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Abstract

The mammalian suprachiasmatic nuclei (SCN) contain thousands of neurons capable of generating near 24-h rhythms.
When isolated from their network, SCN neurons exhibit a range of oscillatory phenotypes: sustained or damping oscillations,
or arrhythmic patterns. The implications of this variability are unknown. Experimentally, we found that cells within SCN
explants recover from pharmacologically-induced desynchrony by re-establishing rhythmicity and synchrony in waves,
independent of their intrinsic circadian period We therefore hypothesized that a cell’s location within the network may also
critically determine its resynchronization. To test this, we employed a deterministic, mechanistic model of circadian
oscillators where we could independently control cell-intrinsic and network-connectivity parameters. We found that small
changes in key parameters produced the full range of oscillatory phenotypes seen in biological cells, including similar
distributions of period, amplitude and ability to cycle. The model also predicted that weaker oscillators could adjust their
phase more readily than stronger oscillators. Using these model cells we explored potential biological consequences of their
number and placement within the network. We found that the population synchronized to a higher degree when weak
oscillators were at highly connected nodes within the network. A mathematically independent phase-amplitude model
reproduced these findings. Thus, small differences in cell-intrinsic parameters contribute to large changes in the oscillatory
ability of a cell, but the location of weak oscillators within the network also critically shapes the degree of synchronization
for the population.
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Introduction

Circadian clocks generate the near 24-h oscillations that

orchestrate daily behaviors in organisms throughout the kingdoms

of life [1]. In mammals, the suprachiasmatic nucleus (SCN), a

bilateral structure of 20,000 neurons in the ventral hypothalamus,

functions as the master pacemaker with circadian cells driving

rhythms in behavior and physiological processes, such as sleep-

wake, locomotor activity, temperature, and hormone release [2]. It

was hypothesized that every SCN neuron acts an autonomous

clock, using molecular feedback loops to generate daily rhythms in

gene expression and cellular output in the absence of external

signals [3,4,5,6,7]. For example, the Period2 (Per2) gene, a clock

gene found in humans and other animals, shows daily rhythms in

transcription that appear to depend on daily repression by

complexes including its protein (PER2) [8,9]. Recent data,

however, highlight that, when isolated, SCN neurons exhibit a

range of behaviors including damped or unstable circadian

oscillations [10,11]. Therefore, although all cells may be capable

of autonomous rhythmicity, they require stabilization from the

SCN network to function as robust circadian oscillators. The

potential source or sources of this cell-intrinsic variability, as well

as its potential impact, are unknown. Whether the intrinsic

properties of SCN oscillators independent of, or interactions

amongst groups of oscillators within, the SCN network, or both,

are responsible for the overall behavior is a current area of

research [12,13].

To first test the hypothesis that intrinsic differences between

cells may affect how they resynchronize to each other, we followed

daily oscillations of PERIOD2 protein levels in single SCN cells

before, during, and after pharmacological blockade of intercellular

signaling. The results revealed individual cells that differed in their

intrinsic amplitude, level of gene expression, circadian period and

ability to sustain rhythmicity, none of which predicted the cells’

behaviors as they resynchronized to the population. Instead, we

found that oscillations resumed and cells joined the rhythmic

population at specific circadian phases, ultimately revealing the

previously described daily waves of gene expression across the

SCN [6,14,15]. Recent work has further suggested that the phase

relationships of SCN cells across the network could be important

for robust rhythmic behavior of the tissue [13,16,17].

To understand the complex behaviors of SCN cells, many

studies have employed computational models. Both deterministic

models detailing the molecular processes driving oscillations in
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single cells and stochastic models investigating the effects of noise

on the system have aided in the understanding of mechanisms

generating circadian rhythmicity in mammals [18,19,20]. Multi-

cellular network models have been constructed from these single

oscillators to describe synchrony across the SCN tissue, entrain-

ment to light-dark cycles, and phase shifting behavior

[21,22,23,24]. Network models have also probed regional

differences in the SCN [25,26] and the phenomenon of splitting,

in which synchronized regions in the SCN can oscillate with the

same period but opposite phases [27]. We were interested in the

relationship between cell-intrinsic rhythmicity and tissue synchro-

nization, and found two major implications in the literature. First

is that ‘‘smaller is better’’: damped oscillators [23,24,28] and

oscillators with short relaxation times [29] synchronize efficiently.

Additionally, a recent study of fibroblast cells shows that cellular

oscillators have small, but sustained amplitudes, and that their

proximity to a bifurcation allows them greater control over their

period [30]. The authors note that this could be advantageous for

peripheral oscillators that need to be entrained by the pacemaker

and suggest that similar properties in pacemaker cells could aid

synchrony. Second, network topology also affects the quality of

synchrony, and specifically, small-world type network topologies

are beneficial for synchrony [22,26]. It has not been shown,

however, why small oscillations are good for synchrony or how

cell-intrinsic behaviors and network topology together affect

synchrony. Using a mathematical model provides us the flexibility

to explain biological phenomena without constraints found in the

physiology, e.g. the type, number, and location of oscillators within

a network. We sought to address this by first assessing the roles of

intracellular processes on intrinsic properties, such as rhythmic

ability and phase-responsiveness. Next we assessed the effects of

individual cell properties on network synchronization, and finally,

how the location of key cells within the network affects synchrony.

