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Abstract

Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or
cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell
by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell
surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a
stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization
process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities
over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of
vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We
incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents
for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model,
we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide
unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization
without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC
class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be
used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles,
providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating
optimization of the distribution of peptides derived from Human Immunodeficiency Virus Gag-Pol polyprotein.

Citation: Dalchau N, Phillips A, Goldstein LD, Howarth M, Cardelli L, et al. (2011) A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization. PLoS
Comput Biol 7(10): e1002144. doi:10.1371/journal.pcbi.1002144

Editor: Arup K. Chakraborty, Massachusetts Institute of Technology, United States of America

Received February 24, 2011; Accepted June 18, 2011; Published October 13, 2011

Copyright: � 2011 Dalchau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: LDG was supported by an EPSRC studentship (UK). MH was funded by a Medical Research Council studentship (#G78/6999). TE was supported by a
Cancer Research UK programme grant entitled "The Biochemistry of MHC Class I Assembly and its Immunological Consequences" (#C7056/A2739). The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ndalchau@microsoft.com

¤ Current address: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.

. These authors contributed equally to this work.

" These authors are joint senior authors on this work.

Introduction

MHC class I molecules are encoded within the genetic region

known as the Major Histocompatibility Complex and are present

in all nucleated human cells. MHC class I molecules direct

cytotoxic T lymphocytes (CTL) to destroy virus-infected or

cancerous cells, thereby preventing disease progression [1]. They

provide a snapshot of the internal contents of a cell by binding to

peptides arising from intracellular protein turnover and presenting

these peptides at the cell surface, where the peptide-MHC

complex can be recognized by CTL (Fig. 1). Most cells will

present an array of tens of thousands of different peptides at their

surface, some of which will be unique to virus-infected or

cancerous cells. The efficacy of a CTL response to these peptides

depends to a large extent on the ability of MHC class I molecules

to select only a limited number of the potentially billions of

different peptides that are generated by the hydrolysis of all

intracellular proteins [2]. Peptides are selected for presentation on

the basis of their ability to form a stable complex with MHC class

I, by a process known as peptide optimization. A better understanding

of the optimization of peptides is important for our understanding

of immunodominance [1], the predominance of some CTL specific-

ities over others, which can determine the efficacy of an immune

response, the danger of immune evasion, and the success of

vaccination and immunotherapeutic strategies.

Peptide binding to MHC class I occurs in the endoplasmic

reticulum (ER) and is assisted by multiple cofactors that are

thought to enable the optimization process [3]. The transporter

PLoS Computational Biology | www.ploscompbiol.org 1 October 2011 | Volume 7 | Issue 10 | e1002144



associated with antigen processing (TAP) supplies the lumen of the

ER with peptides generated in the cytosol and forms the backbone

of the peptide loading complex (PLC). A number of chaperone

molecules also comprise the PLC, namely calreticulin, calnexin,

ERp57 and importantly tapasin, which bridges the gap between

MHC class I and TAP [4] (Fig. 1). Of these chaperones, only

tapasin is known to influence the extent of peptide optimization, in

such a way as to skew the cell surface cargo towards peptides with

low off-rates [5], and this influence is known to vary across

different MHC class I alleles [6].

While a range of interactions between tapasin and MHC class I

have previously been identified [7,8], the effects of these

interactions on peptide optimization are still not well-understood.

A recent study used computational modeling to distinguish

between different hypotheses of tapasin function within the ER

[9], but the model assumed that only peptides with low off-rates

could egress to the cell-surface, and was therefore unable to

predict the optimization of peptides with different off-rates. As a

result, the model was unable to account for observed effects of

tapasin on peptide optimization, both over time [6] and at steady

state [5].

In this paper we present a dynamical systems model for

predicting MHC class I peptide optimization. We include

interactions with the chaperone molecule tapasin, and propose

a relation of peptide filtering to quantify peptide optimization as a

Figure 1. Basic process of MHC class I antigen presentation. Degradation of cytosolic and nuclear proteins, predominantly by the
proteasome, generates peptides that are actively transported into the lumen of the endoplasmic reticulum (ER). Loading and editing of peptide cargo
on MHC class I is achieved in the peptide loading complex, resulting in loaded MHC class I being released into the Golgi and transported to the cell
surface, where the MHC class I peptide complex is presented to the immune system via the T-cell receptor. Known constituents of the peptide
loading complex such as the transporter for antigen processing (TAP), tapasin, ERp57, calreticulin and MHC heavy-chain together with b2m are shown
explicitly.
doi:10.1371/journal.pcbi.1002144.g001

Author Summary

Major Histocompatibility Complex (MHC) class I molecules
bind to protein fragments (peptides) within the cell and
present these fragments at the cell surface, thus providing
a snapshot of the cell contents that can subsequently be
used to trigger an immune response. Only a fraction of the
potentially billions of peptides inside a cell are selected for
presentation, and the process is optimized to select for
peptides that form a stable complex with MHC class I. The
mechanisms of the optimization process are important for
predicting the efficacy of an immune response and for
designing effective vaccines, yet are still not well-
understood. In this article we present a dynamical systems
model of peptide optimization by MHC class I. We show
that peptide optimization can be quantified and mecha-
nistically explained by a peptide filtering relation, which
relates cell surface abundance to peptide supply, peptide
unbinding and interactions with the chaperone molecule
tapasin. The filtering relation also accounts for differences
in optimization across MHC class I alleles. Finally, we show
how the filtering relation can be used to quantify the cell-
surface presentation of virus-derived peptides for immune
system surveillance.

