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Abstract

Recently developed atrophic non-union models are a good representation of the clinical situation in which many non-
unions develop. Based on previous experimental studies with these atrophic non-union models, it was hypothesized that in
order to obtain successful fracture healing, blood vessels, growth factors, and (proliferative) precursor cells all need to be
present in the callus at the same time. This study uses a combined in vivo-in silico approach to investigate these different
aspects (vasculature, growth factors, cell proliferation). The mathematical model, initially developed for the study of normal
fracture healing, is able to capture essential aspects of the in vivo atrophic non-union model despite a number of deviations
that are mainly due to simplifications in the in silico model. The mathematical model is subsequently used to test possible
treatment strategies for atrophic non-unions (i.e. cell transplant at post-osteotomy, week 3). Preliminary in vivo experiments
corroborate the numerical predictions. Finally, the mathematical model is applied to explain experimental observations and
identify potentially crucial steps in the treatments and can thereby be used to optimize experimental and clinical studies in
this area. This study demonstrates the potential of the combined in silico-in vivo approach and its clinical implications for
the early treatment of patients with problematic fractures.
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Introduction

Atrophic non-unions, a class of non-healing fractures that

display only limited external callus formation, were thought to

occur as a result of impaired local blood supply [1,2]. However,

studies of human atrophic non-unions have shown that the gap

tissues can be well vascularized [3–5]. Recently several animal

models were developed to investigate the etiology of atrophic non-

unions [6–9]. In these animal models, the periosteum disruption

and reaming of the marrow canal is combined with adequate

stabilization of the osteotomy site. All models demonstrate

established non-unions. These animal models are a good repre-

sentation of the clinical situation in which most atrophic non-

unions develop [8]. Previous non-union models often utilized large

segmental bone defects [10–13] where non-unions developed due

to the size of the defect rather than the altered biology of the

fracture site [8].

Based on previous, purely experimental, studies with these

atrophic non-union models, it was hypothesized that in order to

obtain successful fracture healing, blood vessels, growth factors

and (proliferative) precursor cells all need to be present in the

callus at the same time [6,7]. In this study we will use a combined

in vivo-in silico approach to look at these different aspects

(vasculature, growth factors, cell proliferation). Furthermore, the

in silico model is used to investigate the occurrence of and design

possible treatment strategies for atrophic non-unions. Experimen-

tal results (original work and previously published) are used to

corroborate the numerical predictions for atrophic non-unions in

particular and demonstrate the potential of both the in silico-in vivo

approach and the treatment strategy of cell transplantation.

Finally, the mathematical model is applied to explain experimental

observations and identify potentially crucial steps in the treat-

ments.

Materials and Methods

Ethics statement
Rats were kept in accordance with UK Home Office welfare

guidelines and project license restrictions.

Animals and operative procedure
Animals and operative procedures were carried out as

previously reported [7]. In brief, 28 adult female Wistar rats were

randomised into 2 groups of 14 (‘non-union’ and ‘healing’) and
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were sacrificed at 1 (n = 3), 3 (n = 3), 8 (n = 4) and 16 (n = 4) weeks

and the right (operated) tibia was prepared for histological

examination. The animals were caged individually and allowed

water and food ad libitum and unrestricted weight-bearing.

A standardised circular frame external fixator [7] was applied to

the right tibia under general anaesthesia and with aseptic

conditions. An osteotomy was performed using a 1mm burr

under constant irrigation with cold saline solution. The fibula was

fractured manually using a three-point bending method and a

1 mm gap introduced at the site of the osteotomy. In 14 of the 28

animals the periosteum was stripped and the intramedullary canal

was curetted, both proximally and distally, for a distance

equivalent to 1 tibial diameter. The wound was washed thoroughly

and the skin was closed.

Two independent senior orthopaedic trainees assessed stan-

dardized radiographs obtained after operation and every two

weeks thereafter. They categorized the fractures as healing or not

according to the criteria of the AO-ASIF manual [2].

Cell transplant
Atrophic non-union was induced in 8 WKY rats as previously

described [7]. Three weeks after operation, 4 rats received a

100 ml injection at the non-union site of cultured bone marrow

cells and 4 rats received a 100 ml injection of carrier solution alone.

Bone marrow cells were obtained by aspiration of the hind limbs

of WKY rats and processed for injection as described in (a full

description of this protocol is submitted for publication elsewhere).

Two oblique radiographs were taken of the right (operated) tibia

post-operatively and at 2 weeks, 3 weeks (immediately following

cell/carrier injection) and every week thereafter. Radiographs

were examined by two independent senior orthopaedic trainees.

