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Abstract

Many biological responses to intra- and extracellular stimuli are regulated through complex networks of transient protein
interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small
contact interface. These peptide stretches are often found in unstructured regions of proteins, and contain a consensus
motif complementary to the interaction surface displayed by their binding partners. While most current methods for the de
novo discovery of such motifs exploit their tendency to occur in disordered regions, our work here focuses on another
observation: upon binding to their partner domain, motifs adopt a well-defined structure. Indeed, through the analysis of all
peptide-mediated interactions of known high-resolution three-dimensional (3D) structure, we found that the structure of
the peptide may be as characteristic as the consensus motif, and help identify target peptides even though they do not
match the established patterns. Our analyses of the structural features of known motifs reveal that they tend to have a
particular stretched and elongated structure, unlike most other peptides of the same length. Accordingly, we have
implemented a strategy based on a Support Vector Machine that uses this features, along with other structure-encoded
information about binding interfaces, to search the set of protein interactions of known 3D structure and to identify
unnoticed peptide-mediated interactions among them. We have also derived consensus patterns for these interactions,
whenever enough information was available, and compared our results with established linear motif patterns and their
binding domains. Finally, to cross-validate our identification strategy, we scanned interactome networks from four model
organisms with our newly derived patterns to see if any of them occurred more often than expected. Indeed, we found
significant over-representations for 64 domain-motif interactions, 46 of which had not been described before, involving
over 6,000 interactions in total for which we could suggest the molecular details determining the binding.
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Introduction

Proteins are key players in all aspects of cellular life. They

seldom act alone, but rather in combination with other molecules.

Some proteins form parts of large macromolecular complexes that

execute core functionalities of the cell, while others transmit

information in signalling networks to co-ordinate these processes.

To disentangle the complex network of protein interactions, both

complex membership and binary interactions are currently being

studied in large-scale experiments in several model organisms [1–6].

However, interaction discovery data mostly offers information on

whether two proteins do or do not interact, but it cannot provide

details on the mode of binding or the interaction interface. Atomic

details of protein-protein interactions are only available in high-

resolution 3-dimensional (3D) structures, which are collected in the

Protein Data Bank (PDB) [7]. A detailed description of the atomic

contacts involved in interaction interfaces often reveals the forces that

hold two proteins together, and permits to extract conclusions on the

potential disruptibility of the interface through, for instance, the

action of specific drugs [8]. Recently, the combination of structural

data and assignment of globular protein domains has allowed to

distinguish between two main classes of protein-protein interfaces [9]:

Domain-domain interfaces tend to be large and stable, while

interfaces between a globular domain and a peptide stretch are

usually smaller, sometimes with only a handful of key residues

involved in the binding event [10,11]. The latter type of interface

allows for transient binding, making them ideal for signalling

networks. The classification of interfaces into domain-domain or

domain-peptide gives information on their size, strength, shape, and

other features that may help us understand the interaction between

the two proteins and how it reacts to competitors [12], their correct

identification being thus critical. In both cases, high-resolution 3D

structures provide crucial information on how proteins involved in

these interactions recognize each other and achieve a high degree of

specificity, which in the case of domain-peptide interactions also

includes its context [11]. Furthermore, structures can also help

identify key residues in binding pockets [13] or be used as the base of

complex models for the prediction of domain-motif interactions

(DMIs) [14]. It is thus clear that, the more high-resolution structural

details we can compile on DMIs, the better we will understand their

function and fast evolving profiles.
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The peptides involved in DMIs are characterised by a consensus

motif with specific conserved residues that are recognised by the

binding domain. Some positions of such motifs are restricted to

particular amino acids, while others may allow a set of similar

residues, or even arbitrary ones. Consensus motifs are often given

as regular expressions. For example, the Src-homology-3 (SH3)

domain binds proline-rich peptides, and several variants of the

PxxP (‘x’ or ‘.’ denote arbitrary positions) pattern have been

observed, including [RKY]xxPxxP (class I; square brackets denote

the set of possible residues for this position) and PxxPx[KR] (class

II) [15]. Structurally, linear motifs are frequently found in

disordered regions [16], thus exposed to potential binding partners

and with the ability to adopt a variety of conformations [17,18].

Most motifs assume a well-defined structure upon binding to their

recognition domain, like the polyproline type II (PPII) helix

adopted by SH3-binding peptides [15], the alpha helix, formed by

Nuclear Receptor cofactor peptides [19] or the beta strand in

peptides that interact through beta strand addition, as do PCNA-

and PDZ-binding peptides [20]. Unstructured regions may adopt

different conformations depending on the interaction partner, so

that a given peptide could potentially bind more than one domain,

each with the appropriate structure [21]. Given the small number

of key residues, motifs can arise and vanish spontaneously with

only a few mutations. Along with the modularity of their binding

domains [18,22], this allows a rapid evolution to explore novel

regulatory interactions relatively easily [23]. In this way, a motif

that mediates a particular function or interaction can arise

convergently in otherwise unrelated proteins. Due to their

transient nature, DMIs are difficult to identify in high-throughput

interaction detection experiments [22]. In the last years, several

methods have been developed for de novo discovery of motifs from

sets of sequences assumed to share a feature that e.g. explains

interaction with a common partner [24] or other biological factors

like co-localisation or particular post-translational modifications

[25]. These methods exploit the convergent evolution of linear

motifs in looking for patterns that are over-represented among

unrelated sequences in the query set. Homologous proteins or

regions are removed before the computation of over-represented

motifs, and domains or other well-structured regions are often

masked because motifs tend to occur in unstructured regions [16].

Sometimes, though not always, the motif-binding domain can be

identified in these de novo procedures for motif discovery [24]. A

problem of these sequence-based motif discovery algorithms is the

poor signal-to-noise ratio of many datasets [26,27]. Focusing on

the local environment of the motif, i.e., the flanking regions or context,

increases the sensitivity of these methods [26] and may provide

additional information in the search for functional interpretations

of the novel motifs [27]. However, a potential caveat of methods

relying on evolutionary conservation is that they might well miss

some of the instances that have arisen very recently [26].

Despite the small size of their binding interfaces, domain-motif

interactions are known to be highly specific in vivo [28], although

they can also show some promiscuity, with similar affinities for

native and non-native interaction partners, when tested in

isolation [29]. Depending on the given binding domain, cell type

and organism, the specificity may be encoded primarily in the

motif sequence [13,30], the flanking regions [11], or the network

context [31]; probably these factors often work in concert.

Traditionally, motif recognition patterns were split by one or

two key residues (cf. [32]), but recent work has revealed that a

much finer subdivision may be needed [33] or that, at least for

some domains, there may not even be clear borders between the

recognition profiles of different members of a domain family, but

that recognition profiles cover the whole specificity space instead

[28]. With their high specificity, regulatory function and small

interface, DMIs make excellent candidates for drug targets

[8,34,35], and information about high-resolution 3D structures

of the interfaces may be crucial in this context [21,36]. A recently

published method by Petsalaki et al. [37] searches the surfaces of

3D stuctures for sites that may bind a given motif, based on

physicochemical properties. If the binding domain or a set of

possible binding domains for a motif are known, this tool could

help identify the interface between peptide and domain. A

successful prediction of the binding site on the domain would

reveal much detail beyond what is given by sequence-based

approaches, yet it would not provide the atomic contacts of the

interaction. There are other computational tools, such as iSPOT

[38,39], that have been designed to predict peptide-binding

specificities using also 3D structure information. In this case,

however, one needs to know in advance that a given interaction is

peptide-mediated and which are the exact residues participating in

the interface.

While many current methods for the de novo discovery of motifs

exploit the fact that they tend to occur in disordered regions, our

work here focuses on another observation: upon binding to the

domain, motifs adopt a well-defined structure (see also [40]).