Quantifying MHC Class I Peptide Optimization
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function of peptide supply and peptide off-rates. Using a

combination of published and novel experimental data, together

with a combination of Bayesian inference and kinetic analysis, we

show that tapasin can improve both the rate and extent of peptide

optimization by accelerating peptide off-rate, and that differences

in optimization across MHC class I alleles can be explained by an

allele-specific peptide on-rate. Our filtering relation provides a

mechanistic interpretation for recent experimental observations of

peptide optimization both over time [6] and at steady state [5].

Finally, we demonstrate how the filtering relation can be used to

quantify optimization of a large set of competing peptides in the

context of an immune response, by simulating the cell surface

abundance of Human Immunodeficiency Virus (HIV) peptides in

complex with different MHC class I alleles.

Results

A model of MHC class I peptide optimization
We formulated a dynamical systems model of MHC class I

peptide optimization using a biological modeling language (SPiM

[10], Fig. S1 in Text S1) and exported the model to an equivalent

set of biochemical reactions for further analysis (Fig. 2). The model

characterizes the interactions between MHC, peptides and tapasin

within the endoplasmic reticulum, together with the dynamics of

egressed peptide-MHC complexes at the cell surface.

A number of simplifying assumptions were made when

constructing the model: (i) Peptides Pi are supplied to the ER

at rate gi and then degraded or removed from the ER at rate dP.

Since different peptides Pi can have different levels of abundance

within the cytoplasm and different rates of TAP transport, each

peptide is associated with its own generation rate gi. (ii) MHC

class I heavy chain and b2m are assumed to represent a single

unit, where b2m dissociation from empty class I heavy chain is

interpreted as a form of MHC degradation. (iii) All peptides are

assumed to have a similar rate of binding b to MHC, such that

peptide affinity is determined by a peptide-specific rate of unbinding

ui, and is defined as 1=ui. This is motivated by the measurements

in [11]. (iv) Since MHC, tapasin and peptide continually cycle

between the ER and Golgi apparatus [12,13], we do not explicitly

represent the Golgi as a separate compartment. Instead, we

consider our ER compartment to include both the ER and Golgi,

where the rate of egress e represents the rate of transit from the

Golgi to the cell surface. By representing this process as a first-

order reaction, we are making the simplifying assumption that the

quantity of peptide-MHC complexes which egress is related to

the quantity of complexes in the ER. (v) MHC can load peptides

in the presence of tapasin at a higher rate c, which implicitly

models the stabilization of TAP molecules by tapasin, but we

neglect egress of tapasin-bound MHC, since tapasin retains

MHC by bridging it to the TAP transporter [14]. (vi) Tapasin can

increase the rate of peptide unbinding from MHC by a factor q
[8], while peptide can increase the rate of tapasin unbinding from

MHC by a factor v [15]. Tapasin has been shown to increase the

peptide off-rate to a similar extent for peptides with a range of

off-rates, though some variation has been shown for certain

classes of peptide [8]. (vii) We neglect egress of empty MHC,

which is retained and recycled in the ER by the chaperone

calreticulin [16,17]. (viii) Furthermore, we assume that b2m

dissociation from peptide-loaded or tapasin-bound class I heavy

chain is negligible compared to b2m dissociation from empty class

I heavy chain. (ix) Once at the cell-surface, peptide unbinds from

MHC irreversibly at rate ui, and empty MHC is degraded at rate

dMe. These assumptions can be refined in future iterations of the

model.

Predicting peptide optimization over time
MHC class I HLA-B alleles were previously shown to differ in

their ability to optimize their peptide cargo over time, both in the

presence and absence of tapasin [6]. Specifically, the HLA-B4402

(B4402) allele was shown to be highly dependent on tapasin for

peptide optimization, while the HLA-B2705 (B2705) and HLA-

B4405 (B4405) alleles were shown to be less tapasin-dependent.

B2705 is of particular interest because it is a susceptibility factor

for certain autoimmune diseases and is associated with long-term

non-progression of HIV [18]. Therefore, we sought to use our

peptide optimization model to explain the variation in tapasin-

dependence between HLA-B alleles, through a combination of

model simulation and Information Theory.