Each animal was categorized as healing or not (full report of results

submitted for publication elsewhere).

Measurement of callus formation
Formation of callus was assessed by scanning radiographs into a

Macintosh Quadra 650 computer and analyzing images (Optilab

Pro v2.5, Graftek, France). The callus outline was traced manually

and the size of the outlined area was calculated. The results were

expressed as a percentage change in the amount of mineralized

tissue from post-operative radiographs [7].

Histology and immunohistochemistry
The right lower limbs were fixed in neutral phosphate-buffered

formalin (4% v/v) for 48 hours, decalcified in neutral ethylene-

diaminotetra-acetic acid (EDTA), embedded in paraffin wax and

6mm sections were cut and stained with haematoxylin and eosin.

Wax sections for immunohistochemistry were cut onto poly-l-

lysine coated slides and immunostaining was performed with the

following antibodies: Transforming growth factor beta (TGF-b)

(mouse monoclonal, AbD Serotec Ltd, Oxford, UK), Basic

Fibroblast Growth Factor (FGF basic) (goat polyclonal, Santa

Cruz Biotechnology Inc. USA), Platelet-Derived Growth Factor

(PDGF) (goat polyclonal, R&D Systems Ltd, Abingdon, UK),

Bone Morphogenetic Proteins 2 and 4 (BMP 2/4) (goat polyclonal,

R&D Systems Ltd, Abingdon, UK), and Proliferating Cell Nuclear

Antigen (PCNA) (mouse monoclonal, Dako Ltd, Ely, UK).

Alkaline phosphatase-conjugated anti-mouse (Dako, Ely, UK) or

anti-goat (Sigma, Poole, UK) secondary antibodies were used. Cell

transplant samples labelled with BrdU were prepared as above,

followed by immunostaining with antibodies against BrdU (mouse

monoclonal, Dako Ltd, Ely, UK) in conjunction with an animal

research kit (ARK, Dako Ltd, Ely, UK). All antibodies were used

according to the manufacturer’s instructions.

Sections were analyzed using a light microscope. Cytoplasmic

growth factor expression was semi-quantified using a four-value

intensity score (0, 1+, 2+, and 3+) [14]. For proliferating cells, the

numbers of positively and negatively stained cells were counted in

randomly selected fields within the interfragmentary gap and the

median positive staining index was calculated.

Statistics
A Mann-Whitney U test was used to assess significance of the

cell proliferation results. All statistical analyses were performed

using the Statview software package (SAS Institute Inc., USA) and

significance was assumed as p,0.05.

Mathematical modelling
The mathematical model used in this study was originally

developed to describe normal fracture healing [15]. It expresses

the change of a number of continuum-type variables – growth

factor concentrations, cell densities and matrix densities – as a

function of time and spatial coordinates and is schematically

represented in Figure 1. The model accounts for various key

processes of bone regeneration. Starting with a callus filled with

granulation tissue, mesenchymal stem cells and growth factors

quickly occupy the regeneration zone. This is followed by

mesenchymal stem cell differentiation into osteoblasts (intramem-

branous ossification – close to the cortex away from the fracture

site) and chondrocytes (central callus region). Subsequently,

endochondral ossification can take place during which VEGF,

expressed by (hypertrophic) chondrocytes, attracts blood vessels

and osteoblasts, resulting in cartilage degradation and bone

formation. Bone remodelling processes are not included in the

model. The effect of mechanical loading can also be incorporated,

by making various biological processes dependent on local

mechanical stimuli [16]. Mechanical influences will however not

be the subject of the current study.

The regeneration processes are described by calculating the

spatiotemporal evolution of the density of mesenchymal stem cells,

osteoblasts, chondrocytes, fibroblasts, endothelial cells, bone,

cartilage, fibrous tissue and vascular matrix and the concentrations

Author Summary

In light of the ageing population, the occurrence of bone
fractures is expected to rise substantially in the near future.
In 5 to 10% of these cases, the healing process does not
succeed in repairing the bone, leading to the formation of
delayed unions or even non-unions. In this study we used
a combination of an animal model mimicking a clinical
non-union situation and a mathematical model developed
for normal fracture healing to investigate both the causes
of non-union formation and potential therapeutic strate-
gies that can be applied to restart the healing process.
After showing that the mathematical model is able to
simulate key aspects of the non-union formation, we have
used it to investigate several treatment strategies. One of
these strategies, the treatment of a non-union involving a
transplantation of cells from the bone marrow to the
fracture site, was also tested in a pilot animal experiment.
Both the simulations and the experiments showed the
formation of a bony union between the fractured bone
ends. In addition, we used the mathematical model to
explain some unexpected experimental observations. This
study demonstrates the added value of using a combina-
tion of mathematical modelling and experimental research
as well the potential of using cell transplantation for the
treatment of non-unions.