Indeed, the structure of the peptide may be as characteristic as the

consensus motif, and help identify peptides even though they do

not match the established consensus. An example is the linker

peptide between the SH2 and kinase domains in the Src kinase

[41], which adopts a PPII helix and is bound by the SH3 domain

although it does not contain a PxxP motif. The interaction

topology of the linker binding the SH3 domain is the same as that

of intermolecular SH3-peptide pairs, so we consider them to

belong to the same interaction type [42]. Domains may bind different

kinds of peptides in different orientations [43]. During visual

inspection of candidates for DMI based on experimentally

confirmed motifs stored in the Eukaryotic Linear Motifs database

(ELM) [32], we observed that there are several peptide-mediated

interactions in structure which did not match the established

consensus motifs of their corresponding interaction types and

Author Summary

Protein-protein interactions are paramount in any aspect
of the cellular life. Some proteins form large macromolec-
ular complexes that execute core functionalities of the cell,
while others transmit information in signalling networks to
co-ordinate these processes. The latter type, of more
transient nature, often occurs through the recognition of a
small linear sequence motif in one protein by a specialized
globular domain in the other. These peptide stretches
often contain a consensus pattern complementary to the
interaction surface displayed by their binding partners,
and adopt a well-defined structure upon binding. Infor-
mation that is currently available only from high-resolution
three-dimensional (3D) structures, and that can be as
characteristic as the consensus motif itself. In this
manuscript, we present a strategy to identify novel
domain-motif interactions (DMIs) among the set of protein
complexes of known 3D structures, which provides
information on the consensus motif and binding domain
and also allows ready identification of the key interacting
residues. A detailed knowledge of the interface is critical to
plan further functional studies and for the development of
interfering elements, be it drug-like compounds or novel
engineered binding proteins or peptides. The small
interfaces typical for DMIs make them interesting candi-
dates for all these applications.

Domain-Motif Interactions on 3D Structures
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therefore could not be found by a procedure based on known

patterns [11]. Furthermore, we noted that linear motifs have a

particular stretched and elongated structure unlike most other

peptides of the same length. We thus need to, somehow, use this

information to identify more instances of DMIs in the databases,

and derive the consensus binding patterns governing them. This

would provide molecular details for many protein interactions

discovered in high-throughput initiatives, and suggest the relevant

mutagenesis experiments to tinker with them. In this manuscript

we describe our studies of the structural features of known motifs,

and use the results, along with other structure-encoded informa-

tion about interactions, to scan through the set of protein

complexes of known 3D structure in order to identify unnoticed

peptide-mediated interactions among them. We compare our

results with established linear motif patterns and their binding

domains as described in ELM [11], and with other sources of

structural descriptions of peptide-mediated interactions. Finally,

we cross-validate our newly derived patterns on interactome data,

and present a list of novel peptide-binding domains, along with

their respective high-resolution 3D structures and consensus

motifs.

Results

Structural parameters to capture linear motifs
To exploit structural features of peptides and domain-motif

interactions, we first need to establish which parameters are

suitable for the separation of known linear motifs from other,

presumably non-functional peptides of the same length. We thus

selected several structural parameters and applied them to the 631

DMIs of known 3D structure identified in our previous study [11],

to test whether they could capture structural properties of

functional linear motifs. To ensure that these parameters could

partition peptides into true motifs and random cases, we created a

control dataset based on the Structural Classification of Proteins

(SCOP) [44]. For each SCOP fold, we chose one representative

structure and generated all possible peptides of length 4–20

residues, which corresponds to the range of motif lengths in ELM.

Although we cannot guarantee that SCOP folds do not contain

true linear motifs, it is unlikely as they form well-defined tertiary

structures, whereas motifs often occur in unstructured regions and

outside domains. Therefore we assume that the SCOP control set

constitutes a reasonable collection of negative instances for the

identification of linear motifs.

The main structural parameters we developed for motifs are

linearity and elongation (Fig. 1a). The linearity of a peptide is a marker

of how ‘‘flat’’ it is, how much it deviates from a straight line

through the first and last residue. The elongation indicates how long

a peptide extends in space (Fig. 1a; for details see Methods).

Together, linearity and elongation should capture our observa-

tions described above, namely that linear motifs are more flat and

stretched than other peptides. Because flexibility and length of a

peptide increase with the number of residues, it is important to

only compare peptides with the same length in residues. We

computed linearity and elongation for the known DMIs and the

SCOP control set and found that, individually, neither of these

parameters showed sufficient difference between the known cases

and the SCOP control set, although there was a trend for known

DMIs to be longer and more linear than other peptides of the

same length in residues, confirming our observations (Figures

S1a,b). We also assigned secondary structure to the peptides using

DSSP [45] and observed that the distributions of values for

linearity and elongation differed strongly between the classes of

secondary structure. Helical structures were shorter and less linear,

while beta sheets and unstructured regions were more linear and

longer (Figures S1c,d). However, again the differences were not

clear enough to use them to separate known DMIs from other

peptides. Note that, as described above, some linear motifs act

through beta strand addition, and yet others are known to form

alpha helices, though most are found in unstructured regions.

Since no single parameter was able to divide known DMIs from

other peptides, we combined them to see if the trends described

above would give a synergistic effect. For pure geometric

considerations, a peptide that is flat should also be elongated in

comparison to one that is helical or has bends and turns. Indeed,

we found that known motifs fell into distinct regions of the space

spanned by elongation and linearity, and are further subdivided by

classes of secondary structure (Fig. 1b). Thus we concluded that

these three factors can be used to separate structures similar to

known motifs from other peptides of the same length in residues.

Based on these findings, we set out to exploit structural data to find

new instances of peptide-mediated interactions among the over

50,000 high-resolution 3D structures stored in the PDB (Fig. 2).

However, the SVM will only recognise structural features of the

peptide, but not consider any interactions to surrounding domains.

Yet we cannot recognise DMIs based on the peptide alone, we

need to take the interaction environment into account. We trained

a support vector machine (SVM) with the data for linearity,

elongation, secondary structure, accessibility and length in residues

for all the known DMI peptides, and for a random set of 10,000

SCOP control set peptides (for details see Methods). Our first

parameter that takes the environment of the peptide into account,

accessibility, is required because peptides need to be accessible by

other proteins in order to mediate interactions. Additional filters

concerning the interaction environment will be described in the

following paragraphs.

We generated all possible peptides of lengths 4–20 residues from

52,903 3D structures, excluding regions covered by domains as

assigned by Pfam HMMs [46] because motifs are rarely found in

these. Note that this creates many overlapping peptides (cf. Fig. 2),

which we generate in order to find the largest peptide that is

accepted as linear and elongated enough. From the 60,123,359

candidates, only 10,596,512 (18%) peptides in 41,224 structures

were accepted by the SVM. Next they were filtered for contacts to

neighbouring domains in order to find putative domain-peptide

interactions. We intended to identify all peptide-domain interac-

tions, regardless of whether they appear within or between proteins.

Therefore, for each candidate peptide that had been accepted by

the SVM, we checked for contacts with domains in the vicinity,

independent of whether they are part of the same protein or of

another. We did not find enough contacts for 2,890,451 peptides

(details see Methods), meaning that 7,706,061 peptides (73% of the

accepted peptides; percentages in the motif discovery pipeline will

always refer to the previous number of peptides or DMIs) in 40,199

structures remained. Next we removed some of the overlap that

arises due to the way peptides are generated: If a short peptide has

been accepted by SVM and domain contacts, and a longer peptide

that includes the short one has been accepted as well, we only keep

the long peptide (Fig. 3). Note that there may still be partially

overlapping peptides in the set, in cases where none of the peptides

covers the other completely. This overlap will be addressed later, as

we cannot simply join peptides unless the resulting, encompassing

peptide is also accepted by the SVM which tests for the typical

structural features – linearity and elongation – of linear motifs. After

the removal of completely overlapping peptides, we end up with

538,689 peptides (7%) in 40,199 structures, which are involved in

782,430 interactions, since one peptide may interact with several

domains.