We simulated pulse-chase experiments [6] using the peptide

optimization model of Fig. 2 , with representative peptides of low,

medium and high affinity (Text S1). The experiments followed the

thermostability of fixed cohorts of MHC class I complexes over

time, making use of the known correlation between the

thermostability of complexes and the affinity of their peptide

cargo. Specifically, complexes stable at 500C were shown to

contain only high affinity peptides, complexes stable at 370C were

shown to contain a combination of medium and high affinity

peptides, while all complexes were shown to be stable at 40C,

including empty MHC. Since the measurements correspond to

both ER-localized and egressed peptide-MHC complexes, our

assessment of the model was performed by comparing total

peptide-MHC complexes with the 40C measurement, total

medium and high affinity complexes with the 370C measurements,

and total high affinity complexes with the 500C measurements.

Since many of the kinetic parameters of the model have not

previously been measured directly, due to the technical difficulties

involved in obtaining such measurements, we used heuristic search

methods to infer the parameter values from the experimental data

[6] (see Methods). Essentially, this involved finding values for the

parameters which minimized the deviation between the experi-

mental data and the corresponding model simulation. Using this

approach, we investigated how allelic variation in HLA-B might

affect peptide optimization, by distinguishing between allele

parameters, which were allowed to vary between alleles, and fixed

parameters, which were assumed to be invariant between alleles.

Each hypothesized set of allele parameters defined a variant of the

model, which possessed a different intrinsic ability to reproduce

the observed dynamics.

The Bayesian Information Criterion (BIC) [19] was used to

quantify the performance of each set of allele parameters

(equation (18) in Methods). BIC incorporates a term which

penalizes the deviation of the simulation from the data, and a

second term which penalizes increasing numbers of allele

parameters. Therefore, BIC can be used to assess a range of

models by taking into account the added cost of additional

unconstrained variables. Since the dynamics of peptide optimi-

zation varied considerably between HLA–B alleles in the absence

of tapasin [6], we reasoned that at least one allele parameter must

be tapasin-independent. To incorporate this insight whilst

focusing on the principal contributors to allelic variation, we

examined combinations of up to two allele parameters, with at

least one tapasin-independent parameter selected from b, dM ,

dMe, e, gi and ui.The best BIC scores were obtained when the

peptide on-rate b was the only allele parameter (470.38), and

when both b and the rate of egress e were the allele parameters

(469.39; Fig. 3), suggesting that at least peptide on-rate is allele-

specific. However, having both b and e as allele parameters

required unrealistically fast egress of B2705 and B4405 complexes

to obtain a closer fit to the data (Fig. S2 in Text S1). Therefore a

Quantifying MHC Class I Peptide Optimization
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Figure 2. Indexed reactions for a dynamical systems model of MHC class I peptide optimization. Each shape in the model represents a
molecular species and each box represents a reaction, where inbound edges represent reactants and outbound edges represent products. Boxes are
labeled with corresponding reaction rates, where a single rate denotes an irreversible reaction and two rates denote a reversible reaction, with the
rate of the forward reaction indicated on top. The subset of reactions taking place at the cell surface is given by MePi �?

ui
{ Me �?dMe

{ 1 (see Methods
for the full reaction set).
doi:10.1371/journal.pcbi.1002144.g002
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single allele parameter (Fig. 4) b was used, which was able to

effectively account for the experimental data [6]. Specifically, in

the absence of tapasin B4402 exhibited worse time-dependent

optimization than both B2705 and B4405 (Fig. 4 A), while in the

presence of tapasin B4402 exhibited better time-dependent

optimization than both of these alleles (Fig. 4 B). To ensure that

the MCMC search algorithm was robust to random variations,

and could reproducibly generate consistent parameter estimates,

we produced 10 different chains for each model hypothesis. For

the allele-specific b model, 8 out of 10 chains converged to BIC

values between 470.38 and 470.69, while the other two chains

performed poorly. We next plotted the mean and standard

deviation of the posterior distributions of the model parameters

for each of the 10 chains, which revealed that the 8 high

performing chains had overlapping posterior distributions (Fig.

S3 in Text S1), and were therefore producing consistent

parameter estimates.

To understand the effects of an allele-specific peptide on-rate on

peptide optimization, we plotted MHC complexes with high,

medium, and low affinity peptide separately, and distinguished

free and tapasin-bound MHC complexes within the ER and at the

cell surface (Fig. S4 in Text S1). For B4402 without tapasin, an

intrinsically low peptide on-rate meant that the majority of B4402

complexes remained in the ER without peptide, resulting in very

low optimization. For B2705 and B4405 without tapasin, an

intrinsically high peptide on-rate meant that these alleles rapidly

bound their peptide cargo and exhibited good time-dependent

optimization. In contrast, for B4402 with tapasin, most complexes

first bound to tapasin and were subsequently able to rapidly bind

peptides and optimize their peptide cargo, presenting almost

exclusively high affinity peptides at the cell surface. For B2705 and

B4405 with tapasin, the intrinsically high peptide on-rate meant

that peptide out-competed tapasin for binding to MHC, such that

a higher proportion of peptides followed the non-tapasin pathway,

Figure 3. Selection of HLA–B allele parameters. The horizontal axis indicates the set of parameters that were allowed to vary between alleles.
The vertical axis quantifies the Bayesian information criterion (BIC) of the best parameter values for a given set of allele parameters. BIC penalizes
deviations of the model simulation from the experimental data, whilst also penalizing models with more variable parameters, implying that low BIC
values correspond to more representative models. The best parameter values for a given set of allele parameters were inferred using the Filzbach
MCMC software (see Methods).
doi:10.1371/journal.pcbi.1002144.g003

