated at varying total concen-
trations of receptor and GAP, with 1.661024 M Gq, for cytosolic
concentrations of 200 mM GTP, 20 mM GDP, and 1 mM Pi. Z values for
colors on the contour plot are defined in the reference bar below.
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volume.
doi:10.1371/journal.pcbi.1000148.g006
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not really monophasic even at fairly high GAP concentrations,

slow hydrolysis of GT is not significant because there is not much

of it and because the GAP that dissociates from the GAD

hydrolysis product binds remaining GT to accelerate its

deactivation. In this way, GAP provides a pathway for fast signal

turn-off without inhibiting signaling.

Discussion

Data-Constrained Modeling of a G Protein Signaling
Module

A mechanistic model of signal transduction should provide

quantitative understanding of how time-dependent outputs arise

from the underlying binding, conformational and chemical

reactions. This study attempts to address three unresolved

mechanistic questions in G protein signaling. First, what are the

underlying dynamics of the GTPase catalytic cycle that integrate

the regulatory activities of receptors and GAPs, their reversible

binding to the G protein, and their control of G protein activation?

Which effects are important and what functions do they serve?

Next, how can a GAP accelerate signal turn-off when agonist is

removed, yet not inhibit activation while agonist is present? Both

these questions are vital to understanding how G protein-regulated

effectors such as phospholipase C-b and p115RhoGEF can act as

GAPs for their G protein activators without blocking their own

activation. Last, can we use a data-constrained model to quantitate

the interactions and activities of multiple interacting proteins

during steady-state signaling where one-by-one measurements are

not feasible?

Quantitative modeling and simulation can provide this kind of

understanding, but only if the underlying physical model is

adequate and if the parameters of the mathematical model are

objectively derived from experimental data. Even a relatively small

G protein signaling module is a complex, non-linear system in

which reaction pathways and modes of regulation may be both

unintuitive and resistant to the simplifying assumptions of classical

enzyme kinetics. We used a thermodynamically complete model,

in which all reactions are reversible and all states are connected

(Figure 1). Such a model assures that relevant reactions are not

omitted, assures compliance with the laws of thermodynamics and

uses detailed balance to help constrain parameters during the

fitting process.

The present version of the model does omit two relevant

reactions. First, the concentration of agonist-bound active receptor
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Figure 7. GAP-promoted deactivation of Gq after removal of receptor. Left inset: Segment of Figure 6 (cytosolic nucleotide concentrations)
showing the results of a search of R-A space for pairs of high and low GAP concentrations where a 500-fold increase in GAP concentration caused less
than 15% decrease of Z at steady-state but caused at least a 2-fold increase in the rate of deactivation when the concentration of receptor was
instantaneously set to zero (see Materials and Methods). Dot spacing reflects the search grid. Pairs that met the criteria were found for all
concentrations of receptor. Gq activation was first simulated at steady-state in the presence of 8.961025 M receptor (red dots in left inset). At zero
time, the concentration of receptor was set to zero. The upper and lower curves represent 7.461025 M and 3.761022 M GAP. Right inset shows the
same deactivation reaction over a longer time.
doi:10.1371/journal.pcbi.1000148.g007
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is used as a surrogate for the agonist-induced activation of a fixed

number of receptors. This simplification precludes some pharma-

cological inferences, but no currently available mechanism

quantitatively and accurately relates agonist binding, receptor

activation and G protein regulation [29,30]. Second, we omitted

activation-induced dissociation of Gaq and Gbc. G protein

subunits can dissociate in detergent solution [4], but physical

dissociation in membranes is not universal [6,31]. The binding of

Gaq to Gbc in detergent solution suggests that dissociation is

slower than the reactions studied here [11,32], and preliminary

data on fluorescence resonance energy transfer between Gaq and

Gbc in phospholipid vesicles indicate that binding is relatively

tight even for GTPcS-activated Gq (C. Hoang and E.M. Ross,

unpublished). Thus, while certain behaviors determined here for

Gq may reflect actions of both Gaq and Gbc subunits, kinetically

significant dissociation is probably not an important factor. We

also did not consider any direct effects of Gbc on the actions of

receptor or GAP because they are subsumed in the rate constants

for the reactions of these multi-protein species. For example, it is

plausible that Gbc contributes to the stable association of receptor

with GTP-bound Ga during rapid GTPase turnover, but we have

no independent evidence for this effect.