Domain-Motif Interactions on 3D Structures
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Filtering candidate peptide-mediated interactions
At this step, we noticed that most of the DMI candidates

corresponded to intrachain interactions (80%) and, upon visual

inspection, many did not seem to be functional. These were often

cases in which the domain and putative peptide, while in contact,

had no extended binding surface, but rather protruding side chains

touching each other, such that it was not clear whether this contact

was biological or whether it might be an artifact that arose e.g. due

to crystallization or buffer conditions. Other instances arose

because of domain definitions that did not perfectly match the

structure, in other words, when the Pfam domain assignments did

not fully cover the structural units (folds), so that remaining

elements (single strands or helices) were identified as binding

peptides. Therefore we used domains in the protein structure

classification CATH, which are defined on 3D structures [47], to

filter out 426,464 (55%) intrachain peptide-mediated interaction

candidates that were covered by these domains. Furthermore,

many intrachain interactions were observed between a domain

and a peptide close to the domain’s boundaries. Accordingly, we

removed 87,986 (25% of the remaining) interactions with a

sequential domain-peptide distance below 10 residues. In addition,

we filtered out contacts between proteins that are not listed in the

Protein Quarternary Structure (PQS) database (2%), which

contains presumed biological units of protein structures rather

than the asymmetric units calculated in the structure determina-

tion process. The latter may bare signs of artefacts such as crystal

packing. Also, during visual inspection we observed peptide

candidates suggested to mediate interactions among multihomo-

mers, which did not appear to be functional (visual inspection). As

peptide-mediated interactions are usually heterologous, we

removed cases in which the domain-containing protein and the

peptide-containing protein form a homomer (1.4% of the

candidate DMIs). Note that intrachain DMIs are heterologous

as well, such as the SH3-peptide and SH2-phosphopeptide

interacctions in the Src kinase described above [41], and

structurally of very similar nature as their interchain equivalents

[48].

Besides the key residues that form the consensus pattern, linear

motifs are characterised by the fact that binding of the motif itself

is sufficient to create a functional interaction (e.g., [49]). As we

could not perform computationally expensive studies of binding

energies for all candidate DMIs, we approximated the binding

Figure 1. Linearity and elongation of linear motifs. (A) The Retinoblastoma-associated protein B domain (RB_B)-binding peptide shows the
typical linear and elongated form found in 3D structures of many motifs (PDB ID 1gh6). The concepts of linearity (the maximum deviation of any Ca in
the motif from the line through the first and last Ca) and elongation (the distance between the first and last Ca of a motif) are illustrated in this
structure. (B) A slice of the data used for SVM training: linearity, elongation and secondary structure classification for 7-residue-peptides, with data
from the SCOP background shown as dots and the data for known DMI shown as solid triangles, using one colour per DSSP classification. Panels (C)
to (F) show the distribution of linearity:elongation values for those secondary structure classifications for which we had known 7-residue-peptides
(none, alpha-helix, bend, and turn). These data slices illustrate how known linear motifs fall into distinct regions of the parameter space.
doi:10.1371/journal.pcbi.1000789.g001

Domain-Motif Interactions on 3D Structures
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contribution of the peptide by comparing the domain-peptide

interface with the full interface between the two partners.

Specifically, we required the interface between domain and

peptide to be at least 150Å2, which holds for over 90% of the

known DMIs (Figure S2a), but may filter out putative interactions

that are due to artefacts. 34,898 (14%) of the candidates had a

Figure 2. Overview of the generation and filtering of motif-like peptides. (Steps 1 and 2) We generated all possible peptides of 4–20 residues
from regions of 3D structures that did not match Pfam domains. (3, 4) For peptides accepted by the SVM trained on linearity and elongation (cf.
Figure 1) we computed whether there were sufficient contacts with domains in the same structure, which may be in the same or in another protein
chain. (5) Peptides that are completely covered by other (longer) peptides are removed, so that the largest accepted peptide represents shorter
candidates binding to the same region. (6) Peptides in intrachain interactions that are part of CATH domains are often artefacts of differences
between structure- and sequence-based domain assignment and are therefore excluded. (7) Peptides in intrachain interactions that are sequentially
directly next to the binding domain are often artefacts and thus removed, though in general peptides close to domains are allowed, as long as they
have a sufficient sequential distance from their binding domain. (8) Exclude candidate DMI in which the interface is smaller than 150 Å, or in which the
interface between domain and peptide is less than 50% of the total interface between the proteins.
doi:10.1371/journal.pcbi.1000789.g002

Domain-Motif Interactions on 3D Structures
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smaller interface and were thus removed. In addition, to ensure

that the peptide is a key player in the interactions detected in our

procedure, we required the interface between peptide and domain

to cover at least 50% of the total interface between the two

proteins, which is true for 65% of the known DMIs (Figure S2b).

The 50% threshold is intended to reflect our requirement for the

domain-peptide-interface to have a major role in this interaction.

Some peptide-mediated interactions are formed by multiple

domains binding a peptide, e.g. the seven-blade beta-propellers

formed by WD40 domains [50]. In those cases we only required

all domain-peptide interfaces together to make up 50% of the full

interface, and individual domains to contribute roughly equally

(see Methods). Application of this filter removed 212,125 (95% of

the remaining) putative DMIs, so that 10,739 candidates

remained.

Clustering of candidate interactions by sequence and
topology

In order to identify unnoticed DMIs within the PDB, we needed

to classify distinct domain-peptide interfaces and search for regular

shared features among the peptides that explain why they bind the

domain – a consensus motif. Thus, we needed to group the

candidate interactions by topology to separate distinct interaction

interfaces. Furthermore, due to the redundancy among entries in

the PDB, we needed to create non-redundant sets of peptide-

domain interactions. We only attempted to derive a consensus

motif if sufficient non-redundant information was available. Note

that we did not remove such redundancy in previous steps to

capture as many variations of DMIs as possible.

The topological clustering procedure we developed focuses on

the residues forming the interface. We computed the fraction of

shared peptide-binding residues between each pair of domains

from a family, mapping corresponding residues via alignment to

Pfam’s HMM profile for that family (see Fig. 4 and Methods). Next

we clustered the interfaces based on the shared peptide-binding

residues to separate all interactions for this domain into distinct

interfaces. Our method is similar to that by Teyra et al., [51] but

relies on multiple instead of pairwise alignment of the domains. In

total, we found 822 topological clusters or interaction types,

including 547 domains. The largest clusters contain over 700 DMI

instances. Domains with many different peptide-binding topolo-

gies include protein kinases (8), trypsin (14), Pyridine nucleotide-

disulphide oxidoreductase (Pyr_redox_2, 15 topologies), and the

immunoglobulin V-set domain (18). However, note that these

potential ligands have not been examined for significant motifs yet,

so they do not necessarily represent functional DMIs. The

sequence-based clustering, which is independent of the topological

clustering, serves the creation of a sequentially non-redundant set

Figure 3. Joining of partially overlapping peptides for sequence-based clustering. (A) Partially overlapping peptides cannot be represented
by either one, as both may contribute to an interface in ways not covered by the other. Yet to improve the quality of peptide alignments, and to
ensure that motif matches in the overlapping regions (shown in gray) are only counted once for motif support, we need to create a construct that
holds unique, non-overlapping regions of one or more peptides accepted by the SVM and having a sufficient interface with a domain. (B) Thus, for
each continuous stretch of a protein that is covered by one or more peptides, we built a peptide-containing region. (C) These regions are then aligned
to generate non-redundant sets of peptides binding to a given domain, and each motif match in a peptide-containing region only qualifies for motif
support once. The 90% sequence clustering of the DMIs is computed from a combination of the sequence identities of peptide-containing regions
and those of the binding domains.
doi:10.1371/journal.pcbi.1000789.g003

Domain-Motif Interactions on 3D Structures
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of peptides bound by a given domain for the derivation of

consensus patterns. It is used to create groups of ‘‘sufficiently

different’’ peptides per domain, to establish which peptides are

different enough to qualify for motif support, for which non-

redundant data is required. Ideally, a set of unrelated sequences

would allow over-represented motifs to be detected easily, as

similarities cannot be due to larger conserved regions. To this end,

first we need to address the issue of partially overlapping peptides

that arises from the way peptides are generated (Fig. 2). A

sequence-based clustering procedure working on the pure

peptides, which are at most 20 residues long, could not detect

small overlaps. If such a small overlap were to contain a motif, it

would then be supported (counted) twice. To avoid these

duplicated counts, we first joined peptide-containing stretches

such that each protein section that was continuously covered by

peptides (i.e. without gaps) was combined into a single region (see

Fig. 3). Then these non-overlapping regions were aligned, and

their pairwise sequence identity was computed. Clustering by

sequence identity was based on combined sequence identity scores

for both domain and peptide (see Methods for further details). In

total, we found 2,490 clusters of 90% sequence identity for the 547

domains, with the largest clusters having over 200 entries. The

immunoglobulin V-set domain shows the greatest sequential

diversity in its ligands (220 clusters), followed by trypsin (108)

and Major Histocompatibility Complex I (105). We are fully aware

that 90% sequence identity is a more stringent threshold than what

is normally used when creating sets of unrelated proteins. Our

reasons to apply such a strict criterion are twofold: we are handling

relatively short peptides, on which alignment does not always work

reliably, and by selecting a lower threshold, such as 25% or 50%,

we would risk getting too different peptides within the same

cluster. In addition, we also need to identify motifs even among

sets of proteins that are relatively similar (i.e. motifs occurring in

the same protein family). Thus the sets of proteins in our clustering

should be considered as non-redundant rather than unrelated.