Quantifying MHC Class I Peptide Optimization
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resulting in reduced optimization. Thus, variation in the intrinsic

ability of free HLA–B alleles to bind peptide in the absence of

tapasin was shown to be the most likely explanation for allelic

variation in peptide optimization, both in the presence and

absence of tapasin. For all three alleles, cell surface optimization

could not be improved by modifying most other parameters in the

model (c, uT , v, q and e) (Fig. S5 in Text S1). This indicates that

the balance between peptide binding b and tapasin binding bT is a

major determinant of peptide optimization, achieved by control-

ling the effectiveness of the tapasin-mediated pathway. The

prediction that allele-specific tapasin dependency results from

variations in peptide binding to MHC class I molecules is

consistent with analysis from molecular dynamics simulations,

which suggest that tapasin stabilizes peptide-receptive conforma-

tions [20]. This stabilization in the presence of tapasin is

represented in our model by setting the binding rate c to be

allele-independent and greater than or equal to the binding rate b.

In the absence of tapasin, MHC class I molecules of different

alleles may have varying levels of peptide receptiveness, which is

represented in our model by allowing b to vary between alleles.

Figure 4. Simulation of time-dependent peptide optimization by HLA–B. The peptide optimization model of Fig. 2 was used to simulate a
labeled cohort of peptide-MHC complexes by switching from generation of an unlabeled MHC population to a labeled population for 5 min (yellow
blocks). The plots represent the concentration of total labeled MHC (blue), labeled MHC with medium or high affinity peptide (green) and labeled
MHC with high affinity peptide only (red), at each time point. Simulations were performed in the absence (A) and presence (B) of tapasin.
Corresponding experimental results [6] are also reported (circles). Simulations were conducted for representative low, medium and high affinity
peptides with a separate dissociation rate ui and generation rate gi for each peptide Pi , and a separate peptide binding rate bj for each HLA–B allele
Mj (Table S1 in Text S1; Protocol S1).
doi:10.1371/journal.pcbi.1002144.g004

Quantifying MHC Class I Peptide Optimization
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Kinetic control of peptide optimization
Having established a hypothesis which explains how MHC

alleles experience differential tapasin-dependence, we sought to

identify the mechanisms that determine the extent and rate of

peptide optimization, both in the presence and absence of

tapasin. Peptide optimization is the process by which high affinity

peptides are selected for presentation at the cell surface [6].

Peptide-MHC complexes generally need to be stable for many

hours or days at the cell surface in order to effectively elicit an

immune response [21], yet peptide optimization in the ER is

typically limited to tens of minutes [3,6,22]. This requires

optimization beyond the limit that would be obtained in

equilibrium. How such high optimization is achieved in so little

time is still not well-understood [3].

One way to increase the extent of peptide optimization is for

peptide-MHC complexes to be retained in the ER for an extended

period prior to egress, so that unstable peptides have an

opportunity to unbind [22]. However, delaying egress also

increases the time for complexes to reach the cell surface.

Therefore, a trade-off exists between the extent of optimization

and the rate at which this optimization can be achieved. We

quantify this trade-off by calculating the relative probabilities of

MHC egress and peptide unbinding.

Consider an MHC complex containing a peptide with off-rate

ui (Fig. 5 A). The complex can either egress to the cell surface at

rate e, or the peptide can unbind at rate ui. The probability of

each event is proportional to its rate, such that the probability of

egress is given by e= uizeð Þ. The competition between unbinding

ui and egress e defines a peptide filtering step, where the basic

filtering mechanism is comparable to principles of kinetic proof-

reading [23]. Let MePi½ �� denote the expected number of peptide-

MHC complexes that egress to the cell surface before the peptide

Figure 5. Filtering relation of MHC class I peptide optimization. (A) Consider a population of Ni MHC complexes containing peptides with off-
rate ui . ½MePi�� denotes the expected number of MHC complexes that will egress before the peptide can escape. O(MePi) denotes the expected
proportion of egressed MHC complexes that will contain peptides with off-rate ui . This defines a measure of peptide optimization. We plot ½MePi �� and
O MePið Þ as functions of e for three peptides with different off-rates and the same initial populations. Maximal optimization is achieved when e%ui , with

MePi½ ��&Ni
e

ui

(dashed lines). (B) Consider a population of Ni tapasin-MHC complexes containing peptides with off-rate ui . ½MePi�� denotes the expected

number of MHC complexes that will unbind from tapasin and egress before the peptide can escape, where x~uT v=q. O(MePi) is defined as in A. We plot