Values for the rate constants for the model were derived from

fits to steady-state GTPase data obtained with known concentra-

tions of proteins, over widely varied concentrations of GAP, GTP

and GDP, and in the presence or absence of agonist. Activities and

ligand concentrations spanned several orders of magnitude. Such a

dataset is appropriate for parameterizing a model of this

complexity because steady-state activities encompass all the

simultaneous reactions that modulate flux through the catalytic

cycle, including those that cannot be measured individually.

Indeed, most of the parameters could not have been determined

by individual rate measurements regardless of desired accuracy or

precision. We did not include pre-steady-state kinetic data in the

fitting process, but individual rate constants that were previously

directly determined in quenched flow experiments [12] agree well

with those obtained here (Figure 3). The Metropolis-Monte Carlo

fitting procedure yields a family of parameter sets that, with

repetition, provides mean parameter values with quantitative

statistical measures of accuracy. Most of the parameters also

passed two other tests for validity: they were reproduced well in

multiple fits to data (Figure 2) and, in fits to synthetic data, the

fitted values reproduced the target values well (Figure 4). Further,

thermal ensemble analysis indicated that the model was not

significantly over- or under-parameterized (Figure S4 and Text

S2). Thus, the data were sufficient in quality, quantity and

diversity to produce reliable values for most of the rate constants.

While the error windows on several of the parameters are larger

than what would be expected from typical pre-steady-state

measurement of a single enzymatic reaction rate, many are

excellent even by traditional standards. The analysis also points

out what parameters were not fit well, which prevents overinter-

pretation. For many of the poorly fit parameters, the chemical

reactions do not take place to a significant extent, and their rates

therefore do not contribute appreciably to steady-state GTPase

activity or to G protein activation. Thus, they do not impact on

interpretation of reaction rates or allosteric interactions, nor do

they invalidate model-based simulations. Comparison of this

parameter set with that of Bornheimer et al. shows several

disagreements in values of reasonably well fit parameters for GTP

and GDP binding in addition to expected disagreement with

poorly fit values. Several are important for interpretation of

allosteric interactions. Those authors chose their parameter set

based on previously published pre-steady-state data from this

laboratory, but did not fit them to a suitably diverse dataset. A

significant value of the present fitting strategy is that it provides

statistical descriptions of the reliability of individual rate constants,

such that conclusions can be quantitatively evaluated. Having the

complete set of rate constants allows simulation of signaling

behavior with verifiable limits of accuracy.

This systems level kinetic analysis of Gq signaling provides three

distinct but interrelated sets of mechanistic information. First, the

fitting process provided values for previously inaccessible kinetic

parameters and thus revealed novel cooperative interactions

among receptor, G protein, GAP and nucleotides. Second,

model-based simulation demonstrated how paths through the

GTPase cycle vary with the concentrations and activities of the

individual proteins. Third, these analyses combine to allow

description of regimes where GAPs can facilitate rapid signal

termination upon removal of agonist without substantially

inhibiting signaling.

Cooperative Interactions in G Protein Signaling
Because many of the important rate constants that describe the

G protein signaling module were reasonably well determined by

the fits to experimental data, this study identified several new

regulatory interactions that control the rate and extent of G

protein activation.

A major finding was that GAP potentiates the GDP/GTP

exchange catalyst activity of the receptor (Table 2). GAP both

accelerates GDP dissociation from the receptor-G protein complex

and inhibits GDP rebinding, decreasing equilibrium affinity for

GDP more than 200-fold. This effect of GAP contributes

significantly to its ability to accelerate GTP hydrolysis without

proportionately decreasing steady-state G protein activation by

receptor. This effect could not be determined directly by standard

pre-steady-state kinetics methods because it impacts only transient,

low-affinity intermediates in the GTPase cycle. GAP had no

significant effect on GDP binding in the absence of receptor,

consistent with previous data [1], and had no significant effect on

GTP binding to the receptor-G protein complex, although it

increased the affinity for GTP of free G protein about 25-fold.