Nevertheless, we explored the possibility of relaxing the sequence

similarity threshold to 50% in the clustering procedure (data not

shown), and found that, since the clusters are broader and cover

more instances, the number of interaction types with sufficient

non-redundant information to derive significant patterns (see

subsequent paragraph) dropped from 224 to 96.

Deriving consensus motifs
For each topological cluster with at least 3 non-redundant

sequences, we attempted to derive a consensus motif using

SLiMFinder [25]. SLiMFinder identifies convergently evolved

linear motifs in a set of sequences based on their occurrence in

unrelated sequences, and computes a probability of their

significance. It often suggests more than one possible motif,

ranked by their probability of arising by chance. The program

Figure 4. Topological clustering of peptide-mediated interactions. (A) Alignment of BRCA1 C Terminus (BRCT) sequences to the domain’s
HMM profile; interface residues are highlighted. The colour corresponds to the ‘‘rainbow’’ colouring scheme used for the domain visualisation in
panel B. Lowercase letters refer to amino acids that do not match the domain’s profile, - to positions in the profile that do not occur in the given
sequence. (B) Clustering of the interaction topologies, based on shared interface residues. Domains with the same or highly similar topologies are
grouped together. In the structural representation, all three BRCT domains have the same orientation. Note that the BRCT domain usually forms
dimers that bind the peptide, using the interfaces from clusters (3,4,5,6) and (1,2,9), respectively (cf. Figure 5).
doi:10.1371/journal.pcbi.1000789.g004
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requires information about the evolutionary relationship of the

motif-containing sequences, in particular which of them are so

closely related that they should be considered a single case of

support for a candidate motif when it is examined for whether

there are enough unrelated proteins matching it. We provided the

90% sequence identity clusters for this purpose, so that only non-

redundant cases are counted for motif support. Among our 822

topological clusters or interaction types, only 224 contained at

least 3 non-redundant sequences. These covered 157 domains,

with up to 13 clusters per domain. In addition to the sequences

and their evolutionary grouping, we included information on

modified residues in the peptides, because some recognition

domains, like SH2 or 14-3-3, specifically bind peptides that have

been post-translationally modified, e.g., by phosphorylation or

methylation [18,52,53]. The domain’s binding groove recognises

the residue with the post-translational modification, so it should be

a crucial element in a consensus motif. We searched all accepted

peptides for modified residues, and if a particular residue was

modified in more than half of the peptides in a cluster, it was

required for the motif. Furthermore, we checked for helical

peptides, which are another special case for pattern derivation, as

helical structures create a regular pattern of residues pointing

towards the domain vs. residues pointing away from it. If over

50% of the peptides in a cluster were helical according to DSSP,

we enabled the helical pattern derivation feature of SLiMFinder,

which takes this particular spacing into account.

For 152 of the interaction types, covering 111 domains, we

found at least one significant motif, and for 96 of these, significant

motifs were found for all topological clusters (interaction types).

The 46 remaining domains did not yield any significant motif,

although 3 or more non-redundant sequences were available for

pattern derivation. As a curiosity, 36 of the interaction types with

significant motifs (31 domains) involved helical peptides, and 20

(18 domains) required at least one modified residue in the pattern.

In total, 5,316 interactions in 3D structures are covered by these

152 interaction types for which we could derive a significant motif,

including 4,202 inter- and 1,114 intra-chain interactions, respec-

tively. However, 16 clusters among 15 domains contained only

intrachain interactions that, upon visual inspection, did not seem

to be functional peptide-mediated interactions and were thus

excluded. In addition, 8 putative DMI interaction types are always

found between proteins that also have a domain-domain interface

(DDI), which presumably is more reliable. Our assumption here is

that if the DMI is functional, it should also occur independent of a

DDI. Hence we modified our method not to accept clusters unless

there are interchain instances, and DMI that appear without a

DDI in the same protein pair. It is interesting to note that only 18

of the 94 domains for which we find significant patterns in the full

dataset are described in ELM. It should be noted though that

ELM does not always provide Pfam domain names and thus the

overlap could be slightly larger and we are just not able to detect it.

Benchmark of the DMIs identification accuracy
To assess the performance of our method in detecting peptide-

mediated interactions and discarding non-functional peptides or

interfaces in the PDB, we created a benchmark set of 631 known

DMIs [11] and 631 random peptides from the SCOP dataset that

do interact with a domain in a different protein (i.e. we only kept

interchain training data) and are not fully covered by a domain.

To ensure that DMIs are recognised by features beyond

similarities among homologous domains and their binding

peptides in the training set, we performed the benchmark in a

leave-one-domain-out fashion, i.e., we removed all peptides binding to

a given domain from the training set, and tested the recovery of

the corresponding interactions and the detection of its consensus

motif using the resulting SVM. For example, in one instance we

left out all SH2-binding peptides (the test set), then re-ran the full

motif discovery pipeline as described above and finally tested how

many of them were rediscovered by the SVM trained on the

remaining, non-SH2-binding peptides (the training set). If a peptide

overlapping in at least 3 positions with a test set peptide was

accepted and a significant pattern for its domain and topological

cluster could be derived using SLiMFinder, the case was classified

as ‘‘positive’’, otherwise (peptide not accepted or non-significant

pattern) as ‘‘negative’’. For known DMIs, we also tested whether

the known consensus motif given in ELM scored significantly using

SLiMSearch [54], which works similarly to SLiMFinder but allows

checking the significance of a predefined motif on a given set of

sequences.

After applying the described procedure, we could automatically

rediscover 423 of the 631 known DMIs interaction types, which

correspond to a sensitivity of 68%. In terms of domains, we

correctly recovered cases for 20 out of the 30 domains, i.e., the

domain-based sensitivity (67%), very similar to that based on

individual cases. Our method did not accept any of the negative

cases from the benchmark, indicating that it is highly specific.

Analyses on the 208 known DMIs that we could not recover

showed that almost half of them (42%) can be explained by the

fact that they are covered by domains and thus never considered

as peptide candidates by our method, while manually curated sets

like ELM and our previous study [11] did not apply such a filter.

Other reasons for non-rediscovered positive cases included

insignificant patterns (21%) or no pattern determined because of

a lack of data (12%), too few contacts between domain and peptide

(8%), and insufficient surface contribution of the domain-peptide

interface (7%), among others. There are three domains for which

the benchmark returns positive results, but no significant pattern is

found when applying our method to the full PDB, which may be

due to differences in the data set size in significance computation.

Note that cases with too few non-redundant sequences were

ignored (i.e., they are not counted as false negatives) for both

negative and positive test cases. As an additional independent

benchmark, we tested how many of the peptide-mediated

interactions from the benchmark set by Petsalaki et al. [37] could

be identified with our approach. In total, we recovered 298 of the

405 DMIs in their set (74%), which is slightly above the 240 cases

(59%) that they correctly predicted from their benchmark.

Analysis of the results showed that half of the instances that we

missed are due to a low surface contribution, while the other half

was covered by domains or not accepted by our SVM.

Cross-validation with interactome networks
To assess the validity of each motif derived by SLiMFinder and

confirm that it could indeed occur in different protein interactions,

we checked whether it was over-represented in proteins known to

interact with a partner that contains the respective binding domain

(see Methods). For example, although motifs tend to be degener-

ated, 50 of the 593 (8.4%) human proteins that interact with other

proteins containing 14-3-3 domains match the ELM pattern

R[SFYW].S.P, but the number is reduced to only 206 out of the

7215 (2.8%) of the proteins not interacting with any 14-3-3-

containing protein. This corresponds to an enrichment factor of

2.57, which is statistically significant (p-value 2.827e-10, one-sided

Fisher’s exact test). We used interactome data for selected model

organisms with relatively good coverage (yeast, worm, fly, human).