½MePi �� and O(MePi) as functions of x with e~10{5 (black line in A). Maximal optimization is achieved when e,x%ui , with ½MePi��&Ni

ex

u2
i

.
doi:10.1371/journal.pcbi.1002144.g005
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can escape (Fig. 5 A). If there are Ni MHC complexes containing

peptides with off-rate ui in the ER, we expect Nie= uizeð Þ to

egress and the remainder to release their peptide cargo. For very

high e, all Ni complexes will egress irrespective of their peptide

cargo. For very low e, the number of egressed complexes will tend

to Nie=ui. Let O MePið Þ denote the proportion of egressed MHC

complexes containing peptides with off-rate ui (Fig. 5 A). This

defines a measure of peptide optimization. For very high egress we

observe no optimization, where the proportion of peptides at the

cell surface is equal to the proportion of peptides in the ER. For

very low egress we observe maximum optimization, where the

proportion of peptides at the cell surface varies inversely with the

peptide off-rate.

The introduction of tapasin provides an additional filtering step

(Fig. 5 B), involving a competition between peptide unbinding uiq
and tapasin unbinding uT v. Let ½MePi�� denote the expected

number of MHC complexes that unbind from tapasin and egress to

the cell surface before the peptide can escape (Fig. 5 B). For very

high e and x~uT v=q, all Ni complexes will egress irrespective of

their peptide cargo. For very low e and x, the number of egressed

peptide-MHC complexes will tend to Niex=u2
i . The number of

egressed complexes therefore varies with 1=u2
i in the presence of

tapasin (Fig. 5 B), compared with 1=ui in the absence of tapasin

(Fig. 5 A). This implies that tapasin enhances presentation

according to peptide affinity 1=ui, in agreement with experimental

results [5]. Since the proportion of egressed complexes now varies

inversely with the square of peptide off-rate, low affinity peptides

are much more likely to escape than high affinity peptides,

resulting in improved peptide optimization.

The peptide filtering relation presented above also holds for the

full dynamical systems model of Fig. 2 , in which peptides can bind

and unbind multiple times to MHC. By translating the reactions of

Fig. 2 to a set of ordinary differential equations, we obtained the

following expression for the steady-state concentration of peptide-

MHC complexes at the cell surface (see Methods):

½MePi��~
1

ui

e

uize
(b½M��z x

uizx
c½TM��)½Pi�� ð1Þ

where x~uT v=q. The equation includes the ER peptide filtering

steps described in Fig. 5, together with peptide optimization at the

cell surface given by 1=ui, where peptides with a lower off-rate ui are

more likely to remain bound to MHC. The equation also quantifies

the ratio of egressed peptide-MHC complexes that are loaded in the

presence and absence of tapasin, given by the ratio of

½TM��cx=(uizx) to b½M��. Assuming peptide loading takes place

via the tapasin pathway (½TM��&½M��) and that peptides have a

high turnover in the ER [24], characterized by high generation and

degradation rates (½Pi��&gi=dP), we can simplify equation (1) as

½MePi��&
C gi

x

uizx

e

uize

1

ui

Supply Tapasin ER Surface

ð2Þ

where C~c½TM��=dP. This corresponds to an upper bound on

peptide optimization in the presence of tapasin. In the absence of

tapasin, the equation for ½MePi�� is the same as (2) but without

the tapasin optimization step x=(uizx). This implies that tapasin

enhances peptide presentation according to peptide affinity 1=ui,

in agreement with the analysis of Fig. 5 and experimental

findings [5].

To further place our insights in a biological context, we used the

dynamical systems model to identify the mechanisms that

determine the rate of peptide optimization. Consider the filtering

step between peptide unbinding uiq and tapasin unbinding uT v.

Tapasin can enhance peptide optimization to the same extent

either by increasing the peptide off-rate by a given factor q, or by

decreasing the tapasin unbinding rate by the same factor.

However, decreasing the tapasin unbinding rate essentially delays

the transit of MHC to the cell surface, resulting in slower

optimization. In contrast, increasing the peptide off-rate allows

tapasin to increase the extent of peptide optimization while still

maintaining a rapid flux of peptide-MHC complexes to the cell

surface.

Predicting peptide optimization at steady-state
To further probe the applicability of our model, we investigated

whether it could be used to predict peptide optimization at steady

state. Previously, the effects of tapasin on steady-state peptide

optimization were measured for peptides in the MHC class I allele

H22Kb (Kb) [5]. The experiments were conducted using four

target peptides, obtained by performing substitutions at positions 5

and 8 of the amino acid sequence SIINFEKL. Peptide off-rates

were measured in RMA-S cells and each of the target peptides

were introduced as minigenes into a tapasin-deficient cell line

(.220) and into the same cell line transfected with tapasin

(.220.Tpn). Steady-state levels of cell surface peptide-MHC

complexes were measured by flow cytometry using mAb 25.D1

(Fig. 6 C, Table S3 in Text S1), which specifically recognizes the

SIINFEKL peptide variants bound to Kb [25]. Total cell-surface

MHC was also measured with mAb Y3, which recognizes empty

and peptide-occupied Kb (Fig. 6 D, Table S3 in Text S1).

