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Abstract

We are interested in how intragenic recombination contributes to the evolution of proteins and how this mechanism
complements and enhances the diversity generated by random mutation. Experiments have revealed that proteins are
highly tolerant to recombination with homologous sequences (mutation by recombination is conservative); more
surprisingly, they have also shown that homologous sequence fragments make largely additive contributions to biophysical
properties such as stability. Here, we develop a random field model to describe the statistical features of the subset of
protein space accessible by recombination, which we refer to as the recombinational landscape. This model shows
quantitative agreement with experimental results compiled from eight libraries of proteins that were generated by
recombining gene fragments from homologous proteins. The model reveals a recombinational landscape that is highly
enriched in functional sequences, with properties dominated by a large-scale additive structure. It also quantifies the
relative contributions of parent sequence identity, crossover locations, and protein fold to the tolerance of proteins to
recombination. Intragenic recombination explores a unique subset of sequence space that promotes rapid molecular
diversification and functional adaptation.
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Introduction

The ubiquity of sex and recombination suggests a significant

role in evolution, yet their benefit is still debated [1,2]. Intragenic

recombination events generate chimeric genes, which are believed

to make important contributions to allelic diversity in natural

populations [3–6]. Laboratory experiments clearly demonstrate

the benefits of recombining homologous proteins: intragenic

recombination generates new proteins that are functionally diverse

while still having a high probability of folding properly and

functioning [7,8].

We have developed techniques for the design, construction, and

characterization of libraries of chimeric proteins generated by site-

directed recombination of homologous sequences [9–12]. Briefly,

libraries are designed (i.e. crossover sites are selected) to minimize

the number of novel residue contacts that are generated upon

recombination (we call this number ‘SCHEMA disruption’), which

tend to be deleterious to protein function. The sequence fragments

chosen this way are then shuffled to generate a combinatorial

library of chimeric proteins. The resulting proteins have no

random point mutations; all the ‘mutations’ are homologous, that

is, to amino acids that already appear in at least one of the parent

sequences. These libraries can be used to explore the nature of

recombination, without the high levels of random mutations

typically found in protein libraries made by DNA shuffling [7] and

other, similar methods for homologous recombination in vitro.

To date, this laboratory has constructed and tested eight such

recombination libraries consisting of chimeric bacterial b-lacta-

mases (blac13 and blac), bacterial cytochrome P450s (P450),

fungal family 5 cellulases (Cel5), bacterial family 48 cellulases

(Cel48), fungal class I cellobiohydrolases (CBHI), fungal class II

cellobiohydrolases (CBHII), and human arginases (Arg) (Table 1).

Each library, which typically consists of thousands of new

sequences, provides a glimpse of the protein fitness landscape

that is accessible by recombination, which we refer to as the

recombinational landscape. Since every member of the library can

be generated by recombining other members, the genetic diversity

in these libraries has similarities to that of a sexually reproducing

population.

Studies of these libraries have highlighted the enrichment of

functional sequences in the recombinational landscape: SCHE-

MA-designed libraries contain a significant proportion (*20–

50%) of functional sequences, despite having a high average

mutation level (i.e. average distance of a chimera sequence from its

closest parent). For comparison, random mutation libraries with

the same number of mutations are estimated to contain 10–20

orders of magnitude fewer functional sequences [13–15]. Whereas

random mutations cause the probability a sequence remains

functional to decrease exponentially, mutation by recombination

always moves towards other functional sequences and is therefore

significantly more conservative [16]. For this reason, intragenic

recombination effectively explores functional ridges through a

protein sequence space that is mostly nonfunctional.

These libraries have also revealed significant variation in

thermostability [17,18] and other properties [19–21] within the

recombinational landscape. We observed that most of this
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variation can be explained by additive effects [17,18,20–22]. That

is, the stability, for example, of a chimeric protein can be expressed

as the sum of contributions from each of its sequence fragments.

This additivity can be used to efficiently engineer highly optimized

chimeric proteins for a variety of applications [17,20,22,23]. The

additive structure, or lack of epistasis, within the recombinational

landscape may provide an abundance of adaptive pathways for

natural protein evolution.