We hypothesized that intracellular properties and intercellular

interactions contribute to the resynchronization behaviors we

observed in the tissue data. To test this prediction, we used a

computational model to simulate clock gene transcription-trans-

lation feedback loops in single cells and found that small changes

in parameter combinations produce the range of intrinsic

oscillations observed in SCN cells. When placed in a network,

these cells were able to synchronize, meaning that they were

capable of adjusting their phases to align with the population. To

understand this phenomenon, we computed velocity response

curves (VRCs) for these cells [31,32]. VRCs predict the phase

velocity, i.e. how fast phase changes in response to intercellular

signals. For our model, the VRCs suggested that cells with weaker

oscillations could adjust their phase velocity more readily than cells

with strong oscillations. These results were consistent with previous

results that ‘‘smaller’’ is better to initiate synchrony, but with an

alternative definition of smaller – we studied the effects of

rhythmic, but low-amplitude (weak) cells, rather than initially

rhythmic cells that lose amplitude, and eventually, all rhythmic

ability, over the long-term (damped). We therefore tested the

prediction that inclusion of weak circadian cells, which are highly

responsive when isolated, would improve a network’s ability to

synchronize. We hypothesized that as weak cells establish

rhythmicity and synchrony in the network, they lose responsive-

ness, becoming strong oscillators when coupled. By using a model

of 400 coupled, heterogeneously oscillating cells, we found that

increasing the proportion of weak oscillators or placing weak

oscillators at more connected nodes in the network allowed for

improved resynchronization.

Results

Circadian cells desynchronize similarly, but resynchronize
differently

Recent reports have shown that when SCN explants are treated

with tetrodotoxin (TTX), a blocker of voltage-gated Na+ channels,

the circadian rhythms of single cells gradually drift out of phase

from one another [6,10,33,34]. To understand the relative

contributions of cell-intrinsic and network properties to these

synchronization dynamics, we examined the bioluminescence

recorded from single cells (n = 123 across two nuclei, slice 1; n = 90

within one nucleus, slice 2; for details see Text S1) in SCN explants

from homozygous PERIOD2::LUCIFERASE (PER2::LUC)

knock-in mice [35] during and after TTX treatment (Fig. 1).

Although all cells appeared to gradually drift out of phase, only

some expressed sustained circadian rhythms while others slowly or

rapidly lost rhythmicity until the TTX was removed, at which

point they began to regain rhythmicity and, eventually, synchrony.

Looking at the timing of recovery of oscillations in slice 1, we

found that approximately one-third of the cells that regained

rhythms showed significant circadian oscillations within the first

35 h after removal of TTX. During the next 10 h another group

of cells, similar in number, became circadian and began to

synchronize to the first group. The remaining cells showed

significant circadian rhythms starting around 45 h after removal of

TTX, with the final cells entering by 96 h. Interestingly, the initial

cohort of cells regained rhythmicity closely in phase while later

cells regained rhythmicity with more broadly dispersed phases

(Figs. 1B; Text S1; Rayleigh tests performed at the entrance time

of the last cell in each cohort; Cohort 1, n = 39 cells, r = 0.68;

Cohort 2, n = 43 cells, r = 0.55; Cohort 3, n = 32 cells, r = 0.43). In

the second explant, we found a similar gradual restoration of

rhythmicity to individual cells after TTX was removed (slice 2;

Text S1). There was also a spatial pattern in each nucleus of the

slices: lateral cells regain rhythmicity earlier than or phase lead

medial cells (see Table S2 and Figure S10 in Text S1). In addition,

Author Summary

Circadian rhythms are daily, near 24-h oscillations in
biological processes that nearly all organisms on Earth
experience. Single cells contain a molecular clock that
drives circadian rhythms in physiology and, when many
cells synchronize in a population, daily behaviors. We
hypothesized that small differences in intrinsic cellular
properties allow for a diversity of circadian periods and
amplitudes across cells. We observed circadian cells and
their synchrony before, during, and after limiting commu-
nication between cells and then compared their intrinsic
properties to their resynchronization behavior. We found
that arrhythmic, weakly oscillating, and self-sustained
circadian cells rejoined the rhythmic population indepen-
dent of their cell-intrinsic oscillations. Using a mechanistic
computational model of circadian cells, we found that
resynchronization could be enhanced by including more
weak oscillators or by placing weak oscillators at more
connected nodes in the network. We conclude that
intrinsic properties (e.g. oscillator weakness and respon-
siveness) and network structure (e.g. positions of weak
oscillators) can independently buffer tissue rhythms from
perturbations. This reveals how cellular and network
properties impose rules on systems of circadian cells that
must achieve synchrony from a desynchronized state, for
example during perinatal development or when forced to
overcome societal constraints on sleep-wake behavior,
such as working early or late shifts.

Weak Oscillators Improve Synchrony
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lateral cells are, on average, smaller in amplitude than medial cells.

This suggested a spatial organization of amplitude in the network

during synchrony recovery. This led us to ask if there was

something intrinsically different about the oscillations in cells that

became rhythmic earlier or later after TTX was removed.