We complemented previous experimentation [5] by measuring

the off-rates of the target peptides in .220 cells directly. Cells were

treated with Brefeldin A (BFA) to prevent further MHC egress,

allowing direct characterization of the dissociation of cell-surface

MHC complexes carrying SIINFEKL peptide variants with

25.D1. The off-rates of the target peptides were estimated by

fitting single exponential decays (SIINFEKL: 1:44|10{5s{1,

SIINFEKV: 1:97|10{5s{1, SIINFEKM: 2:49|10{5s{1, SII-

NYEKL: 1:53|10{4s{1; Fig. 6 A). We also used Y3 to measure

total MHC during BFA incubation of cells with no target peptide,

in the presence and absence of tapasin, to provide an indication of

the off-rates of endogenous peptides presented by .220 and

.220.Tpn cells (Fig. 6 B).

We simulated the above experiments using the peptide

optimization model of Fig. 2 with a parameter set specific to

H22Kb (Table S2 and Fig. S6 in Text S1). The full range of

endogenous peptides was characterized by two representative

peptides with off-rates u1 and u2, and supply rates g1 and g2 (Text

S1). Each experiment was simulated using one of the target

peptides with off-rate ui, together with the representative

endogenous peptides. Since target peptides were expressed at

approximately equal levels inside cells [5], we assumed that they

were generated at the same rate gi~g0. The model simulations

agreed with the trends observed experimentally, accurately

recapitulating the enhancement of steady state optimization

conferred by tapasin (Fig. 6 C, D, Table S3 in Text S1). However,

we observed that the model did not fit the experimental data for

SIINFEKM as well as for the other target peptides. We

hypothesized that the poor fit could be caused by increased

TAP transport of the SIINFEKM peptide, due to a change in the

terminal residue at position 8 [26]. To explore this idea, we

increased the generation rate of SIINFEKM by a factor of 2.5,

which gave a better fit to the experimental results (Fig. 6 D). This
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Figure 6. Peptide optimization and trafficking for H22K.b The model of Fig. 2 was calibrated for H22Kb by varying the rates of peptide
binding, MHC degradation at the cell surface, and egress (Table S2 in Text S1; Protocol S2). Each simulation computes the steady state of the model
with three types of peptide: two background peptides P1 and P2 and one of the four SIINFEKL peptide variants Pi (ui estimated from data in panel A).
(A) Release of peptides from MHC following treatment with brefeldin A (BFA) measured with 25.D1 (symbols), fitted to single exponential decays
(solid lines). (B) Dissociation of endogenous peptides from cells treated with BFA. (C) Steady-state presentation of specific peptide-MHC complexes at
the cell surface, comparing simulation with measurements of 25.D1 from [5]. (D) Total steady-state peptide-MHC complexes (cell surface), comparing
simulation with measurements of Y3 from [5]. Simulated values were scaled by a proportionality factor for optimally overlapping the 25.D1 data (with
SIINFEKM removed) and the Y3 data (all points) (Text S1). (B–D) The x-axis shows the relative affinity of peptides given by the inverse of the off-rate.
Steady state concentrations were obtained by equating the right hand sides of the ODEs to zero. Steady state concentrations in tapasin-deficient cells
were simulated by setting gT~0. (E–G) For quantifying egression of peptide-MHC complexes, .220.Kb (E) and .220.Kb .Tpn (F) were pulsed for 10 min
with 35S-Met/Cys and chased for the indicated times (min). Y3 immunoprecipitates were digested with endoglycosidase-H (EndoH) and SDS-PAGE
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hypothesis further highlights the potential importance of peptide

supply in predicting relative presentation levels [27], as can be

seen from the peptide filtering relation (2). Although experimental

measurements were only obtained for four distinct peptides, the

model predicts the presentation levels for a continuum of peptide

off-rates over a broad range, which can be checked in future

experiments.

To distinguish between optimization resulting from delayed

tapasin unbinding versus enhanced peptide off-rate, we measured

the time taken for a fixed cohort of pulse-labeled MHC complexes

to reach the cell surface by measuring endoglycosidase-H (EndoH)

resistance (Fig. 6 E–G). By taking into account the temporal

constraints of the EndoH data, we found that enhanced peptide

off-rates were required to allow increased peptide optimization in

the presence of tapasin without significantly delaying the transit of

peptide-MHC complexes to the cell surface (see Fig. S7 in Text

S1). Further parameter variation analysis indicated that cell

surface optimization is nearly maximal in the H22Kb model with

respect to q, uT , v and c, but could be improved by reducing e (Fig.

S8 in Text S1). However, reducing e decreases the export of

peptide-MHC complexes, suggesting a possible trade-off between

optimization and the efflux of new information concerning cellular

protein content.

Predicting optimization of viral peptides
To illustrate how the peptide optimization model may be used

in more realistic scenarios, we simulated the presentation of HIV-

derived peptides using our models for the HIV-associated allele

HLA–B2705 (B2705), and HLA–B4402 (B4402) for comparison.