We would like to understand the features of the recombinational

landscape that contribute to its extreme enrichment in functional

sequences and its additive structure. Since the details of the protein

recombinational landscape are unknown, we develop a random

field model which captures its statistical properties. Random field

models are effective at describing statistical features of uncertain,

spatially-organized functions, with applications ranging from

geostatistics to image analysis [24–26]. This versatile class of

models has also been used to describe fitness landscapes [27], the

best known example being Kauffman’s NK-model [28]. Our

random field model for the recombinational landscape uses a

physics-inspired energy function to describe the sequence-fitness

relationship and is parametrized with experimental data. Using

this model, we derive approximations for the fraction of functional

sequences within a recombination library and the degree of

landscape additivity, and we relate these quantities back to

experimental observations. We discuss how the structure of the

recombinational landscape contributes to the utility of recombi-

nation in evolution.

Results/Discussion

Random field model of the protein recombinational
landscape

We use a pairwise, residue-level energy function to describe the

large number of intramolecular interactions that stabilize protein

structures (Figure 1). Such simplified contact potentials have been

used in the past for protein folding simulations and structure

prediction [29–31]. Assuming a fixed structure (set of residue-

residue contacts), the energy of any sequence is the sum of energy

terms associated with the sequence’s specific residue combinations

at every pair of contacting residues. For chimeric proteins we

distinguish between two types of contacts: parental (P) contacts,

Author Summary

Mutation and recombination are the primary sources of
genetic variation in evolving populations. The relative
benefit of these two diversification mechanisms and how
they complement each other has been a long-standing
question in evolutionary biology. While it is clear what
types of genetic diversity these two mechanisms can
create, a significant challenge is relating these sequence
changes to changes in fitness. The fitness landscape, which
describes this mapping from genotype to phenotype, is
extraordinarily complex and defined over an incompre-
hensibly large space of sequences. Here, we develop a
model of the landscape that relies not on the details of this
mapping, but rather on the statistical relationships
between sequences. By studying the expected values of
landscape properties, we can gain insights into the
structure of the landscape that are independent of the
details of how genotype dictates phenotype. We use this
random field model to understand how recombination
explores a functionally enriched and diverse subset of
protein sequence space.
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which are residue pairs observed in at least one of the parents, and

novel (N) contacts, which are not (Figure 1). With this model, the

energy of any chimeric protein c is given by summing the contact

energies

Ec~
X

i

ai
c,Pei

Pz
X

i

ai
c,Nei

N , ð1Þ

where ei
P is the energy term associated with parental contact i, ei

N

is the energy term associated with novel contact i, and ai
c,P and

ai
c,N are binary variables which indicate the specific residue pairs

for each contact i in chimeric protein c. Since the specific energy

values of ei
P and ei

N are unknown, we define the independent and

identically distributed random numbers Pi and Ni, distributed

with means and variances

Pi*mP,s2
P ð2Þ

Ni*mN ,s2
N : ð3Þ

Substituting these random variables into equation 1 defines a

random energy function associated with any chimeric protein c

Ec~
X

i

ai
c,PPiz

X
i

ai
c,NNi: ð4Þ

This random energy function is defined over the parental subspace

Sp, the set of all sequences that can be generated by recombining

the parent sequences, which specifies the random field

fEc : c [ Spg: ð5Þ

The expected value of the random field at chimeric protein c is

E½Ec�~mP

X
i

ai
c,PzmN

X
i

ai
c,N , ð6Þ

and the covariance between any two sequences is

Cov½Ec1,Ec2�~s2
P

X
i

ai
c1,Pai

c2,Pzs2
N

X
i

ai
c1,Nai

c2,N : ð7Þ

Importantly, this covariance structure expresses how pairs of

sequences are related and captures our intuitive notion of protein

similarity: proteins with similar sequences have similar structures

and therefore similar properties. This random field model provides

a statistical description of the recombinational landscape.

To parametrize the random field model, we must determine the

mean energy mP and variance s2
P of parental contacts and the

equivalent parameters mN and s2
N for novel contacts. Using a large

binary functional status data set from a library made by

recombining three bacterial cytochrome P450 enzyme heme

domains [32], these four parameters were estimated by maximiz-

ing a marginalized likelihood function (see Methods). If we assume

the functional status depends on a sequence’s Gibbs free energy

difference from the nonfunctional state, these estimated parame-

ters can be interpreted as Gibbs free energy differences in RT
units because the two-state Boltzmann distribution is identical to

the logistic likelihood function. As expected, parental contacts are

slightly stabilizing (mP~{0:66 cal=mol), novel contacts are

significantly destabilizing (mN~52:06 cal=mol), and both classes

of contacts show significant variation relative to their means

(sP~51:94 cal=mol and sN~58:33 cal=mol). Estimating these

parameters on recombination data from other protein families

yields qualitatively similar relationships (Figure S1). This is not

surprising, considering that most proteins are marginally stable

[33] and mutations (novel contacts) tend to be deleterious to

protein function [13–15]. In the following sections, we use this

parametrized random field model to interpret experimental

observations from protein recombination libraries.