Integrative Approach to Bone Atrophic Non-Unions
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of three generic growth factor families (osteogenic, chondrogenic

and vascular growth factors). The spatiotemporal dynamics is

expressed by means of a system of 12 partial differential equations

of the taxis-diffusion-reaction type. The system’s general structure

is:

L~ccm

Lt
~+: Dcm ~ccmð Þ+~ccm{~ccm

X11

i~1

fi ~ccð Þ+~cci

" #
z~ff 0 ~ccm,~ccð Þ

L~cc
Lt

~DD~ccz~gg ~ccm,~ccð Þ

8>>><
>>>:

ð1Þ

t represents the time,~xx the space and~ccm t,~xxð Þ the non-dimensional

density of a migrating cell type (mesenchymal stem cells, fibroblasts

and endothelial cells).~cc t,~xxð Þ represents the vector of the other nine

non-dimensional cell concentrations, ECM densities and growth

factor concentrations (for which no directed migration is modelled).

Dcm ~ccð Þ and D (non-negative diagonal matrix) are the diffusion

coefficients (random motion). fi ~ccð Þ represents the taxis coefficients

for both chemotaxis (movement up a gradient of growth factor

concentration) and haptotaxis (movement up a gradient of matrix

density). f0 ~ccm,~ccð Þ and g ~ccm,~ccð Þ are reaction terms describing cell

differentiation, proliferation and decay and matrix and growth

factor production and decay. The system (1) must be complemented

by suitable initial and boundary conditions to ensure the existence,

uniqueness and non-negativity of a solution ~ccm t,~xxð Þ,~cc t,~xxð Þð Þ. The

model equations are implemented in a customized finite volume

code [17]. Additional information, including the complete set of

equations, boundary and initial conditions, parameter values and

implementation details, is provided in the Supplementary Methods

(Text S1) and Geris et al. [15]. For a detailed discussion of the

model’s underlying assumptions, simplifications and shortcomings,

we refer the reader to Geris et al. [15,16]. Non-union cases were

previously simulated by compromising the initial blood vessel or

growth factor supply [15] or by applying increased mechanical

loading (instability) on the fracture [16]. In all cases, the simulations

were able to capture observed experimental and clinical outcomes.

Moreover, in silico experiments were conducted to design potential

treatment strategies for the various non-union models [15,18,19]

however, these predictions were not corroborated by dedicated

experiments as is the case in this study.

A simplified (fixed) geometrical domain of a fracture callus

(Fig. 2A,B) was constructed based on the experimental set-up [7].

For the atrophic non-union case the domain was extended at the

distal end (away from the fracture site) over the distance that the

periosteum was stripped and the marrow canal was reamed in the

experiments. The current implementation of the model assumes a

constant callus size for both healing and non-union groups

(Fig. 2B). The experimentally observed callus size for both healing

and non-union groups is described in [7]. For the non-union group

there was a trend towards a decrease of the callus-size (by 10%)

over time, though this was not a statistically significant decrease.

Figure 1. Schematic representation of the mathematical model. Legend: GF = growth factor, m = mf + mc + mb + mv = total tissue density,
X = maximum tissue density for proliferation. The involvement of a variable in a regeneration subprocess is indicated by showing the name of that
variable next to the arrow representing that particular process, e.g. the vascular matrix density (mv) interferes with cell migration, endochondral
ossification and GF production.
doi:10.1371/journal.pcbi.1000915.g001

Integrative Approach to Bone Atrophic Non-Unions
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Figure 2. Mathematical modelling of the regeneration process in healing and non-union groups. (A) Domain of the simulations. 1:
periosteal callus; 2: intercortical gap; 3: endosteal callus; 4: cortical bone. (B) Boundary conditions for healing and non-union model. MSC:
mesenchymal stem cells; FB: fibroblast; OB: osteoblast; EC: endothelial cell; CGGF: chondrogenic growth factor; OGGF: osteogenic growth factor. (C) A
comparison of experimentally measured (Exp) [7] and numerically calculated (Sim) tissue constituents present within the interfragmentary gap of
healing and non-union groups (stacked bars). (D) Temporal evolution of the numerically calculated tissue fraction for the healing group. The insert
shows the interfragmentary region of the simulation domain. (E) Temporal evolution of the numerically calculated tissue fraction for the healing
group with reduced (by factor 10) cartilage (Pcs) and bone matrix (Pbs) production rates leading to a better correspondence between experimental
and simulation results.
doi:10.1371/journal.pcbi.1000915.g002