Peptides between 8 and 10 amino acids in length were identified

from the Gag-Pol polyprotein (UniProt; accession P03367) and

assessed for their off-rates using the BIMAS prediction algorithm

[28]. For B2705, the slowest off-rate identified was for the

immunodominant KRWIILGLNK (positions 262–272) epitope

[29] (off-rate: 3:8508|10{7s{1). For B4402, the allele parame-

ters of the BIMAS algorithm were not available, so we quantified

off-rates based on the BIMAS algorithm parameters for the closely

related allele B4403. The off-rates identified were generally higher

than for B2705 (Fig. 7 A). When comparing simulations of B4402

in the presence and absence of tapasin, the highest affinity peptide

AETGQETAY (positions 1250–1258; off-rate: 2:1393|10{5s{1)

was enhanced by a factor of 445 by tapasin (Fig. 7 B), though cell

surface presentation was over 25 times less than the presentation of

KRWIILGLNK by B2705 (Fig. 7 B). Despite B2705 being a

relatively tapasin-independent allele [6] (Fig. 4), tapasin signifi-

cantly enhanced presentation of peptide KRWIILGLNK by a

factor of 120 (Fig. 7 C).

and autoradiography were performed. Arrows indicate Kb heavy chain resistant (R) and sensitive (S) to EndoH digestion. EndoH analysis of H22Kb

was performed as described previously [6]. (B–D, G) The solid lines indicate model simulations and triangles indicate measured data-points. The
experimental data for (A,B,E–F) is novel, while the experimental data for (C,D) is from [5].
doi:10.1371/journal.pcbi.1002144.g006

Figure 7. Simulation of cell surface presentation of HIV virus peptides by HLA–B2705. The sequence of the HIV-1 polyprotein Gag-Pol was
obtained from the UniProt online resource (accession P03367). All peptides between 8 and 10 amino acids in length were then derived from the
sequence and assessed for their off-rates using the BIMAS prediction algorithm (http://www-bimas.cit.nih.gov/molbio/hla_bind [28]). The peptides
were then simulated by assuming that they are all supplied into the ER via TAP at an equal rate, such that the total supply rate is equal to the total
supply rate estimated for Fig. 4. As the algorithm predicted many peptides to have the same off-rate, peptides were clustered for ease of
computation. (A) The number of peptides with a given peptide off-rate, as calculated by BIMAS. (B) Steady-state cell surface presentation of peptide-
MHC complexes as a function of peptide off-rate. Peptide supply was assumed to be constant for each individual peptide. Therefore, the supply rate
associated with a particular off-rate is simply scaled by the number of peptides with that off-rate, as quantified in A. The lowest off-rate (highest
affinity) peptides for B2705 (KRWIILGLNK) and B4403 (AETQCETAY) are indicated. Simulations were performed for the presence and absence of
tapasin, as indicated in the key. (C) Enhancement of cell surface presentation by tapasin was computed by dividing simulated tapasin-sufficient
presentation by simulated tapasin-deficient presentation for each peptide. The results of the HIV simulations illustrate the extent to which tapasin
can affect a downstream immune response. Theoretically, tapasin can enhance presentation by up to a factor 1=u, where u is the off-rate of the
peptide from MHC (Fig. 5). However, the characteristics of the MHC allele, such as the allele-specific peptide on-rate, can significantly alter the effect
of tapasin on the presentation of a given peptide. Our model allows differences in presentation levels to be quantified by taking into account peptide
supply and peptide off-rate, together with the effects of tapasin and the binding properties of the MHC class I allele under consideration. In particular,
our analysis of the HIV-1 Gag-Pol polyprotein provides a specific quantitative prediction for the cell surface presentation of the immunodominant
KRWIILGLNK by HLA–B2705. By simulating the range of peptides derived from Gag-Pol, representing a range of off-rates, we observe that the
enhancement by tapasin is independent of peptide supply, instead being wholly determined by the peptide off- and on-rates (Fig. 7 C).
doi:10.1371/journal.pcbi.1002144.g007
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Discussion

The optimization of peptide-MHC class I complexes at the

surface of antigen presenting cells is one of the key factors that

determines the hierarchy of the T-cell response to a complex

antigen [1]. Peptide optimization is also important for vaccine

design, where vaccine peptides compete with endogenous peptides

for presentation [1,30]. In this paper we propose a dynamical

systems model of MHC class I peptide optimization, which takes

into account the supply of peptides in the cytosol, the affinity of

peptides to MHC and the interactions between peptide and MHC

at the different stages of the optimization process, both within the

ER and at the cell surface. The model also incorporates the effects

of tapasin, which is known to increase peptide optimization [5]

and to affect different MHC class I alleles to different extents [6].

This variation in tapasin dependence may protect from viral

immune evasion strategies such as tapasin inhibition by an

adenovirus [31].