This increase is consistent with the ability of GTP analogs to

increase the affinity of G protein for GAPs [1]. Note that Gbc
contributes to the kinetics of nucleotide binding to Ga subunits

and is intimately involved in its regulation by receptors [4] and

GAPs [1,23]. Our data do not distinguish the contributions of the

individual subunits to the regulation of Gq, but the net effects

should represent the normal responses of intact G proteins in a

biological membrane.

A second novel finding is that receptor significantly accelerates

nucleotide binding to G protein in addition to promoting

dissociation (Table 1). Fast GTP binding at cytosolic concentra-

tions is crucial for maintaining high steady-state G protein

activation (Figure 6). Acceleration of nucleotide binding also

clarifies the mechanism of receptor-mediated nucleotide exchange.

The receptor-promoted increase in the equilibrium Kd is much

smaller than the increases in kassoc and kdissoc for both GTP and

GDP (Table 1). The receptor acts thus primarily to open the

nucleotide binding site, presumably by moving the switch regions

away from the entrance, but does not drastically distort the

binding site itself. Such movement is demanded by the structure of

the Ga subunit because bound nucleotide is essentially covered by

a protein lid in the closed conformation [33]. The intrinsic high

affinity of G protein for GDP that derives from the covered site is

crucial to maintain low basal activation in the absence of agonist-

bound receptor. The site-opening mechanism described here

allows the receptor to act as a highly efficient GDP/GTP
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exchange catalyst while maintaining adequate affinity of receptor

for the nucleotide-bound forms of the G protein.

The idea that receptor opens the GTP binding site on G proteins

actually dates to early studies of the GTPase cycle [34], but few

studies have indicated that receptor actually increases kassoc [35–37].

In contrast, the prototypical GTP-binding protein Ef-Tu is

regulated primarily by negatively cooperative binding of the

exchange factor Ef-Ts [38], and this is true for several other

monomeric GTP-binding proteins and their exchange factors

(GEFs) [39–41]. For these proteins, GDP dissociation is the primary

regulated step and the increase in kdissoc is roughly proportional to

the increase in the equilibrium Kd; effects on kassoc are minimal.

Negative cooperativity, defined as the reciprocal decrease in the

equilibrium affinity of G protein for nucleotide and receptor when

the other is present, is less significant for heterotrimeric G proteins

than the ability of receptor to open the nucleotide binding site.

Given the need for a low basal exchange rate, a purely negatively

cooperative interaction with receptor would require a huge increase

in Kd for GDP to allow receptor to promote physiologically fast

exchange. The reciprocal effect on the Kd for receptor at

physiological nucleotide concentrations would also compromise

the stability of receptor binding. Heterotrimeric G proteins have

thus evolved to use the lid of the binding site to allow low basal

exchange without putting an energetically impractical demand on

cooperative interaction with receptor.

The negative cooperative binding of receptor and GAP to Gq

was also unexpected. This interaction could not readily be

detected by conventional binding measurements because of the

low affinity of GAPs for the GDP-bound form of G proteins

(where negative cooperativity is greatest; see Table 3). It should

now be possible to test this interaction directly using the parameter

values found here to guide experimental design. Note that the

reaction model (Figure 1) does not demand any direct or indirect

interaction between receptor and GAP, and their negatively

cooperative binding was shown by fitting to experimental data.