Effect of homologous substitutions on protein function
Previously, we compared the effects of random versus homol-

ogous amino acid substitutions [16]. Whereas the fraction of

functional sequences declines exponentially with increasing

random mutations [13,14], that fraction varies log-parabolically

with the number of substitutions taken from another functional

parent. For two parents, the log-parabolic behavior appears

because accumulating homologous substitutions must eventually

convert one functional parent sequence into another functional

parent sequence. Random mutagenesis of b-lactamase indicated a

probability that a single random mutation will preserve function

Figure 1. Contact model of protein recombination. When
homologous proteins are recombined, structural fragments are
acquired from different parents (colored red and blue). Here, lines
illustrate contacts between positions that contain residues within 4.5 Å
and that are not conserved in the parent sequence alignment. When
these nonconserved contacts span structural fragments (i.e., between
red and blue) they generate novel (N) interactions that are not observed
in either parent. All other contacts, including those between conserved
positions (not shown) and those within parental fragments (red-red or
blue-blue), provide parental (P) interactions that are found in at least
one of the parent structures.
doi:10.1371/journal.pcbi.1002713.g001

Model of the Protein Recombinational Landscape
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(neutrality) of *0.54, whereas recombination experiments on the

same enzyme indicated the probability a homologous substitution

will preserve function (recombinational tolerance) was *0.79 [16].

A recombinational tolerance significantly larger than the neutrality

indicates that homologous substitutions tend to be more conser-

vative than random ones. Here, we evaluate the effects of

homologous substitutions using the random field model and

compare the results to this previous analysis.

Analyzing a library of chimeric b-lactamases (blac13) [34], the

probability of functioning for each chimera was estimated by

evaluating the logistic function f (x)~1=(1zexp(x)) at the

expected value of the random field (equation 6). These probabil-

ities were averaged within 15 groups of chimeras binned by their

number of homologous substitutions. The same analysis was also

performed on simulated random substitutions, where a novel

contact was any residue pair not present in the two b-lactamase

parents. With two parents, at least 18/19 random mutations will

result in non-parental amino acids and therefore novel interactions

with any contacting residues. The random field model results show

excellent agreement with the experimental results of substitutions

generated by recombination and randomly (Figure 2A). As

observed previously, the fraction of functional sequences under-

goes a steep exponential decline with random mutations, while

functionality displays a log-parabolic dependence on homologous

substitutions.

With the random field model, we can now explore how key

recombination parameters, such as parent sequence identity or the

number of sequence crossovers, influence the shape of the

recombination curve shown in Figure 2A. As the sequence identity

shared by the parents decreases, the curve stretches to a higher

level of mutation (more mutations are possible for a fixed sequence

length) and to a lower fraction functional (Figure 2B), as was

shown previously using lattice protein simulations [16]. Here we

see that homologous substitutions from more-distant parents tend

to be more deleterious to protein function than substitutions from

less-distant proteins. This happens because distant proteins are

more likely to have their contact networks composed of different

residues, and these networks are therefore less compatible when

recombined. We also see that as the number of sequence

crossovers decreases, the log-parabolic recombination curve shifts

towards a higher fraction functional (Figure 2C), necessarily

approaching a flat line when there are no crossovers. This happens

because each crossover event creates opportunities to generate

deleterious interactions. This improvement to the previous analysis

allows us to see how recombinational tolerance depends on the

number of sequence crossovers. To estimate the effects of

homologous amino acid substitutions independent of the number

of crossovers, we sampled random homologous substitutions and

calculated the average probability of folding at each level of

mutation (Figure 2C). The effects of random homologous

substitutions still follow the log-parabolic curve, although this

curve dips over five orders of magnitude lower than the curve

obtained from the b-lactamase library experiments [34]. Fitting

the log-parabolic equation [16], we estimate the recombinational

Figure 2. Effect of homologous substitutions on the fraction of
functional sequences in a library of chimeric b-lactamases. (A)
The random field model agrees well with experimental data on random
and homologous substitutions in b-lactamase [16]. The parabolic curve
displays the effect of homologous substitutions, and the error bars
represent the 95% confidence intervals of the fraction of correctly
constructed chimeras (see Methods). The steep exponential curves (and
inset) show the effect of random mutations, and the error bars
represent one standard error. (B) As parent sequence identity decreases,
the homologous substitution curves stretch to higher levels of mutation
and lower fraction functional. Shown are the substitution curves for the

blac13 library (crossover locations and contacts) averaged over 100
random parent sequences with sequence identity ranging from 20–
80%. (C) As the number of crossovers n decreases, the homologous
substitution curve shifts towards a higher fraction functional. Shown are
the substitution curves for the blac13 library (parents and contacts)
averaged over 100 random crossover locations with the number of
crossovers varying from 6 to 27. The random homologous substitution
curve was generated by averaging over 100 randomly sampled
sequences at each level of mutation.
doi:10.1371/journal.pcbi.1002713.g002