We only tested motifs binding to domains of which a structure was

solved in this species, to make sure that there is a functional

occurrence of it in the species in question, so this validation
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procedure was limited to 64 domains among the 111 for which we

suggest binding motifs. To avoid false positive hits, we required

pattern matches be outside of globular domains, as do many

sequence-based tools for motif detection [24,25]. In addition, we

only counted those motif-containing proteins as support for the

DMIs if the interaction cannot be explained by a domain-domain

interaction between that protein pair [10]. For each domain, we

tested all patterns derived by SLiMFinder with the given

parameters (see Methods) that is found in one of the selected

interactomes. We then computed whether proteins interacting

with a partner containing the recognition domain are enriched in

hits for the derived motif (one-sided Fisher’s exact test, p-value

threshold 0.025). We found significant enrichments for 64/90 of

the interaction types and 46/64 of the domains, with 1 to 6

patterns per interaction type enriched. Fig. 5 shows structures for

each interaction type found to be enriched in the interactome

cross-validation along with its most significantly enriched motif,

which is not necessarily the top-ranked by SLiMFinder. Across the

interactomes of the four model species considered in this cross-

validation, our DMIs described here could offer molecular bases

for over 6,000 interactions: 5199 in human, 160 in fly, 19 in worm

and 941 interactions in yeast. Applying the statistical test to the 44

known ELM motifs for which we found a 3D structure [11] reveals

significant enrichment for 72% of the DMIs and 74% of the

domains, which is slightly higher than that observed for the

patterns derived in this work. Looking at all 66 ELMs we

considered for our previous study (i.e., also including ELM

patterns for which we did not find occurrences in 3D structure), we

find significant enrichments for 55% of the DMI and 59% of the

binding domains. This decrease might suggest that motifs with

known 3D structures are somehow better defined. Table 1 shows

the list of DMIs for which we found a significant enrichment in the

interactome networks, together with the best-ranked pattern

according to SLiMFinder and the most significantly enriched.

The complete list of patterns is provided in Table S1.

A look at specific examples
Although it is the general trends that conform the main message

of this work, it is always illustrative to look at some specific

examples to understand the nature of our results. Among the novel

DMIs identified by our approach there are two that, in the

meantime, have been included in ELM, but were not listed when

our training set was built. These can be considered ‘‘blind tests’’,

since neither the SVM nor other filtering parameters were selected

using the information in these domains and peptides. One case is

the BRCA1 C Terminus (BRCT) domain, which forms dimers

that bind a phosphopeptide [55]. The different orientations of the

domain with respect to the peptide are recognised in our

procedure, and two topological clusters are generated (see also

Figure 4). The best-ranked pattern is S..FP; where the S is always

found phosphorylated. The ELM annotation also describes

a phosphorylated S, along with two similar patterns (.S..F

and .S..F.K).

The second DMI from our results that has been added to ELM

is cytoskeleton-associated proteins domain (CAP_GLY), which is

involved in the regulation of microtubules [56]. It recognizes short

D/E-containing peptides; the consensus motif that we derived is

DE.F (or D.{0,1}E.F) while the ELM pattern is a much longer one:

[ED].{0,2}[ED].{0,2}[EDQ].{0,1}[YF]$. ELM contains the addi-

tional information that the peptide is always C-terminal, indicated

by the $ symbol. In our approach we do not try to establish

whether a pattern occurs at one of the termini, because peptides in

3D structures are often truncated, so that what appears to be a

terminus won’t necessarily be one in vivo. In this case, however,

neither the ELM CAP_GLY pattern nor the one we derived is

significantly enriched in proteins interacting with those containing

the domain.

A very interesting example is that of the Bcl-2 protein family,

which is crucial in the regulation of apoptosis and has both pro-

apoptotic and pro-survival members [57,58]. Many of these are

multidomain proteins that contain four conserved Bcl-2 homology

(BH) domains. In addition, some members of the extended family

only contain one of the BH domains, BH3, which forms a helical

peptide that can be bound by multidomain Bcl-2 proteins [59]. As

survival despite pro-apoptotic signals is a problem in many cancer

cells, this family comprises several interesting drug target

candidates. Indeed, a number of small molecule agonists and

antagonists have recently been developed and are currently in

various stages of clinical trials [59], some of which have been

developed based on 3D structures of Bcl-2 and its binding peptide

(the BH3 domain). The family is also listed as a peptide-binding

domain on the Pawson lab web site [60], named BH1-BH2-BH3-

BH4, but a consensus motif for the peptides is not given. The top-

ranked significant motif we identified is L..I[AG]D.[ILV], with the

large hydrophobic residues pointing into the binding groove. Two

other, very similar motifs scored significantly (LR.I.D.[LV] and

R.I[AG]D.[LV]); both also contain the large hydrophobic residues

in the appropriate spacing pattern. Structurally, the peptide is

always helical, so one might consider replacing the arbitrary

positions (.) by anything but proline [̂P], because of the helix-

breaking properties of this aminoacid. This restriction is also found

in other motifs, such as ligands of hormone receptors (Hormo-

ne_recep), another all-alpha protein that binds small helical

peptide ligands [19].

Finally, in contrast to the three examples above, we could not

identify a significant motif for Clp protease (CLP_protease),

although sufficient non-redundant sequences were available.

Given that Clp proteases degrade peptides with little sequence

specificity [61], the fact that our approach could not identify a

defined consensus motif should be considered positive for our

method.

Discussion

The identification and correct classification of domain-motif

interactions is a key issue to understand the biophysical principles

governing interactome networks, such as the relationship between

protein-binding domains and the consensus motifs they recognize.

Accordingly, we have presented a method to indentify unnoticed

domain-motif interactions (DMIs) among high-resolution 3D

structures, which not only provides information on the consensus

motif and binding domain, but also allows ready identification of

the key residues on both the motif and the domain side. Applying

this methodology to all currently available 3D structures has

revealed 152 DMIs, 127 of which have not been described

previously. Moreover, 64 of the motifs have been found to be

significantly enriched in proteins interacting with those containing

the respective binding domain. In a leave-one-domain-out benchmark

on the 3D structures of known ELMs [11], our method could

rediscover and compute consensus motifs for 2/3 of the known

cases. In addition, it is very precise as none of the random motif-

domain pairs we tested as negative control cases were accepted. As

far as we know, no other method for de novo motif discovery can

provide such details for a novel DMI. Indeed, few other methods

exploit the information encoded in 3D structures, although the

importance of the 3D structure of motifs and their flanking regions

for functional analysis has recently been highlighted [27]. The

information that a peptide adopts a particular structure in
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Figure 5. DMIs significantly enriched in the interactomes. Significantly enriched motifs were found for 46 distinct domains (shown in gray;
PCNA_N and PCNA_C are shown in the same structure). Binding peptides are given in a rainbow colour scheme, with the SVM-accepted part in sticks
representation and the consensus motif in surface representation. In most cases, differences between the interaction types for a given domain are
subtle, thus only one is shown in this representative figure. However, for domains that form repeats to bind peptides (Arm, BRCT (cf. Fig. 4 and main
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interaction, even though it may be unstructured on its own, is

currently only available from high-resolution 3D structures. While

sequence-based methods for motif discovery have the advantage

that they are applicable to larger datasets, they cannot necessarily

reveal the binding domain of a suggested motif [24], or the atomic

details of the interface. Knowing the interface of an interaction,

however, is critical for functional studies [12] as well as the

development of interfering elements, be it drug-like compounds

[21,36], novel binding proteins [62] or engineered peptides in

synthetic circuits or networks [63,64]. The transient interactions

and small interfaces in DMIs make them interesting candidates for

both applications. With previous large-scale methods, gaining this

knowledge in one step was not possible. Only once a pattern and

its binding domain have been identified, the recently published

method by Petsalaki et al. [37] can be used to search structures of

this domain for surface patches that are complementary to the

pattern, although it has some difficulties with helical and beta-

strand-forming peptides. In addition, without further information,

that method cannot show which residues in the domain interact

with the key residues in the motif, and would thus benefit form a

combined strategy with the approach presented here.