The importance of this interaction is not intuitive, but it underlies

the shape of the activation surfaces shown in Figures 5 and 6. Such

a surface was also predicted by Bornheimer et al. [42], who based

their model on data from this laboratory. Kinzer-Ursem and

Linderman [43] also described a biphasic effect of receptor based

on sensitivity analysis of a model that focused on receptor function

without consideration of GAP. Our analysis indicates that the

ridge of maximal activation approximates the line at which the

total concentrations of receptor plus GAP equal that of G protein,

and this prediction can now be used to analyze other systems

where these concentrations vary. Interaction between receptor and

GAP also largely dictates the pathways of intermediary reactions

through the GTPase cycle as functions of the concentrations of

receptor and GAP, and thus contribute to the transient kinetics

displayed when agonist is either added or removed.

Transient Responses and Signaling Dynamics
Simulations based on the parameterized model suggest

mechanisms for how GAP activity promotes fast deactivation

when agonist is removed without attenuating the signal while

agonist is present. Receptor-generated signal output at steady-state

can be significant over a wide range of GAP concentrations

sufficient to accelerate signal turn-off (Figure 7). Such apparently

paradoxical behavior is often observed for G protein-gated ion

channels, whose cellular activation and deactivation kinetics can

be studied directly [44,45], reviewed in [1].

A major reason that a GAP can exert these two functions is its

potentiation of the exchange-catalyst activity of the receptor, which

is apparent by examining the rate constants that govern the GTPase

cycle (Table 2). A second mechanism, which is evident only upon

examining GTPase fluxes under the appropriate conditions, is that

the GAP’s multiple activities shift the path through the GTPase

cycle such that receptor largely remains bound to G protein

throughout the catalytic cycle and thus obviates the relatively slow

step of reassociation with GDP-bound G protein after hydrolysis

(Figure S5, Figure S6, and Figure S7). Thus receptor can initiate

GDP/GTP exchange immediately after hydrolysis. Several prop-

erties of the GTPase reaction contribute to this effect, but it

primarily results from the simple fact that GAP-stimulated GTP

hydrolysis is faster than the rate of dissociation of receptor from the

GTP-activated G protein. Because GDP dissociates faster than

receptor, GDP dissociation occurs first and is followed by rapid

GTP binding because the receptor maintains the nucleotide binding

site in the open configuration. We refer to this mechanism as

‘‘kinetic scaffolding’’, the ability of the GAP to promote long-term

receptor binding by accelerating alternative reactions. We proposed

this phenomenon previously [1,11,20], although we assumed that

GAP also remains bound. The present analysis suggests that GAP

binding to receptor-G-GDP is in rapid equilibrium, with dissoci-

ation likely to occur during each pass through the GTPase cycle.

Because the affinity of G protein for GAP is poorly determined by

these data (Figure 3), real quantitation of GAP binding is imprecise

at best. Receptor binding is also not defined precisely in the fits to

the present dataset, but examination of activation contours of the

sort shown in Figure 6 show similar, although hardly identical,

patterns when based on each of the 41 fitted parameter sets. The

overall pattern of transit through the GTPase cycle is thus robust to

variation in binding affinities over a reasonable range. Kinetic

scaffolding was also proposed by Zhong et al. [16] based on

nucleotide exchange kinetics. Kinetic scaffolding does not suggest

any direct interaction, physical or allosteric, between receptor and

GAP, but describes functional and temporal stabilization of receptor

binding because alternative paths for receptor-G protein complex

occur faster than dissociation. Kinetic scaffolding does not minimize

the role of physical scaffolds, which can stabilize signaling

complexes prior to activation by agonist (reviewed in [46]), and

protein scaffolds may in some cases obviate the need for kinetic

scaffolding. Kinetic scaffolding becomes efficient during signal

transduction, however, by maintaining signaling proteins in their

active complex. Further, kinetic scaffolding maintains receptor and

G protein in contact and correctly oriented, whereas physical

scaffolds may provide loose tethers which may be less effective.