Model of the Protein Recombinational Landscape
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tolerance of random homologous substitutions to be

r~0:68+0:01. The recombinational tolerance is still significantly

greater than the neutrality (0.54), but to a lesser degree than

previously estimated.

The only difference between random homologous substitutions

and those generated by recombination (Figure 2C) is how the

mutations are distributed throughout the sequence and structure.

Random homologous substitutions are distributed uniformly

throughout the sequence, while those generated by recombination

occur in contiguous stretches of sequence. By making mutations in

groups, recombination preserves many local interactions. From

this analysis, we propose an updated model for the conservative

nature of intragenic recombination which includes contributions

from homologous substitutions (as shown previously) as well as

groups of coevolved residues that vary simultaneously. The latter

effect is expected to be particularly important in natural evolution,

where the number of intragenic crossover events per generation is

likely to be small.

It is interesting that the random field model for the recombi-

national landscape also works reasonably well to describe the

effects of random mutations. Random mutations frequently result

in a non-parental amino acid and therefore cause deleterious novel

interactions with all contacting residues. This simplified model

recapitulates the exponential decline in functional sequences that

was observed upon random mutagenesis of b-lactamase (Figure 2A)

and in other mutational studies [13–15]. In addition, this model

trivially captures the well-known fact that surface mutations tend

to be less deleterious than mutations in the protein core, because

core residues tend to have many more contacts. With a single

model to explain the effects of both random and homologous

substitutions, we can understand their differences in terms of

residue contacts. The number of deleterious contacts generated by

a homologous substitution is less than or equal to the number

generated by a random mutation at the same position, with

equality rarely being achieved. This is consistent with the

explanation that homologous substitutions are conservative

because they have been previously selected to be compatible with

the protein fold [16].

Effect of intragenic recombination across protein families
The factors that determine a particular protein family’s

tolerance to recombination are unknown. Table 1 reports the

fraction of functional sequences in eight recombination libraries,

representing protein families of different functions, sizes, and fold

classes. Seven of these libraries were designed with the intent of

maximizing the fraction of functional sequences, yet there is

significant variation (2–3 fold) in this fraction between libraries.

While some of this variation is likely due to experimental

differences in classifying functional versus nonfunctional sequences

for different enzymes, we expect a significant proportion of this

variation to arise from differences in parent fold, parent sequence

identity, and the specific crossover locations chosen in the library

design. Using the random field model, we derive an approxima-

tion for the expected value of the fraction of functional sequences

in a recombination library and use this to understand how these

factors contribute to a protein’s tolerance to recombination.

Consider a recombination library L generated by recombining

sequence fragments from p parental sequences at n crossover sites.

We refer to the sequence fragments between crossover sites as

‘blocks’; therefore the library is composed of b sequence blocks

(b~nz1). All sequence fragments in these libraries are roughly

the same length, and therefore, with the random field model, we

can assume that each fragment’s energetic contribution is an

independently and identically distributed Gaussian random

variable. With this assumption, the distribution of sequence

energies within recombination library L is Gaussian and can be

described by its mean

ML~
1

pb

X
c[L

Ec ð8Þ

and variance

VL~
1

pb

X
c[L

(Ec{ML)2: ð9Þ

The fraction of functional sequences within library L is given by

evaluating the Gaussian cumulative distribution function at zero

fF ~
1

2
1{erf

MLffiffiffiffiffiffiffiffiffi
2VL

p
� �� �

, ð10Þ

where erf is the error function.