We reported previously that SCN cells uncoupled by TTX

display diverse circadian behaviors both in terms of amplitude and

period [10]. We acknowledge the possibility that TTX treatment

itself can alter a cell’s amplitude; however, we will assume that

amplitude during TTX is reflective of amplitude that is

independent of other feedback from other cells, and as such, is

intrinsic to a cell. To determine whether or not intrinsic behaviors

explain early or late restoration of rhythms, we compared

amplitudes and periods of cells in TTX-treated SCN explants to

the time when their rhythms reemerged and to the quality of

synchrony within the group of circadian cells. In both slices, we

found no significant correlations (R2 values of ,0.2, Text S1)

between intrinsic circadian properties, such as mean biolumines-

cence, total bioluminescence, bioluminescence amplitude and

period, and when a cell joined in oscillations within a

resynchronizing SCN network. We conclude that intrinsic

properties alone fail to explain the dynamic emergence of rhythms

Figure 1. TTX-treatment and wash-out in SCN explants reveals differences in the dynamics of desynchrony and resynchrony of
single cells. (A) Raster plot of bioluminescence (a. u.) from single neurons in an organotypic SCN explant before (days 1–6), during (days 7–12), and
following treatment with 0.5 mM tetrodotoxin (TTX, days 13–18). Time of TTX treatment (days 7–12) is indicated by the shaded region of the bar along
the top of the raster plot. TTX minimizes cell-cell communication and reveals intrinsic circadian properties. Here we plot traces from 123 neurons that
show a range of oscillatory behaviors in TTX, all of which are rhythmic when coupling is in place before treatment. Following washout, rhythms return
to all cells, but at different rates. The intensity of the white is proportional to the bioluminescence in each experimental condition. (B) Preliminary
data suggests a small population of neurons resynchronizes first and then a slow recruitment of the remaining population is observed following TTX
washout. Here we include the SI for the entire population (black), as well as the SI for each cohort of cells. Cohorts are determined by when cells
become rhythmic after the wash; cells in cohort 1 (blue) become rhythmic first (hours 31–35), cells in cohort 2 (green) become rhythmic second
(hours 36–45), and cells in cohort 3 (red) become rhythmic after hour 46 of the wash. (C) The location of single cells recorded in the SCN explant. Cell
position is color-coded based on the resynchronization cohort.
doi:10.1371/journal.pcbi.1002787.g001

Weak Oscillators Improve Synchrony
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and resynchrony of individual cells. Therefore network properties

likely participate along with these intrinsic behaviors in synchrony.

To explore the relationship, if any, between the intrinsic properties

of the cells within the context of the network, we implemented a

mathematical model.

Small changes in key parameters can create diverse
oscillator types

First, we sought to reproduce the diversity of characteristics of

isolated cells (i.e. PER-driven bioluminescence with patterns that

could be described as strongly rhythmic, weakly rhythmic or

arrhythmic over multiple days) by identifying potential molecular

determinants of these circadian phenotypes. We utilized an

existing model of the mammalian molecular clock to simulate

SCN neurons [18] and focused on four parameters that regulate

the output we recorded in the biological data (PER2::LUC): the

rate of transcription of the Period (Per) gene, or translation,

phosphorylation or degradation of the PERIOD (PER) protein.

We categorized each cell as arrhythmic, weak (rhythmic but low in

amplitude), or strong (rhythmic and high in amplitude; see

Materials and Methods). We found that changing any of the four

parameters by at least 10% moved simulated cells from arrhythmic

to weakly rhythmic to sustained circadian gene expression (Fig.

S2A). Regardless of whether they were varied alone or in

combination, these parameters recapitulated the phenotypes found

in SCN explants (Figs. S1, S2, S3).

We used a multi-dimensional visualization technique to evaluate

the relative contributions of the four parameters to rhythm

generation [36], providing a novel analysis of sensitivity of strength

and sustainability of circadian oscillations to specific parameter

combinations. By nesting parameter combinations into stacks, we

arranged our data set with a large number of parameters in two

dimensions that could be displayed easily (Materials and Methods).

Based on the position of cells across the parameter space

visualization, we found that small changes in rates of transcription

of Per mRNA and degradation of PER protein produced larger

effects than changes in translation and phosphorylation of PER on

the circadian phenotype of simulated cells (Figs. S1 and S2B). Per

rhythmicity was similarly more sensitive to Bmal1 transcription and

BMAL1 degradation than BMAL1 translation and phosphoryla-

tion (Fig. S2B).

We ensured that individual model cells accurately represent-

ed individual cells from the slice. Amplitude was of particular

importance because here we tested the effect of weak oscillators

for the first time. When we compared the circadian periods and

amplitudes of simulated and recorded cells we found no

correlation between period and amplitude for either the model

or the slices (Fig. S4; R2,0.02 for all). Further, the periods

were similarly distributed (slice 1 std. dev. = 2.1 h, slice 2 std.

dev. = 2.1 h, model std. dev. = 2.1 h) and the amplitude

distributions were dominated by small values in both the

model and the slices (Fig. S4, Text S1). This suggests that the

period and amplitude values in model cells faithfully mimic

behaviors we observe in the slice during TTX treatment.

Neither this independence of period and amplitude, nor the

dominance of small amplitudes has been described in other

computational models. Here we are explicit in our modeling

that the intrinsic amplitude is much smaller than the in-network

amplitude. We concluded that by specifying small differences in

key circadian parameters between cells, our simulated cells

accurately represented the diverse rhythmic abilities, as well as

realistic intrinsic properties such as period and amplitude, of

SCN cells.