Integrative Approach to Bone Atrophic Non-Unions
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It was shown on a rabbit atrophic non-union model [6] that the

(lack of) granulation tissue containing the necessary MSCs plays an

important role in the formation of a non-union. Therefore, in

order to simulate the formation of an atrophic non-union, the

boundary condition for the MSCs was adapted (value of the

Dirichlet boundary conditions was decreased with a factor 105)

while all other model parameters and initial/boundary conditions

were left unchanged with respect to the normal healing case. As

the initial mechanical conditions for both the healing and non-

union group were equal, the influence of mechanical loading was

not taken into account explicitly in this study (the bioregulatory

model presented in [15] was used rather than an extended

mechanobioregulatory model presented in [16]). After initial

analyses, the values for the growth factor boundary conditions

(which were estimated in [15]) were lowered by a factor 10 in this

study (for both the healing and non-union case) to obtain a better

correspondence with experimental results (for both healing and

non-union case). This alteration only affected the average growth

factor concentration during the first weeks of the healing process

but had no effect on the amount and distribution of the cells and

extracellular matrix. For all simulations cartilage and bone matrix

formation rates were equal to the values reported in [15], apart

from a case in which these values were lowered by a factor 10.

This was done in order to investigate the effect on the healing rate.

For all the simulated treatment strategies, 1ml of MSCs was

administered at a concentration of 106 cells/ml.

Tissue fractions were calculated from the bone, cartilage and

fibrous tissue matrix densities in the central area of the domain,

corresponding to the experimentally investigated region of interest

(i.e. excluding those parts of the domain stretching out to the right

alongside the cortex, see insert in Fig. 2D).

Results

When simulating the healing process on a fracture where either

the periosteum was stripped or the marrow canal was reamed,

complete fracture healing was predicted to occur with delayed

bone formation in those parts of the callus domain where the MSC

source was removed. Only when both modifications were

combined (Fig. 2A,B) the occurrence of a non-union was predicted

(Fig. 2C), suggesting that, from a modelling perspective, lack of

primitive cells due to the stripping of the periosteum and the

reaming of the intramedullary canal influences other processes

further downstream in the healing process, such as blood vessel

formation and growth factor production, leading eventually to a

non-union.

In silico and in vivo atrophic non-union model
The simulation results showed healing progression similar to

experimental results [7], for both the healing and the non-union

group (Fig. 2C). For the non-union group, the mathematical

model predicted the formation of small amounts of cartilage and

bone by post-osteotomy week (POW) 8. For the healing group,

both direct bone formation (close to the undamaged cortical bone)

and cartilage formation (central part of the callus) were predicted

to form by POW3 (Fig. 2D). By week 8 this cartilage was replaced

by bone via endochondral ossification in the simulations.

Reducing the cartilage and/or bone matrix formation rate in

the mathematical model resulted in a slower ossification process

(Fig. 2E).

As blood vessels are represented in the mathematical model by a

continuum variable, the amount of vessels itself cannot be

quantified from the simulation results. Instead, the percentage of

vascularized tissue was calculated. Due to the absence of the

vasculogenesis process (i.e. process of blood vessel formation

occurring by a de novo production of endothelial cells in contrast to

angiogenesis where blood vessels are formed from pre-existing

ones [20]) in the mathematical model, blood vessel formation only

appeared at the onset of osteogenesis (week 1) (Fig. 3A,B). By 8

weeks, the non-union group reached the level of vascularisation

that was present in the healing group at 3 weeks (Fig. 3B).

In the experimental non-union group, cell proliferation was at

its highest one-week post-osteotomy, with PCNA positive cells

present throughout the interfragmentary gap. The number of

PCNA positive cells within the interfragmentary gap diminished at

3 and 8 weeks post-osteotomy (Fig. 3C,E). In the healing group,

cell proliferation peaked at week 3, where PCNA positive cells

were present in the periosteum and at the edge of the ossification

front (Fig. 3E). By 8 weeks the number of PCNA positive cells had

diminished, and they were only evident in the periosteum at the

periphery of the bridging callus.