Since the specific energy terms that shape the recombinational

landscape are unknown, we use the random field model to

calculate the expected value of the fraction of functional sequences

by integrating over all possible energy terms ei
P and ei

N . The

expected value of the library mean is given by

E½ML�~
1

pb

X
c[L

E½Ec�~mPnCz(mN{mP)

P
c nN,c

pb ð11Þ

where nC is the total number of contacts and nN,c is the number of

novel contacts in chimera c. The expected value of the library

variance is given by

E½VL�~
1

pb

X
c[L

(E½Ec�{E½ML�)2zVar½Ec�zVar½ML�
�

{2Cov½Ec,ML��
ð12Þ

More specific details of Var½Ec�, Var½ML�, and Cov½Ec,ML� are

given in Text S1. With these two expectations, the expected value

of the fraction of functional sequences can be approximated with a

leading-order Taylor series expansion about E½ML� and E½VL�

E½fF �&
1

2
1{erf

E½ML�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E½VL�

p
 !" #

: ð13Þ

The expected value of the fraction of functional sequences

within a library E½fF � shows quantitative agreement with the

experimentally determined values, as shown in Figure 3A. With

the random field model, both parental and novel contacts

contribute to the distribution of sequence energies within a

recombination library and therefore to the fraction of functional

sequences. The deleterious novel contacts dictate the mean energy

of the library (ML), while parental contacts, which typically

outnumber novel contacts 50–100-fold, dominate the variance

(VL). This suggests recombination events can cause loss of function

by two independent mechanisms: (1) by introducing new

deleterious interactions between sequence fragments, or (2) by

introducing sequence fragments that already contain deleterious

interactions.

Model of the Protein Recombinational Landscape
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To better understand the variation in the fraction of functional

sequences in the different recombination libraries, we sampled

random libraries, calculated E½fF �, and estimated the contribution

from protein fold, specific breakpoints, and parent sequence

identity. For each protein fold, we sampled 100 random two-

parent sequence alignments with sequence identity ranging from

10–90%, and for each of these alignments we sampled 100

random 7-crossover libraries, for a total of 90,000 libraries. A

three-way analysis of variance shows the protein fold (pv0:001),

specific breakpoints (pv0:001), and parent sequence identity

(pv0:001) all make significant contributions to the E½fF �.
Estimating the variance components, we find parent sequence

identity to be the main determinant of E½fF � (contributing 92% of

the variance), followed by specific crossover locations (4%), and

protein fold (2%). This strong dependence on parent sequence

identity is the result of the approximately exponential increase in

the number of (deleterious) novel contacts as parent sequences

diverge.

Interestingly, the parent sequence identity also dictates the

mechanism of chimeric protein inactivation. When the parent

sequence identity is low, most of the nonfunctional chimeric

proteins are the result of new deleterious interactions between

sequence fragments. However, when the parent sequence identity

is high, nonfunctional sequences are usually the result of inheriting

sequence fragments which already contain deleterious interactions.

This is consistent with the observation of high mutual information

between a chimeric protein’s functional status and its number of

novel contacts for the b-lactamase library (low parent sequence

identity) and the low mutual information observed for the P450

library (high parent sequence identity) [35]. In the b-lactamase

library, the number of new interactions between fragments (novel

contacts) is predictive of the functional status of chimeras.

However, in the P450 library, the number of novel contacts is

not predictive, suggesting other mechanisms must be responsible

for chimera inactivation (i.e. acquisition of deleterious sequence

fragments).

Additive structure of the recombinational landscape
Perhaps the most surprising finding from protein recombination

experiments has been the additive structure of the recombinational

landscape [17,20,22,23,36]. Linear models are able to explain a

majority of variation in stability as well as some other properties,

suggesting that sequence elements make largely independent,

additive contributions to a protein’s overall properties. In

quantitative genetics, this is referred to as additive genetic

variance, which according to Fisher’s fundamental theorem of

natural selection determines a population’s response to selection

[37,38]. Additive landscapes are easier for evolving populations to

climb because they are not stymied by rugged, epistatic features.

This additivity has been especially useful for engineering

optimized chimeric proteins in the laboratory, because a small

sampling of sequences provides sufficient information to make

accurate predictions across the entire library [17,22,23]. Here, we

use the random field model to understand the origin of the

additive structure within the recombinational landscape.

Within the recombination library L described in the previous

section, the total variance can be partitioned into additive and

epistatic components (VL~VAzVE ). We define the landscape’s

additivity A as the fraction of the total variance that is explained

by additive effects

A:
VA

VL

: ð14Þ

This dimensionless quantity, which ranges from 0 to 1, describes

the smoothness of the landscape and is inversely related to the

landscape ‘ruggedness’ defined in [39]. For four of the recombi-

nation libraries, there are sufficient data to calculate the additivity

of the thermostability landscape (see Methods). These results are

presented in Table 1.