Weak oscillators predicted to show greater shifts
following perturbation

Another relevant property of a circadian oscillator is how it will

adjust its phase velocity (speed) following a perturbation. We

calculated the velocity response properties of the simulated cell set,

including both strong and weak cells. Fig. 2C shows representative

velocity response curves (VRCs) to a signal, where curves are

plotted as a function of phase of oscillation. From the curve, we see

that if the signal arrives early in the day (around circadian time,

CT, 0) the cell will speed up, and if it arrives late in the day

(between CT6 and CT12), the cell will slow down. To measure the

cell’s ability to shift, we computed the area under the absolute

value of the VRC. We compared this VRC area to intrinsic

oscillator amplitude (the sum of the peak to trough amplitude of all

states) and found it inversely correlated with velocity response

(Fig. 2D; R2 = 0.85). This indicates that oscillators with small

intrinsic amplitude are more likely to have larger velocity response

and therefore greater phase shifting ability compared to high-

amplitude cells. Interestingly, we found that small oscillators in

both the simulation and slice 1 have a broader distribution of

periods compared to strong cells. The VRC results suggest a

functional strategy to overcome this period variability: weaker cells

are better at shifting their phase.

Networks including weak oscillators in greater
proportions or at more highly connected nodes reach
higher synchrony

To test empirically if and how the proportion of weak oscillators

contribute to the synchronization properties of a network like the

SCN, we modeled a network of 400 SCN cells with diverse

oscillatory abilities, including different periods and amplitudes, as

well as network connections. Specifically, each cell had a unique

set of parameters selected randomly to establish a population with

defined proportions of arrhythmic, weak and sustained oscillators.

We chose to include both local and global coupling between cells

based on recent theoretical work [22]. Each cell was connected to

its four nearest neighbors and 20% of cells connected to cells

beyond their immediate neighbors (Fig. S5). Coupling was

achieved in the model by simulating release of vasoactive intestinal

polypeptide (VIP), a known synchronizer in the SCN [37], from all

cells. Each network (n = 56 independent runs for each condition)

was populated with 400 characterized cells and its overall response

to uncoupling and recoupling was measured by calculating the

synchronization index (SI) of all cells (see Materials and Methods).

On average, we found that networks with more weak oscillators

(total oscillator amplitude , = 8.4 a.u.) reliably reached higher

levels of synchrony (SI. = 0.7 at days 15–18) with approximately

5-fold higher synchrony in networks comprised of mostly weak,

compared to mostly strong, oscillators (Fig. 3A–B; ANOVA

between populations, p,0.001). We found that networks with only

strong oscillators failed to resynchronize (Fig. 3A–B; SI = 0.2 at

days 15–18). We conclude that weak, highly shiftable cells can

promote synchrony.

To test the importance of location within the network, we

evaluated synchrony in networks of 50% weak and 50% sustained

oscillators in which weak oscillators were assigned to hubs, i.e.

nodes with more than the average of 10 outputs (range = 4–39

outputs). We found that when weak cells were placed in the more

connected nodes of the network (n = 56 independent network runs

for each condition), the population reached approximately 5-fold

greater synchrony compared to networks with strong cells at these

nodes or networks with oscillators distributed to nodes randomly

(Fig. 3C–D ANOVA between populations, p,0.001). The quality

Weak Oscillators Improve Synchrony
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Figure 2. Mechanistic model produces diverse cells with varying response properties similar to SCN cells treated with TTX. (A)
Bioluminescence traces from cells classified as strong (left), weak (center) or arrhythmic (right) based on their amplitude in their final cycle during TTX
treatment. We show the last peak before TTX treatment and then 5 cycles during treatment. (B) Simulated traces using a mechanistic model from
strong, weak, and arrhythmic cells show similar oscillation qualities to the real cells. Simulated cells are classified according to their limit cycle’s
‘‘cumulative amplitude’’, which is the sum of peak-to-trough amplitudes of all modeled messages and proteins. (C) The range of amplitudes and
phases of velocity response curves (VRCs) from strong (left) and weak (right) simulated cells; VRCs are not computable for arrhythmic simulated cells.
The shaded regions indicate the areas in which model VRCs peak and trough. Two representative VRC’s are shown in each plot, each with a trough
and peak falling in a different place in the regions. Circadian time is defined relative to peak Per mRNA expression, which is at circadian time (CT) 7.
Arrows indicate the VRC’s for the cells shown in (B). By computing the area under the absolute value of the VRC, we determine each cell’s ability to
speed up or slow down when signaled (greater area indicates greater ‘‘shiftability’’). (D) We plot the VRC area (log scale) vs. the cumulative amplitude
(linear scale). Arrows indicate the data points for the example cells in (B). We include the correlation coefficient for the amplitude and natural
logarithm of the VRC area. There is a negative correlation between the VRC area and the oscillatory behavior of simulated cells, indicating that weak
cells are more shiftable.
doi:10.1371/journal.pcbi.1002787.g002

Weak Oscillators Improve Synchrony
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of resynchrony, therefore, depended on both the number and

placement of weak, shiftable oscillators in the network.