A different issue with the sequence-based quest for motifs is that

the ‘‘shared feature’’ may be too loosely defined. For example,

there are many kinases that phosphorylate [ST] or Y residues, yet

it would not be possible to derive a meaningful motif from the set

of phosphorylated sequences alone. Our method instead focuses

on the atomic interface between peptide and domain, which

includes a concise definition of the environment in which the motif

is bound. This, in turn, ensures that all peptides in one group for

pattern derivation use the same interface, which is a rather strict

definition of ‘‘shared feature’’. An additional advantage is the

direct possibility of visual inspection of the suggested DMIs. The

main bottleneck is the availability of domain-peptide interactions

in 3D structures in large enough numbers and with sufficient

diversity to allow for the derivation of a consensus motif. However,

if this information is available, the results are highly specific and

contain a level of detail that cannot be provided by other

techniques. Furthermore, our method successfully detected helical

peptides or those acting through beta-sheet addition, which

present difficult cases for the other 3D-structure-based method

for DMI interface detection [37]. Yet, while our method

successfully identifies DMIs in helical peptides, we do not fully

exploit the information provided in those structures – for the

peptide to be helical, it should not contain proline residues [65].

However, even though no prolines occur in the sequences,

SLiMFinder cannot determine that this residue is ‘‘forbidden’’

because the amount of information encoded in the sequences used

for training is much too small for such conclusions. Only studies on

all possible sequence variations, such as phage display data, could

allow the derivation of forbidden residues in certain positions.

However, one might consider manually modifying the patterns of

helical peptides to reflect this, by replacing all arbitrary positions (.)

by [ ˆP], as it has been done e.g. for the hormone receptor ligands

in ELM (pattern [ ˆP](L)[ ˆP][ ˆP](L)(L)[ ˆP], parentheses indicate

that the leucines are key residues).

We chose strict thresholds on contacts and interface size to limit

the occurrence of false positives, which are often problematic when

dealing with so few key residues as in motif-mediated interactions.

While our high precision shows the advantages of those strict

thresholds, we do miss some true motifs as described in ELM, in

particular due to the exclusion of regions assigned to Pfam

domains, which is responsible for almost half of the true motifs we

do not recover. Yet the inclusion of these regions would

disproportionately increase the computation time as well as the

risk of false positives, since it has been shown that motifs usually

occur outside of domains [16]. Nevertheless, it may be possible to

create a fine-tuned version of our method that is able to also detect

motifs located in domains. The fact that we do not find a pattern

for unspecific cleavage sites (e.g. for the Clp proteases) shows that

the method is also capable of separating random peptides from

functional ones at the stage of motif derivation, should random

peptides have been accepted by the SVM. Some motifs that were

only detected in interactions between a peptide and domain in the

same protein (intrachain interaction) could not be confirmed as

true DMIs upon visual inspection and thus, we cannot assume to

derive motifs accurately from intrachain data alone. This issue

may improve if intrachain DMI data would be included in the

training data, which is currently not the case as no reliable

collection of intrachain peptide-mediated interactions is available.

It should also be noted that our final list of DMIs (Table 1 and

Fig. 5) only includes those cases that could be confirmed in the

interactome cross-validation, even though we know that some real

cases, like the cytoskeleton-associated proteins domain

(CAP_GLY) and many other known ELM motifs, are not

significantly enriched in the current interactomes. This issue

may improve with growth of protein interaction databases.

Likewise, newly solved 3D structures may contain new DMIs, or

raise information content for existing ones above the threshold

required for application for our method. We cannot expect to

recover the exact patterns described in ELM, which are manually

curated and often exploit dedicated experiments to the relevance

of a particular position or residue. Yet both our patterns and those

from ELM score significantly in the datasets derived from 3D

structures, and manual comparison shows that they are often

similar. A potential problem is that the motifs we derive can only

take sequences into account that occur in 3D structures, which

may introduce a bias that would not be present in studies on all

possible binding peptides. This might be addressed by applying

methods such as iSPOT on the 3D structures identified here,

combined with data from phage display scans [39]. On the other

hand, we can include information on modified residues and

particular spacing patterns in motif derivation, which are usually

characteristic for a domain family and not just for individual

instances. Recent studies have shown that the binding preferences

of individual domains are probably too complex to be captured in

regular expressions but that more complex models will be required

[14,33]. In addition to the physicochemical binding preferences of

the domain, contextual factors will govern which interactions

happen in vivo and which do not [18,66]. The importance of the

context may vary for different recognition domains and biological

processes; for example, phosphorylation networks appear to

heavily rely on contextual information [31], while a few

(phosphorylation independent) domains have been shown to very

specifically recognise the amino acid sequence of their binding

partners [13,30]. Again, more complex models will probably be

required to integrate all this information that leads to the in vivo

specificity of any given protein. Nevertheless, consensus motifs can

be very helpful in studying commonalities among and differences

text), TPR_1, TRF, WD40), we have visualized all domains required to bind one peptide; these usually employ different interaction types. Blue domain
names indicate those that were described in the ELM training dataset [11], violet names mark additions to ELM since 2007 [32], which were not in our
training set, and green names indicate DMIs that are described on the Pawson lab web site [60] but not in ELM.
doi:10.1371/journal.pcbi.1000789.g005
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Table 1. DMIs significantly enriched in the interactome cross-validation.

Domain TC top-ranked pattern Enrichment p-value most enriched pattern Enrichment p-value

14-3-3 0 [HR]S.P 1.31 0 SHSY 3.63 0.001

14-3-3 2 LDL 1.19 0.007 LD.{0,1}L 1.22 0

R[SFYW].S.P (LIG_14-3-3_1), R.[SYFWTQAD].[ST].[PLM] (LIG_14-3-3_2), [RHK][STALV].[ST].[PESRDIF] (LIG_14-3-3_3)

Arm 0 KK[KR]K 1.45 0.043 KKRK 2.25 0.001

Arm 1 KKRKV 2.13 0.383 K[KR].K[LV][DE] 3.04 0.001

Arm 2 KK[KR]K 1.45 0.043 KKRK 2.25 0.001

Asp 2 HPFH 0 1 VV.A 2.58 0

Bcl-2 2 QL..I[AG]D 0 1 R.I[AG]D.[LV] 13.56 0.009

BIR 0 AVP[FI] 8.87 0.107 [IV].[FY][FY].P 25.16 0

Borealin 0 L.EFL 33.95 0 L.EFL 33.95 0

BRCT 0 S..FP.A 1.2 0.501 D..QVF.F 23.55 0.002

BRCT 1 SPTF 2.14 0.116 S.TF 1.56 0.01

Bromodomain 2 [GS].GG 1.36 0 GKG.{0,1}GK 8.8 0

Chromo 2 ARK[ST] 2.27 0.07 T.{0,2}ARKS 9.62 0.003

Cullin 0 WN.V..W.W 86.76 0 W..V..W..DI 86.76 0.012

Cyclin_N 0 K.{0,1}RRL 1.13 0.458 KR.L..E 3.01 0.003

[RK].L.{0,1}[FYLIVMP] (LIG_CYCLIN_1)

DUF618 0 PSYSP 0 1 PSY.P 56.58 0.001

Dynein_light 0 K.TQT 6.2 0.15 TQT 4.11 0

[KR].TQT (LIG_Dynein_DLC8_1)

FHA 0 EVTE.D 25.86 0.039 LE.TE 5.32 0

T..[ILA] (LIG_FHA_1)

Fibrinogen_C 0 HRP 2.37 0.085 GPR 2.25 0.014

Filamin 0 [KR]S[AS] 1.2 0.066 [ST]..[ST][ST] 1.17 0.021

Focal_AT 0 R.L.E 1.56 0.022 LSE 1.81 0.002

[LV][DE].[LM][LM]..L (LIG_PXL)

Histone 0 Q.RT.Y.F 0 1 QG.TL.G 40.89 0.001

Hormone_recep 2 [IL]L[HR].LL 0.7 0.806 [IL]L[HR].L 1.36 0.02

L[ˆP]{2}[HI]I[ˆP]{2}[IAV][IL] (LIG_CORNRBOX), [ˆP](L)[ˆP][ˆP](L)(L)[ˆP] (LIG_NRBOX)