Examination of the activation contour shows that deactivation

upon removal of receptor (or, in cells, of agonist) is accelerated by

GAP over a large and biologically important region of receptor-

GAP space (Figure 7, inset). Deactivation is to some extent

multiphasic at all points because activated species to which GAP is

bound deactivate most rapidly, and further relatively fast

deactivation depends on binding of GAP to other GTP-bound,

activated species (Figure 7). Precise pathways vary depending on

the concentration of GAP and fractional activation at the time

receptor is removed. It is likely that such multiphasic deactivation

occurs in cells upon removal of agonist, but determining the

precise shape of such deactivation time courses is experimentally

taxing, and determining the molecular events underlying each

phase is not yet experimentally approachable. However, we can

now use simulations of the sort shown in Figure 7 as guides to

designing experimental studies of deactivation pathways.

Using computational modeling to analyze a specific dataset is

valuable in that conclusions are based on real data and are

statistically verifiable. However, the conclusions are to some extent

unique to the particular proteins used in the experiments, and the

experimental system used here is clearly simplified in comparison
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to the natural plasma membrane. However, a biochemically

defined experimental system of intermediate size, such as this one,

allows studies of complex regulatory interactions and their

mechanisms that would be impossible in a plasma membrane

where local protein concentrations are unknown and where effects

of other components are difficult to rule out. It will be important to

analyze other G proteins, effectors and GAPs in this way, both to

determine important differences among G protein modules at the

mechanistic level and to verify that this approach is generally valid.

The details of agonist interactions with receptors in the context of

a functioning signaling module is also of enormous interest, but

there is insufficient understanding of these phenomena to

incorporate them into a thermodynamically complete, data-driven

model. Our approach is in this sense complementary to the

rigorous but mechanistically speculative work of the sort pioneered

by Linderman and coworkers [43,47,48]; see also [49]. We also

need to engage questions of how GAPs function as effectors, and

the present work will both guide these experiments and motivate

direct measurements of the key interactions discovered so far.

Materials and Methods

Steady-State GTPase Assays
Steady-state GTPase activity was measured in large, unilamellar

phospholipid vesicles that contain purified m1 muscarinic cholin-

ergic receptor, Gaqb1c2 and phospholipase C-b1 [11]. Vesicles

were prepared as described and phospholipase was added

subsequently. The average diameter of the vesicles is 71 nm

diameter (SD = 5 nm) according to negatively stained electron

microscopic images. Concentrations of each protein and the

amount of recovered lipid were measured as described previously

[11,12]. For modeling, protein concentrations are calculated

according to the volume of the vesicle bilayer (see below), which is

itself calculated according to the concentration of total phospholip-

ids in the vesicle suspension [11] and their averaged partial specific

volume. Because the phospholipid bilayer is homogeneous, the

concentration of each protein in each vesicle is assumed to be

uniform. Vesicles contain an average of 0.8 to 5 receptors and 2 to

12 Gq molecules depending on their concentrations, which

probably approximates their molar ratios in natural membranes

[11]. The specific activity of agonist/GAP-stimulated GTPase

activity in these vesicles varied by 37% (SD) among six preparations

prepared over several months.

GTPase activity was assayed as described [11,50]. The assay

times and the amounts of vesicles used were adjusted to maintain

steady-state activity high enough for reliable determinations.

Specific activities were calculated according to receptor-accessible

Gq in cases where agonist stimulation was measured [11]. Activity

with no input from receptor was determined either in the presence

of atropine, an inverse agonist, or in vesicles that did not contain

receptors. Receptor-free vesicles probably displayed slightly lower

activity than receptor-replete vesicles assayed with atropine,

although the difference was uncertain because of difficulty in

quantitating total Gaq [22]. The GTPase datasets used in

parameterization of the model are listed in (Table S1). In each,

the concentration of one component (GTP, GDP, GAP) was varied

while others were held constant. When the concentration of GTP is

listed as equal to its Km, the value of Km was determined under that

set of assay conditions. The concentration of receptor varied among

vesicle preparations, but was not itself varied systematically.

Model Implementation
The biochemical model is implemented as a system of 14 ordinary

differential equations that describe the concentrations of each of the

protein species shown in Figure 1, plus free receptor and GAP (Figure

S1). Concentrations of free GTP, GDP, and Pi are constants (i.e.,

steady-state conditions) for the modeling and simulation reported

here. There are 48 kinetic constants, labeled as shown in Figure 1.