Weak, low-amplitude oscillators enhance network
synchrony similarly to damped oscillators

To test whether our findings regarding weak oscillators extend

to damped oscillators, we repeated the simulations using cells that

lose amplitude, and eventually, all rhythmic ability (see Materials

and Methods). We found that the effects of weak circadian cells

and of damped cells were nearly identical. For example, increasing

the percentage of damped cells (Fig. S6A) or placing damped cells

at network hubs (Fig. S6B) enhanced synchrony. Further, we

verified that our results were not sensitive to our definition of

weak. For the simulations used to generate Fig. 3 and Fig. S6, the

weak cells were the smallest 30% in intrinsic amplitude. We

repeated all simulations varying the percentage of rhythmic cells

classified as weak. For each of these cut-offs, we measured the

largest difference in SI between weak and damped cells

(range = +0.07–0.69). The closer the weakly circadian cells were

to the bifurcation, the more they acted like damped cells. We

observed that as long as the cut-off is less than 50%, weak cells are

similar to damped cells. To demonstrate that these behaviors could

be generalized to other oscillatory systems, we constructed a

phase-amplitude model, which functions as a reduced version of

our mechanistic model (Text S2). We wanted to know if the benefit

of weak cells for synchrony was evident in simpler systems and if a

reduced model could further our understanding. The reduced

model also showed that inclusion of more low amplitude, or small,

oscillators or strategically placing them at more highly connected

nodes increased synchrony. Thus, these results were robust across

model compositions and types, and indicate that larger phase

adjustments by small oscillators will, in general, produce higher

synchrony.

Discussion

Potential sources and consequences of oscillator
heterogeneity in a circadian network

Although physiologists and anatomists have described differ-

ences between SCN cells including their circadian amplitude,

phase and waveform [38,39,40], the functional role of oscillator

heterogeneity has been little studied. For example, the intrinsic

daily oscillations of SCN neurons can be sustained, damped, or

Figure 3. Networks with more weak oscillators resynchronize better. We measured the synchronization index (SI) of the modeled
population in the coupled (days 1–6), TTX-uncoupled (days 7–12), and recovery (days 13–18) conditions and compare the results across different
population and network configurations. We show the effects of varying the percentage of strong oscillators (top row) and of varying the network
topology (bottom row). For each configuration-type, we run 56 simulations. (A) The mean SI is shown over time for populations of 0% (cyan), 20%,
35%, 50%, 65%, 80%, and 100% (magenta) strong cells. (B) For each simulation, we compute the mean SI for days 3 to 5 after the wash (days 15 to
18). Here we show the mean and standard deviation across simulations using the same color scheme. (C) We simulated all networks with 50% strong
cells and show the mean SI is shown for populations with weak cells at hubs (squares), both strong and weak cells placed randomly at hubs (circles),
and strong cells at hubs (triangles) The effect of network configuration on quality of synchrony is shown in (D) and is labeled by the type of cell at
network hubs.
doi:10.1371/journal.pcbi.1002787.g003

Weak Oscillators Improve Synchrony
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absent [10,11,41], but the consequences of these diverse circadian

phenotypes remain unknown. Here, we found that the resynchro-

nization of SCN cells following pharmacological blockade of cell-

cell signaling involves waves of cells becoming rhythmic and

adjusting their phases to join the daily cycling of the population.

Previous theoretical studies have suggested that damped cells can

aid network synchrony by entraining to a wider range of periods

[23,24] and relaxation oscillators can entrain faster if they have

shorter relaxation rates or more spike-like waveforms [29], but

have also highlighted that it is not yet possible to distinguish

whether SCN cells should be modeled as damped oscillators or low

amplitude, sustained oscillators [28]. What are the potential

sources of these differences? By tuning a computational model, we

found that small changes in a small set of parameters could

produce a realistic distribution of cells that varied not only in

period length, as has been generated previously [18,21], but in

qualities of the oscillations themselves. Using non-biased minimi-

zation techniques to represent multi-dimensional parameter space,

we found that parameters associated with transcription rate and

protein degradation of the Period gene were more likely to

contribute to circadian changes than other parameters. We

speculate that genetic differences in and the environmental

modulation of these key rate constants between SCN cells could

underlie the heterogeneity in their circadian properties. For

example, it has been shown that the amplitude of Per transcription

is altered in the absence of VIP [42] and that the stability of PER

protein against degradation affects circadian period [43].

Because we found that the amplitude of our model cells is

reliably and inversely related to their ability to adjust their phase

velocities in response to natural signals, we tested the impact of

both low (weak) and high (strong) amplitude oscillators on network

synchrony. Previously, Bernard and colleagues suggested that a

network comprised of damped circadian oscillators is capable of

synchronizing and maintaining rhythmicity, and hypothesized that

damped oscillators, when synchronized, induced rhythmicity in

the population [24]. Locke and colleagues then performed a

parameter optimization, searching to maximize the ability of a

network of oscillators to synchronize. The best-synchronized

networks were composed of damped cells [44]. Together, these

results suggested that the driving force coupling cells together

could arise from some inherent property found in damped cells.

In a similar fashion, we sought to identify inherent character-

istics in both biological and modeled weak oscillators, including

relationships between intrinsic amplitude and intrinsic shiftability.

Published models using damped oscillators have been unable to

mathematically quantify shiftability. By studying weak circadian

oscillators, we measured larger changes in oscillator speed for

smaller amplitude cells. Measurements of shiftability now provide

a tool to study for the first time the kinetics of resynchronization.

We posit that weakly oscillatory cells can send signals to other

weakly oscillatory cells to readily adjust their phases. As the system

synchronizes, the cells gain amplitude and thus lose the ability to

make dramatic shifts. This suggests a strategy for neurons to

resynchronize. The system can move from being sensitive to

perturbations to being robust against them through a process of

cell-cell amplification of rhythm amplitudes [33].