IF4E 0 YDR.FL 156.16 0 YDR.FL 156.16 0

IRS 0 [FI]..[KR].[FY] 1.48 0.003 [FI]..[KR].[FY] 1.48 0.003

MAP1_LC3 0 D.WTH.S 108.44 0.009 D..THLS 108.44 0.009

MBT 0 HRK..RD 56.58 0.018 RKV.RD 339.48 0.003

PCNA_C 0 K.{0,2}QATL 34.22 0.029 K.{0,2}Q.T 1.6 0.021

PCNA_N 1 K.{0,2}QATL 34.22 0.029 K.{0,2}Q.T 1.6 0.021

(ˆ{0,3}|Q).[ˆFHWY][ILM][ˆP][ˆFHILVWYP][DHFM][FMY].. (LIG_PCNA)

PDZ 0 RETQV 0 1 R.ET.V 2.89 0

.[ST].[VIL]$ (LIG_PDZ_1), .[VYF].[VIL]$ (LIG_PDZ_2), .[DE].[IVL] (LIG_PDZ_3)

Peptidase_C14 1 D.SD 1.36 0.028 DE.D 2.18 0

Peptidase_C14 4 DE.D 2.18 0 DEVD 4.1 0

PHD 0 RTKQT 11.52 0.011 A.TK..AR 17.29 0

PID 2 Y.NP.YK 0 1 GY.N.TY 68.15 0.015

Pkinase 3 RRRHP 1.02 0.675 RR.HPS 4.08 0.015

Pkinase 6 T.NL 1.14 0.024 T.NL 1.14 0.024

Pkinase_Tyr 2 EIF..FE 0 1 E.FG..E 2.43 0.021

Profilin 0 PPP.{0,1}PP 4.48 0 PPP..P.P 8.6 0

Proteasome_A_N 0 K.EDN.G 0 1 KEE..L 3.1 0.007

RNA_pol_L 0 T.R..QF..R 32.47 0.031 R.VQF.A 21.64 0.003

SET 0 AR.{0,1}K.T 2.28 0.068 ARKST 20.55 0

SH2 0 YVNV 3.85 0 HIYDE 8.18 0.015
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between peptide-binding domains. A side effect of the large-scale

derivation of motifs is that peptides are always given together with

their binding domain in a way that can easily be transferred to

other sorts of data, which is not always the case for manually

curated DMIs. For example, by matching the pattern in one

sequence and the binding domain in another may explain the

mechanism behind some of the many protein-protein interactions

which are currently being discovered in high-throughput interac-

tion discovery experiments. This, in turn, may make them

amenable to tinkering with this part of the network, either by

designed peptides that might have fine-tuned affinity

and specificity for the binding domain [63,67] or by

drug-like compounds that can interfere with the interaction

[21,34,36], a long-standing dream of the pharmaceutical industry

[35,68,69].

The information we exploit here to identify novel DMIs among

the set of interactions of known 3D structure (i.e. well-defined

structure upon binding), is of different nature than the one used by

more traditional sequence and disorder-based methods applied by

many other tools [24–26]. We think that our approach presents an

extension to the currently available techniques, and should be

regarded as complementary to them. Sequence-based discovery

methods have access to much more data, especially with current

high-throughput interaction and other functional association

studies. The surface-searching method also accesses a larger pool

of data, because more structures of individual domains are

available than of DMI. Yet neither method can provide the level of

detail we access here. The combination of these two kinds of data,

with 3D structures to define motif interfaces and large sequence

databases to establish evolutionary over-represented patterns, will

certainly make a powerful predictor of linear motifs. On a limited

scale, we already created such a hybrid method in the interactome

cross-validation, yet more sophisticated implementations could

include a wider variety of biological data and tackle the problem of

capturing specificity, on the more abstract level of domain families

as well as on the level of individual domains.

Methods

Control dataset
The control data is based on the Structural Classification of

Proteins (SCOP) [44]. For each fold, we chose one representative

Domain TC top-ranked pattern Enrichment p-value most enriched pattern Enrichment p-value

SH2 1 S.TIYA 4.09 0.229 IY.QVQ 8.18 0.015

Y.N. (LIG_SH2_GRB2), Y[IV].[VILP] (LIG_SH2_PTP2), Y[QDEVAIL][DENPYHI][IPVGAHS] (LIG_SH2_SRC), Y..Q (LIG_SH2_STAT3), Y[VLTFIC].. (LIG_SH2_STAT5)

SH3_1 0 P.{0,1}P.{0,2}P.{0,2}P 2.2 0 P.PV.{0,1}PP 9.22 0.019

SH3_1 1 P.{0,1}P..P 1.8 0 P.{0,1}PP.{1,2}P 3 0

SH3_1 2 DR.TKP 1.72 0.468 DR.T 1.44 0

[RKY]..P..P (LIG_SH3_1), P..P.[KR] (LIG_SH3_2), …[PV]..P (LIG_SH3_3)

SIR2 0 HKKLM 0 1 [KR][HR].[KR] 1.46 0.008

TPR_1 0 EEVD 2.01 0.027 ME.VD 4.02 0.007

EEVD$ (LIG_TPR)

TRF 0 [FY].L.P[LV] 2.67 0.172 FN.A..GR 244 0.004

Trypsin 1 PG.Y 1.87 0.001 PG.Y 1.87 0.001

Trypsin 3 CGK 0.66 0.925 CG..T 1.86 0.015

Trypsin 5 PAIQP 0 1 P.IQ 1.59 0.018

Trypsin 7 CT..IPP 0 1 CT..I.P 8 0.024

Trypsin 11 CG.[KR] 1.24 0.189 CG..T 1.86 0.015

Trypsin 12 [FY]E.IP.E 0 1 DF..IP.{0,1}E 14.39 0.007

Tyr-DNA_phospho 0 KLNY 177.45 0.006 KLNY 177.45 0.006

V-set 3 Q.DPAF 15.93 0.062 K..[HK].G 1.38 0.008

V-set 10 E.DKW 5.31 0.053 A.FRHD 15.93 0.006

V-set 11 WF..T..LW 0 1 QE..D..RE 10.62 0.014

V-set 15 D.PDY.S 0 1 P.Y.S 1.79 0.001

V-set 16 E.DKW 5.31 0.053 L.FGYP 31.87 0.001

VHS 0 D..LL 1.12 0.314 DL..I 1.72 0.012

WD40 0 RTKQT 6.71 0.006 TKQTA 8.39 0.003

F.[IV][ˆWFY][ˆWFY][IL][ILM] (LIG_EH1)

WW 0 P.{0,2}PP.{0,2}P 1.64 0 PPPY 6.24 0

PP.Y (LIG_WW_1), PPLP (LIG_WW_2), …[ST]P. (LIG_WW_4)

List of domains and motif patterns determined in this study and found to be significantly enriched in the interactome cross-validation. The top-ranked SLIMFinder motif
and the pattern with the highest significant enrichment are shown for each topological cluster (TC), along with the respective enrichment and p-values. If available, ELM
ligands of the domain are given below the patterns derived in this work. A table with all DMI, including those not enriched in the interactome cross-validation as well as
the 3 top-ranked patterns for all candidate DMIs is given in Table S1.
doi:10.1371/journal.pcbi.1000789.t001

Table 1. Cont.
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structure and generated all possible peptides of 4–20 residues

length. This dataset contains high overlaps among peptides from

the same structure, which gives us a large variety of possible

structural conformations of peptides to study. For the benchmark,

we masked all peptides in regions covered by Pfam domains [46]

and selected unmasked background peptides that had at least 4

contacts with a domain in a different protein chain as negative

control cases. Thereby we ensured that negative cases had a

chance to be identified as candidate peptides and would not be

removed by our filters on peptides covered by domains and the

minimum number of contacts.

Structural parameters
The Elongation or ‘‘length’’ of a peptide is the distance

between the Ca of the first and last residue of a peptide in

Angstroms (Å). Because flexibility increases with peptide length

in residues, short peptides have a small range of possible

elongation values, while it varies more for long peptides. The

Linearity is computed by constructing a line through the first and

last Ca of each peptide, then calculating the distance of each Ca

in the peptide to this line, and returning the maximum distance.