Concentrations of receptor, G protein and GAP are calculated

according to the volume of the lipid bilayer of the vesicles, and the

total volume available for all proteins in the system is therefore the

sum of the bilayer volumes of all the vesicles in the suspension

[51]. This convention yields both second-order association rate

constants and equilibrium association constants for protein-protein

binding that are about 13,000-fold higher than would be

calculated if concentration were expressed as the total aqueous

assay buffer volume. First-order dissociation rate constants are not

altered by this convention (Text S1). Proteins are assumed to be

homogeneously distributed among all vesicles, and any local

variation in concentration are assumed to be negligible. Specif-

ically, the number of vesicles with one or more of the proteins

absent is assumed to be negligible. Concentration of GTP, GDP,

and Pi are calculated according to the aqueous assay volume.

Global Fitting of Model Parameters to Experimental Data
To assign values to the kinetic constants appropriate to the m1

muscarinic receptor-Gq-phospholipase C-b1 system, we simulta-

neously fitted all parameters listed in Figure S1 to all the data of

the experiments in Table S1. Fitting minimizes the cost function,

the total mean square deviation between the predictions of the

model (vmod) and the data (vdata), adjusted for the standard

deviation (s) of triplicate determinations.

cos tfit~
XN

i~1

f(vdata{vmod)2=s2g ð1Þ

To search parameter space, we used simulated annealing, an

iterative stochastic search of multi-parameter space guided by the

Metropolis algorithm [52,53] (and references therein). At each

iteration, the model is numerically integrated to yield steady-state

GTPase activities and the cost function is calculated. Parameters are

then changed randomly and the model is re-evaluated. Changes

that decrease the cost function are accepted. Changes that increase

the cost function may also be accepted, but only probabilistically

according the Boltzmann probability function that depends on the

cost difference of the proposed change scaled by an order parameter

analogous to temperature in statistical physics. Simulated annealing

applies the Metropolis algorithm while decreasing the temperature

control parameter. The process allows escape from local minima of

the cost manifold and discovery of the global minimum [53].

A thermodynamically complete model, with all possible

interactions of species included and all reactions considered to

be reversible, allows the use of thermodynamic constraints during

the fitting process in addition to adjusting parameters to minimize

the cost function. These constraints include both the path-

independence of DG for reactions connecting two species

(DG = 0 for any closed loop) and the net DG of hydrolysis of

GTP to GDP and Pi that is enzyme-independent. In most fits, the

parameter set was adjusted to meet thermodynamic constraints at

each cycle of the search. Alternatively, thermodynamic constraints

may be used quantitatively as part of the cost function. Deferring

imposition of strict thermodynamic constraints may potentially

allow broader, more ergodic search of parameter space during

fitting, and this strategy was also evaluated.

In searches strictly constrained by path independence, each

newly generated candidate parameter set was adjusted before

recalculation of the cost function. Parameters to be recalculated to
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comply with path independence were chosen at random. A

symbolic manipulator (Mathematica, Wolfram Research, Inc.,

Champaign, IL) was used to derive explicit expressions for all the

possible combinations of recomputed parameter sets in terms of

randomly generated ones. The subset of parameters to be

recalculated was then chosen. This approach is valid because the

constraint equations effectively reduce the number of independent

kinetic parameters (degrees of freedom) in the system.

When strict constraints were deferred, each new, randomly

generated parameter set was used whether or not it satisfied

thermodynamics constraints to increase the potential ergodicity of

the algorithm. In order to remediate this violation, a penalty term

based on stoichiometric network theory (SNT) [54] was added to

the cost function for the fit shown in Equation 1. SNT provides a

method to compute sums of the chemical potential drops over

each of the elemental loops I of the reaction network [54]. These

target sums, shown as si for loop i in Equation 2, may be zero or

non-zero depending on whether a particular loop includes a non-

zero chemical motive force (hydrolysis of GTP). The penalty term

expresses the weighted effect of deviation from the target values for

all the elemental loops of the network. Its addition to the cost

function thus causes the simulated annealing process to drive the

fit toward simultaneously satisfying the thermodynamics con-

straints and minimizing the least-squares fit to the data. Overall,

fits using SNT penalties were found to be comparable to fits using

strict thermodynamic constraints, although SNT-constrained

searches converged less rapidly. Ending SNT-constrained searches

with a strict thermodynamically constrained search was an

efficient way to combine both methods.