The additive variation can be understood by considering how

individual mutations contribute to variation in the library. A

mutation that occurs at a position with a fixed structural context,

such as a mutation within a structural fragment inherited from one

parent or a mutation surrounded by conserved positions, will

always have the same effect throughout the library and therefore

contributes entirely to additive variation. However, a mutation can

have different effects in different sequences if it occurs at a position

whose environment varies. The effects of these mutations can only

be expressed with an epistatic (non-additive) model, but their

Figure 3. Comparison between library properties and their expected values within the random field model. Note diagonal lines
represent x~y. (A) The random field’s expected fraction of functional sequences shows quantitative agreement with experimental results (r~0:95
with pv0:005). Error bars represent the binomial 95% confidence intervals calculated using the Clopper-Pearson method [51]. (B) The expected
additivity agrees well with experimentally determined values (r~0:78 with p~0:21). While the small data set limits the statistical significance of this
correlation, all E½A�s are large and within the ranges that are observed experimentally.
doi:10.1371/journal.pcbi.1002713.g003
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additive contribution can be found by averaging their effects over

all structural environments within the library. An additive energy

function can be defined by accounting for purely additive and

averaged epistatic effects (Text S1). This additive energy can be

used to calculate the expected value of a library’s additive variance

E½VA� using the same equations as the total variance (previous

section). With this, the expected value of the additivity can be

approximated with a Taylor series expansion about E½VA� and

E½VL�

E½A�&E½VA�
E½VL�

: ð15Þ

The expected value of the landscape additivity E½A� shows close

agreement with the experimentally determined values (Figure 3B).

While the correlation is not statistically significant, due to the

limited data, all the E½A�s are large and within the experimentally

observed ranges. In addition, the four uncharacterized libraries

also have large expected additivities (blac13 = 0.44, blac = 0.67,

Cel5 = 0.65, Arg = 0.82), suggesting this additive structure within

the recombinational landscape may be quite general. Despite

being generated by a purely pairwise energy function, which is by

definition epistatic, a majority of the variation within these

recombination libraries can be explained by additive effects. This

surprising result can be attributed to two factors: sequence

conservation among the parents and the partitioning of interac-

tions into structural modules. Epistatic interactions that are

conserved among the parents will not contribute to the variation

of any property within the library, and those interactions involving

one conserved position will only contribute to additive variation.

Epistatic interactions that are partitioned into structural modules

will vary together, and therefore contribute to only additive

variation. Of the thousands of contacting residues within a

chimeric protein, only a small fraction (*5%) actually contribute

to epistatic variation.

The additivity exhibited by the random field model does not

hold for chimeric proteins that adopt alternate structures (as

described by a contact map). For example, nonfunctional

sequences, which account for a significant proportion of chimeras,

will clearly not display additivity in properties involving protein

function. For many properties, such as thermostability (retention

of function at elevated temperatures), where we have observed

additivity, the experimental measurements require the chimeras be

enzymatically active, which greatly increases the likelihood that

they will adopt the same or very similar structures. The subset of

sequences that adopt the same structure is referred to as a neutral

network [40,41], and this may define the domain of additivity

within the recombinational landscape.

Summary and conclusions
By using a statistical description of the protein recombinational

landscape, we can study the behavior of an astronomical number

of sequences–insight which could not be obtained experimentally

or even by analyzing homology-based structural models. A

probabilistic contact potential was used to specify the mean

energy of individual chimeric proteins and how the energy of any

sequence is expected to co-vary with others (equations 6 and 7),

defining a multivariate probability distribution over all sequences

accessible by recombination. While this random field model

provides little information about specific sequences, it does reveal

the large-scale structure of the recombinational landscape, which

we used here to interpret experimental results from past

recombination libraries. Within this random field, the expected

values of various library properties show excellent agreement with

experimental values across multiple protein families. This striking

correspondence may arise because a library’s properties depend on

a large number of interactions, and the cumulative effects of these

interactions converge toward the expected value.

The random field model was used to study the enrichment of

functional sequences within the recombinational landscape. As

shown previously, we found the tolerance of proteins to

recombination to be influenced by the conservative effects of

homologous substitutions, which have been previously selected to

be compatible with the protein fold [16]. However, a more

significant contribution comes from groups of coevolved residues

varying together. This is especially relevant for understanding

natural evolution, where the number of crossover events is

relatively low. Evaluating the random field model across protein

families, we found parent sequence identity to be the primary

determinant for tolerance to recombination, while the specific

crossover locations and parent fold make statistically significant,

but minor contributions.