In our model networks we demonstrated that the total number

of a specific oscillator type is critical and that there is an effect of

the degree of connectivity of certain oscillator types on synchrony,

such that, networks with more and more highly connected weak

oscillators have improved synchrony during the recovery period

following a perturbation. We concluded that heterogeneity arises

from both cell intrinsic and network contributions, including the

network topology and number of weakly circadian cells. The

model does not account for all dynamics of resynchrony that we

observed in the data, which will be addressed in the future. For

example, though we observed populations of cells consistently

ahead of or behind the mean phase of the network simulations, we

observed no spatial pattern in these phase differences; the more

homogeneous connections in the model networks led to most cells

becoming rhythmic at the same time and together tighten in

phase. Future work will use modeling to understand if and how

spatial heterogeneity in network connections causes spatial

patterns in the phase of oscillators across the slice. Future work

will also take into account stochasticity in cell behavior.

Preliminary results (data not shown) indicate that incorporating

white noise into tissue simulations has no effect on the role of weak

oscillators.

Is the tissue the issue?
How the evolving differences within oscillators and amongst

oscillator populations carry over to the behavior of networks is an

open question for investigation. We return to the issue of whether

rhythmicity and synchrony are due to intrinsic cell properties or

are dependent on cell location and network structure. Recent

studies have examined phase heterogeneity within the SCN

[12,13] and have concluded it is not a function of cellular

properties. Foley and colleagues summarized their findings as ‘‘the

tissue is the issue’’ – that placement within the SCN network

(based on assigned phase) dictates whether and how an SCN

neuron will oscillate [13]. We extend this to hypothesize

specifically that cells, which are intrinsically different in their

ability to maintain strong or weak rhythms, will impact the

population rhythm differentially (e.g. the quality of synchroniza-

tion increases with more weak oscillators), but also depending on

their location within the network (e.g. cells at hubs have greater

influence). Other theoretical studies have emphasized that the

number of connections between cells could modulate the degree of

synchrony in the network and argued for region-specific place-

ment of particular oscillator types (e.g. sustained cells in the dorsal

SCN and arrhythmic or gated cells in the ventral SCN) [25,45,46].

We find no evidence for specialized, localized populations of

oscillators in the resynchronizing SCN slice following the removal

of TTX. In contrast, our model shows the importance of weakly

rhythmic, highly responsive oscillators at hubs where they can

send coordinated phase information broadly throughout the

network, becoming less responsive as they increase in amplitude,

and that this is critical for improved synchrony. It is thought that

SCN neurons establish rhythmicity and synchrony amongst each

other and with the external light-dark environment late in

gestation [47,48]. Because these features are likely critical for the

survival [49], we posit that the composition of the SCN, including

a continuum of oscillator behaviors and connections, allows the

tissue to adjust to shifts in environmental timing cues. These

properties may be universal to all networks that include weak

oscillators.

Materials and Methods

SCN cell culture
Single cells measured in SCN slices reported in this study were

recorded as previously published [10]. Briefly, SCN explants from

neonatal PER2::LUC mice were cultured for 3 days on MilliCell-

CM (Millipore) membrane pieces in CO2-buffered medium

supplemented with 10% newborn calf serum (Invitrogen) before

being inverted onto polylysine/laminin coated coverslip dishes. All

procedures were approved by the Washington University Animal

Studies Committee and complied with NIH guidelines.
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Bioluminescence recording
We conducted recordings in air-buffered medium containing

0.1 mM beetle luciferin (BioThema) at 37uC beginning at day 2

after slice transfer to coverslip dishes We temporally (1 h

integration time) and spatially (262 pixel resolution) biolumines-

cence counts using a Versarray 1024 CCD camera (Princeton

Instruments).

TTX treatment and washout
Following 6 days of baseline recording, we treated organotypic

SCN explants with 0.5 mM tetrodotoxin (TTX, Sigma) as

previously described [10]. TTX remained in the medium for 6

days before the medium was removed and we washed explants

with 1 full volume exchange of fresh medium. Recording then

continued for at least 6 days to examine rhythms as cells

resynchronized after the restoration of cell-cell communication.

Analysis of rhythms
We used NIH ImageJ software to process all images by first

subtracting background levels and then measuring pixel intensity

over time in a region of interest above each cell. Cells were tracked

manually from frame-to-frame and across treatments to account

for any tissue movement. Cells were initially scored as rhythmic or

arrhythmic if their gene expression rhythm oscillated with a period

between 15 and 35 hours that was statistically significant by both

Chi-squared periodogram [50] and FFT-NLLS [51]. We also used

Wavos to determine period and phase information from the single

cell traces [52].

Mechanistic model of molecular clock in single SCN cells
A version of a previously published 16-ordinary differential

equation model of the mammalian circadian clock was used to

simulate rhythms in single model cells [18]. We altered parameters

for rates of transcription, translation, phosphorylation, and

degradation of either Period or Bmal1 genes, leaving 50 other

parameters set to published basal values [18], and measured

rhythms in gene output. We simulated 720 hours of gene

expression from each cell, using initial conditions from a

representative, high-amplitude sustained cell.

Visualization of parameter space
To measure the sensitivity of circadian cycling to clock gene

parameters, we organized results from single cell simulations using

clutter based dimensional reordering (CBDR), which applies

minimization and dimensional stacking algorithms described

below. These methods allow visualization of the underlying

structure of clock parameter space and gauge the influence of

tested parameters relative to output behavior. We utilized

published Matlab code [36] to minimize differences between

output scores (strong, weak, arrhythmic) and cluster behaviors

together. The code arranged parameter combinations iteratively

until the minimization requirement, i.e. cells with like behavior,

were clustered together, was fulfilled. First, the code scans one pair

of parameters over a range of values while the remaining

parameters are set to basal values. Then we label this grid based

on the output for each combination and add it to a larger montage

of other parameter pairs. For a useful visualization, the code

orders these dimensional stacks to group similar outputs together.