cos tSNT~ cos t fitzweight|
X

loops i

f
X

loop edges j

Dmij{sig2 ð2Þ

The system of coupled differential equations (Figure S1) was

solved using the ode15s solver, which is designed for stiff systems of

ordinary differential equations (Matlab, The MathWorks, Natick,

MA). For efficiency, Matlab source code was automatically

translated to C and compiled as a UNIX executable. The process

was maximally parallelized because each data point can be

calculated independently. A typical run employed 80 to 100

processors. Most runs were performed on the UNIX clusters of the

Texas Advanced Computing Center, Austin, TX. Model-based

simulations were also generated using ode15s, values of the kinetic

constants shown in Table S2 and concentrations of proteins,

nucleotides and Pi given in the text. Simulations were run to

steady-state unless shorter times are specified. The integrity of

numerical computations was verified throughout by checking for

conservation of molecular types and by agreement with analytical

solutions in limiting regimes where possible.

Each independent fitting search settles on a different parameter

set which equivalently fits the data. Variability among fit results is

due to the intrinsic coupling between parameters and the

stochastic nature of the fit. We have verified that distributions of

the logarithms of the association and dissociation constants from

multiple search repeats are all peaked, unimodal and thus well

approximated by single Gaussians. We derived a best estimate for

each model parameter from the means of their logarithms.

Similarly, we derived a measure of error on each fit parameter

from the standard deviations of these distributions. This procedure

is justified because the logarithm of a rate constant is proportional

to activation energy; the average of logarithms preserves the

validity of the thermodynamic relationships among them.

Impulse Response
To simulate the response of G protein signaling to addition and

removal of agonist, we first brought the system to an initial steady-

state without receptor. We then instantaneously introduced a finite

amount of activated receptor and allowed the model to reach a

new steady-state. After 200 s, activated receptor was instanta-

neously removed and the system was allowed to return to the

original steady-state. To reveal the mechanisms underlying the

observed dynamics, the fractional activity Z, the fluxes and the

concentrations of all species were computed as a function of time.

Figure 7 shows a typical simulated output pulse shape (Z as

function of time) and the reaction pathways responsible for it. We

also surveyed the response to a pulse over a grid of receptor and

GAP concentrations (2,500 grid points). At each point on the grid,

we computed the time required for fractional activity to drop to

ZMax/e where ZMax is the plateau level of signaling output. To

study mechanisms of GAP-accelerated signal termination under

conditions where GAP minimally inhibits receptor-stimulated

signaling, we searched the grid for locations where increasing the

GAP concentration approximately 500-fold inhibited output by

#5%. Locations where the higher GAP concentration accelerated

signal at least two-fold are shown on inset of Figure 7. The

mechanisms underlying the dynamic response were studied at

selected points (Results).

Supporting Information

Text S1 Reaction volumes and second order rate constants.

Found at: doi:10.1371/journal.pcbi.1000148.s001 (0.02 MB

DOC)

Text S2 Determining the quality of the fit using thermal

ensembles.

Found at: doi:10.1371/journal.pcbi.1000148.s002 (0.03 MB

DOC)

Text S3 Interactive regulation by receptor and GAP under

cytosolic conditions.

Found at: doi:10.1371/journal.pcbi.1000148.s003 (0.03 MB

DOC)

Table S1 GTPase assays used for fitting the model.

Found at: doi:10.1371/journal.pcbi.1000148.s004 (0.03 MB

DOC)

Table S2 Values of parameters.

Found at: doi:10.1371/journal.pcbi.1000148.s005 (0.07 MB

DOC)

Figure S1 Differential equations used to model the reactions of

the GTPase cycle shown in Figure 1 of the main text.