In the numerical simulations, rapid proliferation of the MSCs at

the onset of the healing process spiked the value for cellular

proliferation in the first week for the healing group in contrast to

the non-union group (Fig. 3D). After differentiation into

chondrocytes in the central part of the callus and subsequently

into osteoblasts, the cellular proliferation dropped in the healing

group. Fibroblasts are the predominant cell type in the non-union

group and as the predicted fibrous tissue density was not as high as

that of bone or cartilage (leaving less space for cell proliferation) for

the healing group, the non-union group was predicted to have a

higher proliferative capacity at POW 8 compared to the healing

group, corresponding to experimental in vivo observations.

At POW 1, the hematoma within the interfragmentary gap of

the in vivo experimental healing and non-union groups stained

positively for TGF-b, FGF-b, PDGF and BMP 2/4, however,

TGF-b and FGF-b staining of the hematoma in the non-union

group appeared weaker than that of the healing group (Fig. 4A

and Figure S1). At POW 3, staining of all four growth factors was

evident in areas of endochondral ossification in the healing group,

where both osteoblasts and chondrocytes were expressing these

growth factors. In the non-union group, however, TGF-b, FGF-b

and BMP 2/4 staining had diminished in comparison to the one

week time point. At 8 and 16 weeks (identical results were

obtained for both time points), there was either weak or absent

staining of all four growth factors in the healing group, due to

bridging callus. In the non-union group, weak staining of all 4

growth factors remained in the fibrous tissue of the interfrag-

mentary gap.

In the mathematical model, generic, functional families rather

than specific growth factors were implemented. The average

concentration for each generic growth factor group was calculated

for the central area of the domain (indicated on insert in Fig. 2D).

In Figure 4B, the experimentally measured growth factors for the

healing group are depicted according to their classification in

generic growth factor families by Cho et al. [21], Pepper et al. [22]

and Lienau et al. [23]. Osteogenic growth factors are expressed

early on in the healing process during intramembranous

ossification. Later on, an increase in their production is predicted

during the endochondral ossification process. For the vascular

growth factors, after the initial decrease, upregulation is predicted

during the endochondral ossification process taking place in the

healing group, where VEGF is being expressed by (hypertrophic)

chondrocytes. For both the healing and non-union groups, the

highest levels of chondrogenic growth factors are predicted by the

mathematical model in the first week, similar to the experimental

measurements. For the non-union group (Fig. 4C), after the initial

growth factor release at fracture induction, some chondrogenic

Integrative Approach to Bone Atrophic Non-Unions
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growth factor production remains present up to and after POW 8.

Osteogenic growth factor production is predicted to rise between

POW3 and POW8 in the non-union group, as experimentally

observed.

Treatment strategies for atrophic non-unions
After corroboration of the mathematical model, we wanted to

test, both in silico and in vivo, the hypothesis that the onset of

atrophic non-union could be prevented by the injection of cultured

MSCs at three weeks post-osteotomy, i.e. when vascularity within

the interfragmentary gap was sufficient to keep the injected cells

alive. In silico, after the injection of the cell transplant at POW 3 in

the callus region, the amount of bone was predicted to gradually

increase whereas the amount of fibrous tissue was predicted to

decrease up to POW 16. The formation of a small amount of

cartilage was also predicted with endochondral ossification still in

progress at POW 16 (Fig. 5Ai,Aii). The amount of soft tissue

present at POW 16 was strongly dependent on the exact location

Figure 3. Vascularisation and cell proliferation in healing and non-union groups. (A) Comparison of the median number of blood vessels
between the healing and non-union groups [7]. (B) Percentage of vascularised tissue in the callus as calculated by the mathematical model. (C) A
comparison of the number of PCNA positive cells within the interfragmentary gap at 1, 3, 8 and 16 weeks post-osteotomy between healing and non-
union groups. (D) Cellular proliferation for the healing and non-union set-ups, as calculated by the mathematical model. (E) PCNA expression
indicating cell proliferation in the fracture area. For the healing group PCNA expression is found along the edge of callus formation in the periosteum
(arrows) and within the interfragmentary tissue (IT) at POW1 (magnification 6100) and along the callus ossification front (arrow) and within the
interfragmentary tissue at POW3 (magnification 6100). The non-union group shows PCNA stained cells in the interfragmentary gap at POW1
(magnification 6400) and PCNA positive cells surrounding areas of active bone resorption at POW3 (magnification 6400). CB = cortical bone.
doi:10.1371/journal.pcbi.1000915.g003