Given a unique behavior and parameter combination for each

cell, we minimize the stack so that differences between regions of

varying outputs are small (in this case, strong, weak, or arrhythmic

patterns in gene expression), and this provides an order ranking of

‘‘higher’’ versus ‘‘lower’’ parameters in the stack. Changes in

parameter value that produce larger effects in output phenotype

are higher in the stack order.

Velocity response curves
A velocity response curve (VRC) predicts the effect of

parametric perturbation on the phase velocity of the oscillator.

For a cell in the SCN, there is a single parameter (vsP) that is

manipulated by VIP signaling. Hence, we consider the VRC

associated with vsP, mapping the circadian time of VIP signaling

to its effect on the phase velocity. Cells with higher-magnitude

VRCs can be sped up or slowed down more by VIP signals than

cells with lower magnitude VRCs. To quantify the ‘‘shiftability’’ of

a cell, we compute the area under the absolute value of the VRC.

A VRC may be computed for any cell with a parameter set

allowing for limit cycle oscillations. For details regarding

computation, see [31].

Categorization of simulated cell types
Mathematically, the individual cells we have modeled can be

categorized as rhythmic (those that converge to a periodic orbit) or

arrhythmic (those that converge to a steady-state solution).

However, simulations of single cells display a spectrum of

behaviors, with some showing lower or higher amplitude than

others. Using the peak to trough amplitudes of all model

components (i.e. by summing the amplitudes of all states), we

separated the rhythmic cells into two categories: 1.Weak cells are

rhythmic with small amplitudes and 2. Strong cells are rhythmic

with larger amplitudes.

For some simulations, we needed damped oscillators, which

form a subset of the arrhythmic oscillators. We used the total

amplitude at the end of a 15-day simulation (starting from high-

amplitude initial conditions) to create the additional categories: 1.

Flat cells are arrhythmic and have the smallest amplitudes in their

final pseudo-cycle and 2. Damped cells are arrhythmic and have

the largest amplitudes in their final pseudo-cycle.

For most simulations in the paper, we defined the smallest 30%

(n = 228) of the oscillatory cells as weak and the remaining 70%

(n = 595) as strong. For simulations that needed to distinguish

between flat and damped, we chose the cut-off so there would be

the same number of damped cells and weak cells.

Model of SCN coupling and network topology
Model cells were coupled together by VIP signaling, simulated

as a drive on the rate of Per transcription, as previously published

[21]. In our model, 20 percent of the 400 neurons were capable of

sending a VIP signal and all neurons could respond to VIP.

Connections between cells were organized with a small world

network topology as in [22] where each VIP cell was coupled to its

four nearest neighbors and then had a probability of sending

unidirectional long-range connections to other cells in the

network. We set the connection probability to p = 0.05, resulting

in a synchronized system with a range of 4 to ,40 outgoing

connections in most networks. To mimic the TTX experiments,

we simulated 6 days with VIP-mediated coupling followed by 6

days with coupling eliminated and then reinstated for 6 days. We

assessed the intrinsic circadian expression of each cell as well as the

rate of resynchronization of each cell and the ensemble. The

network connections and parameter values for each cell did not

change throughout the simulation.

Calculation of Sync Index
The synchronization index (SI) provides a real-time measure of

the phase dispersion across a population of oscillators, which
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ranges from 1 (all cells peak in phase) to 0 (all cells peak at

uniformly-distributed times of the day). We defined SI at each time

t by the radius r of the complex order parameter [53] according to

reiy(t)~
1

N

XN

j~1

eiwj (t),

where N is the number of cells, Qj(t) is the phase of the jth cell at

time t, and y(t) is the average phase of all cells. We compute the

instantaneous phase of each cell (simulated or real) by applying the

continuous wavelet transform using a Morlet wavelet [54] to its

trace of Period mRNA. The phase of the cell over time may be

recovered from the ridges of the transform, which are extracted

using a straight-forward algorithm ([52,54]; Wavos Package).

Briefly, the continuous wavelet transform (CWT) produces a

complex-valued field over scales (which may be mapped to

instantaneous frequency) and translations (which may be mapped

to time). The magnitude of the complex number at a given

translation and scale may be interpreted as the strength of

oscillation of the signal at the frequency given by the scale and the

time given by the translation. The phase of the complex number at

a given translation and scale gives the phase of that oscillatory

component. By selecting points with contiguous scales across a

range of translations that maximize the magnitude of the CWT

(the ‘‘wavelet ridge’’), we may extract the dominant frequency of

the oscillator over time, and from those points extract the phase

evolution of the oscillator from the angles of the CWT coefficients.

Because the wavelet analysis requires a window (in time) around

the model state in question, it is unable to calculate the phase

during the first and last 34 hours of each simulation. We treat each

experimental condition separately, which mean there are gaps in

the SI plotted in Fig. 3.