Found at: doi:10.1371/journal.pcbi.1000148.s006 (1.61 MB EPS)

Figure S2 Cost minimization during simulated annealing to fit

parameters of the GTPase model under path-independence

constraints (Materials and Methods). The parameters are fit to

eight sets of GTPase data (Figure 2, Table S1). Blue symbols

denote accepted moves; others are red. The green triangle shows

the best fit to the data. Initial points are off-scale.

Found at: doi:10.1371/journal.pcbi.1000148.s007 (1.40 MB EPS)

Figure S3 Two-stage cost minimization. The initial stage used

non-conformance to stoichiometric network theory as a penalty

(Materials and Methods). Strict path independence was enforced

following step 2312 (dashed line). The small cost offset between the

two minimization methods has been removed from the left part of

the graph. Blue triangles show solutions accepted by the

minimization algorithm; red dots are rejected solutions.
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Found at: doi:10.1371/journal.pcbi.1000148.s008 (2.87 MB EPS)

Figure S4 Analysis of the thermal ensemble of kinetic param-

eters about the best fit to data. (A) Fractional projections of

eigenvectors of the covariance matrix onto the rate constants of

the model are shown as colors on the calibration bar. Eigenvectors

are ordered left to right from large eigenvalues to small eigenvalues

(floppy to stiff). Eigenvectors 1 to 35 describe the degrees of

freedom in the fit; the remaining 13 describe the thermodynamic

constraints. (B) Forward and reverse kinetic parameters for each

reaction are plotted according to projections of the 48 eigenvectors

on each parameter. Projections of constraint eigenvectors are

shown in red to highlight the forward to reverse indeterminacy

innate to a thermodynamically constrained fit. For projections

with absolute value .0.25, points are labeled with the eigenvector

number and reaction name. Higher values of projections indicate

that parameters are more independently measurable. Higher

eigenvector numbers (1 to 35) indicate greater stiffness.

Found at: doi:10.1371/journal.pcbi.1000148.s009 (3.03 MB EPS)

Figure S5 GTPase cycle fluxes determine fractional activation

during steady-state turnover. Net fluxes (A) and unidirectional

fluxes (B) through the GTPase cycle are shown for an intermediate

GAP concentration (6.461026 M) at 461024 M receptor, the

vertical line on Figure 6, at cytosolic nucleotide concentrations.

Lengths of the arrows denotes relative flux. Where no arrows are

visible, flux is not distinguishable from zero. Note that RGAT is

the central intermediate for all utilized pathways. See Figure S6 for

details.

Found at: doi:10.1371/journal.pcbi.1000148.s010 (0.67 MB EPS)

Figure S6 The reaction path through the GTPase cycle changes

with increasing concentrations of GAP. Net steady-state fluxes

(forward minus reverse) for the two branch point reactions of RGT

are shown as functions of the total concentration of GAP along the

vertical line in Figure 6, which corresponds to 461024 M receptor

and cytosolic nucleotide concentrations. Fluxes are calculated

from RGT and are therefore shown with negative values. On this

scale, flux of RGT to GT is not distinguishable from zero (nor is

GTP dissociation). At higher concentrations of GAP, flux from

RGT approaches zero because RGT is no longer formed at a

significant concentration. Total flux through the GTPase cycle

ranges from 10 mM/s in the absence of GAP to 5561025 mM/s at

saturating GAP.

Found at: doi:10.1371/journal.pcbi.1000148.s011 (0.79 MB EPS)

Figure S7 Accumulation of individual activated Gq species

changes with increasing concentrations of GAP. The steady-state

concentration of each activated (GTP-bound) species (right axis)

and net fractional Gq activation Z (left axis) are plotted as functions

of the total concentration of GAP along the vertical line in

Figure 6. The concentrations of GT and GAT are not

distinguishable from zero on this scale.

Found at: doi:10.1371/journal.pcbi.1000148.s012 (0.88 MB EPS)
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