Integrative Approach to Bone Atrophic Non-Unions
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Figure 4. Growth factor expression in healing and non-union groups. (A) A comparison of growth factor staining index (based on
immunohistochemical analysis) within the interfragmentary gap at 1, 3, 8 and 16 weeks post-osteotomy between healing and non-union groups. (B)
Relative variation of the density of the generic osteogenic, chondrogenic and vascular growth factor density as calculated by the mathematical model
for the healing group (full line) and reported in literature (dash-dotted line) [21–23]. Bars represent the experimentally measured growth factor levels
of the growth factors belonging to these functional families (according to [21–23]) for the normal healing group. (C) Relative variation of the density
of the generic osteogenic, chondrogenic and vascular growth factor density, as calculated by the mathematical model for healing and non-union set-
ups. Experimentally measured (bars) growth factor variations of growth factors belonging to these functional families (according to [21–23]) are
depicted as well.
doi:10.1371/journal.pcbi.1000915.g004

Integrative Approach to Bone Atrophic Non-Unions
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of injection of the cell transplant with excentral injection leading to

unicortical bridging (Fig. 5Bi,Bii). A technique often used to

administer growth factors to healing fractures is the administration

of growth factors inside an injectable carrier close to but outside of

the callus (reviewed in [24]). Alternatively, one could adopt such a

carrier approach for cell delivery as well. However, simulating

such a treatment strategy predicted the formation of a layer of

bone closest to the cell source, preventing other cells from further

penetrating the callus (Fig. 5c).

Discussion

In the simulations, a combination of periosteal stripping and

marrow canal curettage led to non-union formation, thereby

Figure 5. The effects of MSC transplantation on atrophic non-union. (Ai) Simulation results for the treatment with the cell transplant
injected in the centre of the callus. (Aii) A comparison of experimentally measured (Exp) and numerically calculated (Sim) tissue constituents present
within the interfragmentary gap of control (carrier solution injected) and treatment (MSC transplant) groups (o* p,0.005, students t-test). Simulation
results are shown for a central injection of the carrier solution. (Bi) Simulation results for the treatment with the cell transplant injected excentrally in
the callus. (Bii) A comparison of experimentally measured (Exp) and numerically calculated (Sim) tissue constituents present within the
interfragmentary gap of control (carrier solution injected) and treatment (MSC transplant) groups (o* p,0.005, students t-test). Simulation results are
shown for an excentral injection of the carrier solution. (C) Simulation results for the treatment with the cell transplant injected outside the callus. (D)
Histological section (H&E) showing full bony callus bridging of the posterior (P) aspect of the tibia but no bony bridging at the anterior (A) aspect.
Original bone ends marked *. An area of endochondral ossification (arrow) is present at the anterior aspect of the tibia. Images taken at 620
magnification.
doi:10.1371/journal.pcbi.1000915.g005

Integrative Approach to Bone Atrophic Non-Unions

PLoS Computational Biology | www.ploscompbiol.org 8 September 2010 | Volume 6 | Issue 9 | e1000915



predicting the observed in vivo outcome, where all animals that had

periosteal stripping and curettage of the intramedullary canal went

on to form an atrophic non-union at 8 and 16 weeks post-

osteotomy and all animals where this was not performed went on

to unite successfully [7]. At 1 week there was no significant

difference in tissue constituents between the two experimental

groups. However, from 3 weeks onwards, there was a significant

increase in bone formation in the healing group when compared

to the non-union group where the interfragmentary gap consisted

predominantly of fibrous tissue. The model did not predict the

experimentally observed rounding of the cortical bone ends in the

non-union group, nor the capping of the intramedullary canal.

The cortical bone falls outside of the modelling domain so changes

in the cortical bone cannot be predicted by the model. The

mechanism which causes the capping of the intramedullary canal

is not known and does not seem to be encompassed by the present

model equations either.

Although the order of fracture healing events in the simulations

corresponds to experimental observations, the normal healing

enrolled faster in the simulations than in the experiments [7]. As

the predicted time frame of healing as well as the predicted tissue

pattern correspond well to other rat fracture models [8,25], we

speculate that this difference might be attributed to a number of

factors that are specific for this experimental set-up. The initial

delay between experimental observations and numerical simula-

tions is one week (Fig. 2D). This could be due to a particularly

lengthy inflammatory phase in this specific experimental set-up, a

phase that is not incorporated explicitly in the mathematical

model. After POW 3, the endochondral ossification process enrolls

much faster in silico than in vivo increasing the time delay between

experiments and simulations. Decreasing the endochondral

ossification speed in silico by e.g. reducing the cartilage and bone

matrix production rate in the model leads to a better correspon-

dence between experiments and simulations (Fig. 2E). For all other

simulation results shown in this study the original values for

cartilage and bone matrix production rates as determined in [15]

were used.