Supporting Information

Figure S1 Small changes in parameter values of a
mechanistic model produce a range of oscillatory
behaviors. We sought to determine whether certain molecular

events were more likely to contribute to the range of circadian

phenotypes observed. Using a minimization algorithm we arrange

each simulated cell (small box), representing one of 1296 potential

combinations of parameters for transcription, translation, phos-

phorylation, and degradation of Period varied over 6 equivalent

steps, to generate a two-dimensional visualization of multi-

dimensional parameter space. This non-biased algorithm [36]

groups cells into distinct areas of strong (blue), weak (cyan) and

arrhythmic (black) outputs and ranking the contribution of each of

these four parameters to rhythm generation. Axes for small boxes

are determined by the lower order or less sensitive parameters, and

these are then assembled to form larger, 666 grids, which vary

with the higher order parameters. Rates for transcription and

degradation appear on the larger axes, indicating that these are

higher order parameters whose values produce a more dramatic

shift in phenotype when changed. The red arrows emphasize how

in three small steps within parameter space output transitions from

arrhythmic to weak to strong, sustained circadian oscillations.

While populations of strong and arrhythmic cells cover large

ranges of parameters values, the number of weak cells at the

transitions between these groups is much smaller.

(EPS)

Figure S2 Parameter values in the mechanistic model
straddle bifurcations, producing a spectrum of oscilla-
tor types. (A) To produce a variety of circadian phenotypes in

model cells, we probed parameters individually and selected

ranges that produced a spectrum of behaviors when all other

values were set to their published basal levels (with the exception of

the maximal rate of per transcription, which is moved to 1.01).

Here we show how the cumulative oscillator amplitude changes

from strong (blue) to weak (cyan) to arrhythmic (gray) as a function

of parameter value for the transcription, translation, phosphory-

lation and degradation of Per (left) and Bmal1 (right). (B) To

determine whether another set of parameters produced similar

phenotypes, we varied rates of transcription of Bmal1, or

translation, phosphorylation and degradation of BMAL1 protein.

Each plot visualizes areas of parameter space found by varying

rates of transcription and translation (x-axis), phosphorylation, and

degradation (y-axis) for both Period (left, replotted from Supp.

Figure 1) and Bmal1 parameter sets (right), respectively.

(EPS)

Figure S3 The mechanistic model produces cells with a
spectrum of period and amplitude values consistent
with SCN data. When we examined the period (left) and

cumulative oscillator amplitude (right) values of simulated cells,

here plotted using the same axes as Supp. Figs. 1 and 2, we found

that cells falling in the region of parameter space corresponding to

weak oscillators show a range of period values (18 to 30 h) similar

to what was observed in functionally isolated SCN neurons [10].

The range of final amplitude values of weak cells was lower than

that of strong cells (range 2–10 arbitrary units vs. range 12–28

a.u.). We hypothesized that a heterogeneous mix of oscillators with

periods and amplitudes that are easily tuned are beneficial to

resynchrony.

(EPS)

Figure S4 Intrinsic amplitude and period do not
correlate. We plot the intrinsic period against the intrinsic

amplitude (normalized to the largest value) for slice 1 (A), slice 2

(B), and the model (C). The model tissue is composed of 80% weak

and 20% strong cells. The slice amplitude is measured as the

amplitude during the final day of TTX treatment and its period is

the mean value of the Wavos-computed period throughout TTX

treatment. In all cases, there is similar period variability and the

period and amplitude are un-correlated.

(EPS)

Figure S5 Three 100-cell networks comprised of 50%
sustained cells (blue) and 50% weak cells (cyan). All are

connected using a small world network, but with different classes

of cells at the ‘‘hubs’’ - (A) sustained cells are placed at hubs, (B) no

cell class is given preference, and (C) weak cells are placed at hubs.

The size of the cell is proportional to the number of cells it

connects to. Most network connections are shown in light gray.

One ‘‘hub’’ cell is highlighted in each network, and its connections

are dark gray.

(EPS)

Figure S6 Damped and weak cells have similar effects
on the network. We show heat plots of the quality of synchrony

after the wash for varying demographics (A) and varying types of

cells at network hubs when 50% of the cells are strong (B), with red

indicating perfect synchrony and blue indicating no synchrony.

The y-axis of both plots indicates the fraction of non-strong (i.e.

weak and damped) cells that is weak. The top row in both plots

corresponds to the data in Figure 3. In (A), we show that when

there are no strong cells (leftmost column), synchrony is high,

regardless of whether the population is composed of all damped

cells (bottom), a mix of damped and weak cells (middle), or all

weak cells (top). For each column, the color remains mostly
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constant, indicating that the quality of sync is a function of the

fraction of oscillators that are strong, and that weak and damped

oscillators are interchangeable. In (B), we show that placing weak or

damped cells at the hubs allows for better synchrony than placing

mixed or strong cells at the hubs. Note that placing weak cells at hubs

in populations with no weak cells is equivalent to placing mixed cells

at hubs. Likewise, placing damped cells at hubs when there are no

damped cells is equivalent to placing mixed cells at hubs.

(EPS)

Text S1 Statistical analysis. We examine two SCN explants

and corresponding simulation data for evidence that intrinsic

properties of cells predict emergent behaviors in coupled

conditions. We find no correlation between any intrinsic property

and a cell’s behavior after coupling has been established, for either

the model or the explants. For the explants, however, we find

evidence of a spatial pattern, in which weak, lateral cells phase lead

strong, medial cells.

(PDF)

Text S2 Reduced model details. We define the reduced

model and demonstrate that it accurately captures the behavior of

the mechanistic model used in the main text.

(PDF)
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