Using the random field model, we explored the origins of the

additive structure of the recombinational landscape. Both

sequence conservation among the parents and the partitioning of

epistatic interactions into structural modules make significant

contributions to this additivity. The results presented here are for a

random field that describes a protein’s free energy difference

between the functional and non-functional states, which is closely

related to protein stability. However, this additivity is generally

true for any landscape that is generated from local interactions

(including higher order), because sequence conservation and

structural partitioning will still be present. This suggests the

additivity may apply to numerous biophysical quantities such as

binding affinity or substrate specificity.

Previous studies of protein fitness landscapes have highlighted

the abundance of nonfunctional sequences [42,43] and neutral

sequence changes [13,14,44], suggesting a surface which is mostly

flat and filled with holes [45]. In contrast to this full landscape, the

recombinational landscape contains orders of magnitude fewer

‘holes’ (non-functional sequences). The functional variation

displayed within recombination libraries reveals the large-scale

structure of the recombinational landscape, which arises from the

cumulative effects of multiple mutations. In addition, most of this

functional variation can be explained by additive effects, and

additive variation determines a population’s response to selection

[37,38] These results were observed in SCHEMA-designed

libraries, which tend to be optimized for both functional sequences

and additivity. This emphasizes the evolutionary preference for

some crossover sites over others, which could explain the presence

of recombination hotspots in natural genes [6,46,47]. The picture

of the recombinational landscape that emerges from the random

field model is a surface enriched in functional sequences, which

can display locally-epistatic behavior but still has an overall

additive structure.

The evolutionary benefit of intragenic recombination may arise

because mutation and recombination effectively traverse different

landscapes [48]. While climbing the landscape by point mutations,

evolution encounters a large number of nonfunctional sequences

in addition to epistatic landscape features. In contrast, recombi-

nation explores sequences which are much more likely to be

functional, in a landscape with an abundance of adaptive

pathways. Recombination can provide faster adaptation than

point mutation because it generates functional sequences with a

large number of substitutions. Recombination may also find

sequences that are inaccessible by adaptive point mutation, by

simultaneously incorporating multiple coupled mutations, essen-
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tially ‘jumping over’ epistatic landscape features. A similar effect

was recently described for recombination at the genome level [49],

where the authors describe how landscapes arising from high

epistasis within genes and no epistasis between genes strongly

favors recombination. Running simulations on these ‘modular’

landscapes, the authors found recombination to provide an

efficient route to genotypes that were inaccessible by point

mutation.

Intragenic recombination is a powerful molecular diversification

mechanism. The ubiquity of intragenic recombination in nature

and experimental evidence from protein recombination libraries

show that it provides distinct advantages over point mutation. In

naturally evolving populations, these two genetic variation

mechanisms work together. Mutation provides new diversity,

while recombination efficiently sorts through the large combina-

torial space of existing diversity. A better understanding of how to

balance mutation and recombination could assist in engineering

highly optimized proteins.

Methods

Compiling the chimeric protein data set
Since multiple structures have been solved for each protein

family tested, we decided to use all available structures to generate

the residue-residue contact map. The contact map for each library

was determined by identifying all protein chains within the Protein

Data Bank that share at least 50% sequence identity with any

parent. Also included were three unpublished P450 structures, for

a total of 88 blac13, 173 blac, 91 P450, 39 CBHI, 24 CBHII, 6

Cel5, 21 Cel48, and 143 arginase chains. For each chain, a residue

pair was considered contacting if they contained any heavy atoms

within 4.5 Å. The final contact map for each library is composed

of residue pairs that are contacting in more than 50% of all chains.

We believe this ‘averaged’ residue-reside contact map should

provide a more complete description of the protein family’s fold,

but the use of any single structure does not change the results

presented above.

The number of functional and nonfunctional chimeric proteins

was retrieved from previously published results: blac13 [34], blac

[50], P450 [32], CBHI [22], CBHII [23], Cel5 (unpublished data),

Cel48 [21], Arg [20]. The fraction of functional chimeras was

estimated using maximum likelihood, and 95% confidence

intervals were calculated using the Clopper-Pearson method

[51]. We could not accurately estimate the fraction of functional

sequences for the CBHI library due to the extreme bias in chimera

sampling [22]. The results from the blac13 library were reanalyzed

to account for library construction errors (see below).

The additivity of the P450, CBHI, CBHII, and Cel48 libraries

was calculated using published thermostability data [17,21–23].

For each library, a block-based linear regression model [17] was

parametrized on all the available data. The resulting predictions

are unbiased, so the total variance can be partitioned into

explained and residual components. The ratio of the explained

variance to total variance is the additivity A, and in this case is

identical to the regression model’s coefficient of determination

R2.