Similar to the experimental observations [7], by 8 weeks, the

non-union group reached the level of vascularisation that was

present in the healing group at 3 weeks (Fig. 3B). The slower

vascularisation of the simulated non-union with respect to its

experimental counterpart could be due to the absence of de novo

blood vessel formation (vasculogenesis) in the mathematical model

combined with the absence of vascular growth factor production

by fibroblasts, leading to a slow build-up of the vascular network.

The experimentally observed decrease in number of blood vessels

during bone/blood vessel remodelling at POW 8 (which is often

accompanied by an increase in vessel diameter, a parameter that is

not included in the experimental measurements) cannot be

predicted as the model does not encompass the remodelling

process. Despite these limitations, the mathematical model does

predict a substantial time difference in the vascularisation of the

callus area as shown by the (also experimentally observed) lag in

blood vessel formation between healing and non-union groups at

POW 3.

Cell proliferation observed in the in vivo healing group,

concurred well with that observed by Iwaki et al. [26] where

proliferating cells peaked between 1 and 3 weeks after fracture. For

the proliferation, no exact match to the experimental measure-

ment could be obtained from the simulation results. A general

cellular proliferation value was calculated by multiplying the cells

in the callus by their respective proliferation rates (which are fixed

parameters in the mathematical model), normalized to total cell

amount and the maximal proliferation rate. As all cells in the

mathematical model are able to proliferate, providing there is

sufficient space surrounding them (i.e. ECM density is sufficiently

low), this calculated value is merely a theoretical one. The initial

low density fibrous matrix present at the start of the healing

simulations allows for rapid proliferation of the MSCs, spiking the

value for cellular proliferation in the first week for the healing

group in contrast to the non-union group where very few MSCs

were present (Fig. 3D). The formation of differentiated tissue types

such as bone and cartilage constrained the proliferation of the cells

later on in the regeneration process for the healing group. As the

fibrous matrix that develops in the non-union group does not

reach the density of the bone or cartilage in the healing group, the,

mainly fibroblastic, cells in the former group had a higher

proliferative capacity at POW 8 compared to the latter, as

observed in vivo.

Growth factor expression observed experimentally during the

early stages of bone healing correlated well with other studies

reporting BMP [27], TGF-b [28], and FGFb [28,29] expression in

normally healing rat fracture models, and PDGF expression in

normal and impaired human fracture healing [30]. Furthermore,

these results correlate with those of Brownlow et al. [6] who noted

in a rabbit atrophic non-union model that by POW 8, there was

little or no expression of TGF-b, FGFb, PDGF or BMP 2/4. Cho

et al. [21], Pepper et al. [22] and Lienau et al [23] classified growth

factors in functional families, similar to those used in the

mathematical model. The reported evolution over time of these

growth factor families corresponds well to the model predictions

for the healing group (Fig. 4B). For the vascular growth factors,

after the initial decrease, upregulation is predicted during the

endochondral ossification process taking place in the healing

group, where VEGF is being expressed by (hypertrophic)

chondrocytes, corresponding well to previously reported experi-

mental observations [31]. The experimentally observed decrease

in osteogenic growth factors after week 3 is not present in the

model as the osteoblasts remain active (i.e. keep producing growth

factors). Addition of a supplementary variable representing the

matured osteoblasts (osteocytes) could resolve this discrepancy

between experiments and simulations. For the non-union group,

the osteogenic growth factor levels are predicted to rise between

POW3 and POW8, corresponding to experimental in vivo

observations. Furthermore, the simulations show occurrence of

the highest levels of chondrogenic and vascular growth factors in

the first week, as experimentally observed. In the mathematical

model chondrocytes are the only cell type capable of chondrogenic

growth factor production and the main responsible for the

production of vascular growth factor (upon hypertrophy). As

chondrocytes are predicted to be only marginally present in the

callus of the non-union group, the predicted chondrogenic and

vascular growth factor concentrations further on in the healing

process are very low for this group in comparison to the growth

factor release at fracture induction. Furthermore, for the non-

union group, initial growth factor concentrations are strongly

driven by boundary conditions that were applied during the first

days after fracture to mimic local and systemic reactions occurring

outside of the modelling domain [32,33].