A low value indicates a very flat or linear peptide. We used

DSSP [45] for secondary structure assignments to peptides from the

set of known DMI and from the SCOP background. The

assignment is done on a single protein, after removing other

chains in the structure but before extraction of the peptides, as

DSSP does not always perform well on small fragments. Each

peptide is assigned the DSSP class most frequently found among

its residues. Note that because SVMs work on numerical data,

including a more detailed description of the secondary structure

of a peptide, such as the order of DSSP classifications, would

require a much more complex model. We also used accessibility

data computed by DSSP, and assigned the average accessibility

of its residues to each peptide.

Training of the Support Vector Machine (SVM)
We used the implementation ‘‘SVM-light’’ [70] and trained it

on our data with a cost-factor of 10, meaning that errors in the

classification of positive cases are 10 times worse than errors in the

classification of negative cases, a trade-off between training error

and margin of 0.1, and a linear kernel. These parameters were

selected after searching the parameter space for different

combinations of values for cost-factor, trade-off and kernel

function, and testing recovery of known positive and negative

(SCOP control set) cases. The estimation of classification errors

also takes the fact that our set of positive cases is much smaller

than the negative set into consideration.

Interactions with neighbouring domains
To form a DMI, each peptide accepted by the SVM was also

required to interact with a nearby domain, which may be part of

the same protein or of another. Linear motifs usually form one

connected interface with their binding domain, thus we excluded

peptides in which there was a region of more than 4 residues that

did not contact the domain, as well as those cases in which less

than 60% of the peptide residues made contact with the domain.

Interface size and ratio
We used NACCESS [71] to compute the interface between

domain and peptide, and the ‘‘full interface’’ between the

domain-containing protein and the peptide-containing protein

(interchain DMIs) or between the domain and the rest of the

protein (intrachain DMIs). In general, to accept a peptide-

mediated interaction, the domain-peptide interface has to

constitute at least 50% of the full interface. To accommodate

for different stoichiometries in domain-peptide interactions

(multiple domains binding one peptide), the threshold for the

interface ratio was set to 0.5/N, where N is the number of

domains involved in the interaction. If domains do not contribute

roughly equally to an interaction or, more exactly, if any domain

contributes less than N/0.5, they are removed in a filtering step.

Since this changes the number of domains involved in the

putative DMI and hence the minimum interface size, we repeated

the filtering until each domain-peptide interface contributed

appropriately for its stoichiometry and no domain was removed

any more in the given step; in other words, we repeated the

procedure until convergence. Note that, while all domain-

peptide-interfaces have to contribute at least 0.5/N, they do not

necessarily contribute equally.

Clustering by topology
We first aligned all sequences for a given domain to the

corresponding Pfam HMM profile [46]. The aligned positions

are used as a normalized numbering of the sequences, allowing

easy comparison and mapping of corresponding positions. Next

we computed the contacts for each domain-peptide interaction,

and compared for each pair of domains how many of the

corresponding domain positions contacted the peptide in both

cases (cb). The resulting distance score is 1{
2|cb

c1zc2
, with c1 and

c2 being the number of domain positions involved in contacts

for the two respective domains. If the interface sizes are vastly

different (one has more than double the contacts of the other),

we set the score to 1, as these interfaces are considerably

different despite possible overlaps (visual inspection). After

computing the distance matrix for all DMIs involving the given

domain, we clustered the interaction topologies by complete

linkage hierarchical clustering [72] and cut the resulting tree at

a distance of 1, which corresponds to no shared contacts (or

artificially separated cases with large differences in interface

size, cf. above).

Computing peptide regions for overlapping peptides
Each continuous part of a protein that was covered by one or

more peptides was designated as a peptide-containing region.

These regions are non-overlapping by definition, and they

represent parts of the protein that contain one or more peptides

structurally similar to those found in known DMIs. The main

motivation for this was that each pattern match in a given

structure should only be counted once for ‘‘support’’ of that

pattern, independent of how many accepted peptides include it (cf.

Fig. 3).

Clustering by sequence
For the sequence-based clustering, domain and peptide

alignments are computed individually, and then the pairwise

similarities are combined into one score, which is then used for

clustering. For domains, all sequences of a given family are aligned

to the Pfam HMM profile, and the sequence identity is computed

from this alignment, yielding a pairwise domain sequence identity

score sdij
for each pair of domains. The corresponding peptide-

containing regions are aligned using the Needleman-Wunsch

algorithm [73], yielding a pairwise peptide sequence identity score

spij
for each pair of peptides. The distance score is then computed

as 1{
sdij

zspij

2
for each pair ij, where i and j are candidate

domain-peptide interactions. Like for the topological clustering,

Domain-Motif Interactions on 3D Structures
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we applied complete linkage hierarchical clustering [72]. Note that

we use both domain and peptide sequences, because for the

diversity of a DMI it makes a difference whether a given peptide is

always bound by the same domain or by different domains. As a

cut-off here we chose 0.1, which corresponds to 90% sequence

identity. Thus, all resulting clusters have a combined sequence

identity of 90% considering both domains and peptides.

Motif derivation
We used SLiMFinder [25] to derive consensus motifs for the sets

of peptide sequences bound in each topological cluster. We

computed the amino acid frequencies from all sequences in the

PDB, and disabled the ‘termini’ flag because beginnings and ends

of our sequence fragments usually do not correspond to actual

protein termini. ‘‘Unrelated protein clusters’’ (UPCs) were defined

using the sequence-based clustering described above. Only

topological clusters with 3 or more UPCs were searched for

consensus motifs; the information content is too low in the other

cases.

Enrichment of DMIs in interactome networks
We created interactomes for human, fly, worm and yeast by

integrating protein-protein interaction data from the databases

MINT, IntAct and HPRD [74,75,76] that are supported by peer-

reviewed publications. To ensure species specificity, we excluded

hybrid interactions observed between proteins from different

species, resulting in networks with 53,290 (human), 19,260 (fly),

5,566 (worm) and 60,721 (yeast) interactions, respectively. As

described above, we only considered interactions that could not be

explained by domain-domain interactions as observed in 3D

structures [10], which reduces the interactomes to 43,882, 18,113,

5,234 and 58,426 edges, respectively. These interactomes involve

7,808 human, 6,610 fly, 3,111 worm and 5,266 yeast proteins,

respectively.

To calculate motif enrichments in the interactome networks, we

assigned Pfam domains, via HMM profiles, to all proteins in the

respective interactomes, and tested for motif hits by regular

expression pattern matching, only considering regions outside

domains as described above. We then created a contingency table

for each motif and species stating how many proteins contained at

least one motif match, and how many interact with a protein

containing the motif’s binding domain. The enrichment factor was

computed as
pim=pi

pm=p
, where pim is the number of proteins that

interact with another protein know to contain the binding domain

and also have a motif match, pi is the number of proteins that

interact with another containing the binding domain, pm is the

number of proteins with a motif match, and p is the total number

of proteins in the interactome. The p-value was computed using

Fisher’s exact test on the contingency table, as implemented in R

[77].

Supporting Information

Figure S1 Linearity and Elongation of known motifs in

comparison to a background sampling. (a) Linearity, (b) Elonga-

tion, (c) Linearity for 7-residue-peptides, split by DSSP-classifica-

tion, (d) Elongation for 7-residue-peptides, split by DSSP-

classification. The distribution of values varies greatly across and

within classes of secondary structure.

Found at: doi:10.1371/journal.pcbi.1000789.s001 (0.14 MB EPS)

Figure S2 (a) Interface size for known domain-peptide interac-

tions. (b) Ratio of the interface between domain and peptide to the

full protein-protein interface for the known DMI. Both are

computed as described in the Methods section of the main

manuscript.

Found at: doi:10.1371/journal.pcbi.1000789.s002 (0.77 MB EPS)

Table S1 All DMI candidates derived from high-resolution 3D

structures, specifying the binding domain, topology or interaction

type ID, the consensus motif, enrichment and p-value in the

interactome cross-validation, if applicable, and the ELM pattern

and name, if available. For each interaction type, up to 3 top-

ranked motifs are provided.

Found at: doi:10.1371/journal.pcbi.1000789.s003 (0.05 MB XLS)
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