Estimation of parental and novel contact parameters
Given a data set which maps contact information to binary

functional status, we want to estimate the mean energy mP and

variance s2
P of parental contacts and the mean energy mN and

variance s2
N for novel contacts. The true energy terms ei

P and ei
N

can be integrated out to give the marginalized likelihood function

p(yjA,mP,s2
P,mN ,s2

N )

~

ðð
p(yjA,eP,eN )p(ePjmP,s2

P)p(eN jmN ,s2
N )dePdeN ,

ð16Þ

where y is the binary functional status and for notational simplicity

all parental energy terms ei
P are combined in the vector eP, all

novel energy terms ei
N are combined in the vector eN , and all

binary indicator variables (ai
c,P and ai

c,N ) are combined into the

matrix A. The mean and variance of parental and novel contacts

can be estimated by maximizing this marginalized likelihood

function.

Since y is composed of binary data, we assume that it is

generated from a Bernoulli process whose proportion is deter-

mined by the energy of a sequence. With this assumption, the first

term in the integrand is given by the logistic likelihood function

p(yjA,eP,eN )~P
c

s ac,P
:ePzac,N

:eNð Þyc

s {ac,P
:eP{ac,N

:eNð Þ1{yc ,
ð17Þ

where s is the logistic sigmoid function given by

s(x)~1=(1zexp(x)), yc is the binary functional status of chimera

c, ac,P is a vector containing all ai
c,P, and ac,N is a vector

containing all ai
c,N . Assuming the energy components are Gaussian

distributed, the second and third terms of the integrand are given

by multivariate Gaussian distributions. Since the integral in

equation 16 is analytically intractable, we can approximate it

using Laplace’s method [52]. First we approximate the integrand

with a multivariate Gaussian about a stationary point and then we

evaluate the Gaussian integral to yield

p(yjA,mP,s2
P,mN ,s2

N )^p(yjA,eP,0,eN,0)

p(eP,0jmP,s2
P)p(eN,0jmN ,s2

N )
(2p)M=2ffiffiffiffiffiffiffi
jHj

p ,
ð18Þ

where eP,0 and eN,0 are the stationary points, M is the fixed

number of contacts, and H is the Hessian matrix evaluated at the

stationary points. The stationary points were found using

Newton’s method and the marginalized likelihood function was

maximized using the Nelder-Mead method.

Reanalyzing b-lactamase data to account for library
construction errors

The 13-crossover b-lactamase library (blac13) was assembled

from synthetic fragments and had a significant number of

construction errors [34]. Sequencing of unselected chimeric genes

found 9 of 13 to have frame shift mutations [16], which almost

certainly result in inactive proteins. Since a majority of frame shifts

are incorporated at the PCR step during library construction, it is

likely these errors are present throughout all constructed chimeras

[11]. The maximum likelihood estimate for the proportion of

correctly constructed chimeras is 4=13~0:31, with 95% confi-

dence intervals between 0.09 and 0.61 using the Clopper-Pearson

interval [51]. The sequencing data indicate there may be one to

three sequence fragments (chimera blocks) that contain frameshift

mutations. Assuming all frame shifts cause inactivation and

exhaustive library coverage (over twelvefold sampling), the fraction

of functional chimeras can be estimated as the number of

functional chimeras divided by the number of correctly construct-

ed chimeras. With these assumptions, we estimate the fraction of
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functional sequences to be 7|10{3 with 95% confidence intervals

between 3|10{3 and 22|10{3 The same modification can be

performed on chimeras binned by the number of homologous

substitutions (Figure 2A) because the construction errors display

little relation to the level of mutation.

Supporting Information

Figure S1 Estimation of contact parameters on other
recombination libraries. The parental and novel contact

parameters (mP,s2
P,mN ,s2

N ) were estimated on four binary

functional status data sets. The number of sequences in each data

set are indicated in the plot titles. The estimated parameters are

reported as the mean + one standard deviation, and the

associated Gaussian probability density functions are plotted.

The two largest data sets (P450 and b-lactamase) give very similar

parameter estimates, while all data sets provide the same

qualitative relationships among parameters. Within all four

parameter sets, we see the mean of parental contacts is slightly

favorable and novel contacts are significantly deleterious. The

means of these two distributions are separated by approximately

one standard deviation, indicating it is relatively common for

parental contacts to be as deleterious as novel contacts, and vice

versa.

(TIFF)

Text S1 Derivation of a library’s expected variance and
a chimera’s additive energy component. A detailed

description of how the expected value of a library’s variance

E½VL� and the additive component of a chimera’s energy EA,c are

calculated.

(PDF)
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