Comparison of experimental and simulation results showed a

number of discrepancies that could be attributed to a number of

model simplifications and suggestions were made above to

overcome those. Additional model simplifications were made in

the framework of this study such as the use of a fixed callus size

(rather than a size that varies over time) and the continuum

representation of blood vessel formation, which will be dealt with

in future versions of the mathematical model. For a thorough

discussion on the model limitations we refer the reader to [15]. In
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this study, mechanical loading was not modelled explicitly as the

initial mechanical situation was the same for both the healing and

the non-union group. During the healing process, the development

of stiffer tissues such as bone might alter the local mechanical

conditions in the healing group thereby possibly influencing the

healing process. However, under normal mechanical conditions

(i.e. appropriate external stabilisation that allows for normal

healing to occur) the bioregulatory model used in this study [15]

behaves the same as an extended mechanobioregulatory variant

[16] that incorporates mechanical loading explicitly.

The use of stem cells in the treatment of non-unions is gaining

interest (reviewed in [34]). However, to date these stem cells were

delivered in a (ceramic) scaffold or carrier structure requiring

invasive surgery. Non-invasive techniques such as direct injection

of a cell-buffer mixture or the use of injectable carriers could

substantially reduce the additional trauma for the patient and were

investigated by an in silico – in vivo approach in this study. As blood

vessel formation is delayed in the non-union group, the most

suitable time point for intervention of either growth factor

treatment or cell transplant, seems to be three weeks post-

osteotomy, when the blood supply to the interfragmentary gap has

started to recover. Injection of MSCs directly into the callus area

elicited to a good healing response in silico. Experimental results

confirmed that transplantation of MSCs into the interfragmentary

gap at POW 3 prevented the onset of an atrophic non-union.

There was significantly more bone present in the treatment group

(cell transplant) than in the control group (carrier solution). Union

by bridging callus had occurred in three of the four treatment

animals. Yet, all of the animals treated by MSC transplantation

displayed an asymmetric healing with endochondral ossification in

progress in part of the intercortical callus (Fig. 5D). As the zone of

endochondral ossification was not always observed on the same

aspect of the tibia (anterior vs posterior), mechanical loading was

ruled out as the major cause. The in silico experiments carried out

in the framework of this study identified another potential cause,

namely injection of the cell transplant excentrally in the callus.

Upon excentral injection at POW 3, cartilage undergoing

endochondral ossification was predicted to be present at the

intracortical gap opposite the injection site at POW 16 (Fig. 5Bi).

The predicted amount of soft tissues present in the callus in that

case agreed well with the experimentally measured amount

(Fig. 5Bii). The use of an injectable carrier to deliver the cells

close to the fracture healing site did not generate a good healing

response in silico. The limitation of the MSCs’ migration speed due

to the fibrous extracellular matrix that has formed during the first

three weeks is not problematic in case of injection directly into the

callus area. However, this does become an issue when the cells are

administered in a carrier close to (but not within) the fracture site.

MSCs entering the callus area start differentiating under the

influence of the growth factors that are present. As the cells

migrate slowly into the callus area, they become differentiated

before they reach the central area of the callus. Differentiated cells

deposit bone matrix to replace the fibrous matrix which further

decreases the migration speed of the cells that enter the callus area

while the osteogenic growth factors that are expressed enhance the

differentiation, resulting in a layer of bone close to the cell source

while fibrous tissue persist in the major part of the callus area.

In this study we have shown that a mathematical model, initially

developed for normal fracture healing, can be used as a clinical

tool to investigate aetiology and treatment of atrophic non-unions.

Despite a number of deviations mainly due to simplifications in the

model, the mathematical model is able to capture essential aspects

of the atrophic non-union as observed experimentally in vivo.

Interestingly, the correspondence between simulations and

experiments was obtained without changing the previously

established parameter values, which clearly adds to the model’s

potential. Moreover, the model can be used to design treatment

strategies, assist in the interpretation of experimental observations

and test in silico various hypotheses in order to explain unexpected

experimental results. Following such a combined in silico-in vivo

approach may help to optimize experimental and clinical studies

in this area.

Supporting Information

Figure S1 Growth factor expression in healing and non-union

groups. Immunohistochemical analysis of TGF-beta, FGF-b,

PDGF and BMP2/4 in healing and non-union groups at 1 and

3 weeks post-osteotomy. Images taken at 620 or 640 magnifica-

tion and positive growth factor staining is seen as a red signal.

Found at: doi:10.1371/journal.pcbi.1000915.s001 (6.59 MB TIF)

Text S1 This file contains a detailed description of the

mathematical model used in this study including the full set of

equations, parameter values, boundary & initial conditions and

implementation details.

Found at: doi:10.1371/journal.pcbi.1000915.s002 (0.67 MB

DOC)
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