The dynamical systems model is firmly grounded in experi-

mental data, and techniques already exist to measure many of the

model parameters [5–8]. The model therefore allows a multitude

of experimental results to be unified within a common framework,

so that a range of mechanistic hypotheses can be formulated and

tested. We derive a peptide filtering relation which, for the first

time, provides a mechanistic explanation for experimental data on

MHC class I peptide optimization, both over time [6] and at

steady state [5]. Specifically, it suggests that tapasin enhances

peptide off-rate in order to improve peptide optimization without

significantly delaying the transit of MHC to the cell surface.

We have also shown that an allele-specific peptide on-rate is the

most likely mechanistic explanation for differences in peptide

optimization across HLA–B alleles. A possible interpretation is

that differences in peptide on-rate are due to allelic differences in

molecular conformation. For example, alleles such as B4402 could

adopt a closed conformation, reducing the ability of peptides to

bind MHC, while alleles such as B2705 could adopt a more open

conformation, allowing peptides to readily bind MHC, as

suggested in [32]. When tapasin binds to MHC the peptide

binding groove may then adopt a peptide receptive conformation,

allowing MHC to bind peptides more readily, as suggested in [20].

Although allelic differences in the conformation of MHC class I

are largely peptide-independent, variations in the on-rates of

different peptides have nevertheless been observed. These

variations can be incorporated in future versions of the model

by allowing a separate on-rate for each peptide. However,

published estimates indicate that variations in the affinity of

peptide-MHC interactions are mostly governed by variations in

peptide off-rate [11], supporting our assumption that the on-rate is

allele-specific and largely peptide-independent.

Although the current model makes a number of simplifying

assumptions on the antigen presentation process, the model can be

readily extended to incorporate additional details as more data are

acquired. These details could include the explicit contribution of

TAP transport, proteasomal cleavage and cytosolic protein

abundance to ER peptide supply [26,33,34]. At present these

mechanisms are only implicitly represented in the model via

peptide-specific supply rates gi. Further extensions could also

include conformational changes in MHC [7], and chaperones

such as ERp57 and calreticulin which are known to influence total

cell-surface presentation [15,17]. Since the mechanisms by which

additional chaperones interact with MHC class I are only partially

known, we can investigate a variety of hypotheses by using our

Information Theoretic framework to assess allele-specific chaper-

one-dependency. In the future, coupling model analysis with

additional experimental measurements will enable quantitative

predictions of peptide optimization for a wide range of MHC class

I genotypes. Having a robust model, known to make accurate

predictions, will improve our ability to assess the efficacy of

vaccines involving multiple peptides, and will provide a quanti-

tative means to prioritize different vaccination strategies.

The current work is part of a broader research programme to

use experimental data to build credible mathematical models of

immunological processes, ranging from relatively simple examples

to complex systems such as organ-specific autoimmunity. The

resulting models can then be used to make specific and testable

predictions that relate directly to immunological function.

Subsequent iterations offer an opportunity to refine or develop

the models from the simple to the complex, or from the static to

the time-resolved, at the molecular, cellular or organ level.

Methods

Ordinary differential equation representation of the
dynamical systems model

The chemical reaction representation of the dynamical systems

model of Fig. 2 is as follows:

1
gM

dM

M MzPi

b

ui

MPi

1
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T TMzPi

c

q:ui
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TM TMPi
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:v

TzMPi

Me
dMe

1 MPi

e
MePi

1
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dP

Pi MePi

ui
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By assuming mass-action kinetics, we converted the system of

reactions to a set of ordinary differential equations (ODEs), where

½X � denotes the concentration of a given species X and ½X �0
denotes rate of change in concentration.

½M�’~
X

i

ui½MPi�zuT ½TM�zgM{(b
X

i

½Pi�zbT ½T �zdM )½M�ð3Þ

½T �’~uT ½TM�zgTzuT v
X

i

½TMPi�{(bT ½M�zdT )½T � ð4Þ

½MPi�’~b½M�½Pi�zuT v½TMPi�{(uize)½MPi� ð5Þ

½TM�0~bT ½M�½T �zq
X

i

ui½TMPi�{(uTzc
X

i

½Pi�)½TM� ð6Þ

½TMPi�0~c½TM�½Pi�{(uiqzuT v)½TMPi� ð7Þ

½Pi�0~ui½MPi�zuiq½TMPi�zgi{(b½M�zc½TM�zdP)½Pi� ð8Þ

½MePi�’~e½MPi�{ui½MePi� ð9Þ
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½Me�’~
X

i

ui½MePi�{dMe½Me� ð10Þ

The dependent variables consist of MHC (M), peptide (Pi),
tapasin (T), egressed MHC (Me) and the complexes formed

between these elements. The equations denote a two-compart-

ment system, comprising an ER model (3)–(8) and a cell surface

model (9)–(10).

Steady-state analysis of the ODE representation
Equation (1) was derived by considering the steady state

(equilibrium) solutions of the ODE representation. By equating

½MPi�0, ½TMPi�0 and ½MePi�0 with zero, we obtained the following

expressions for ½TMPi�� and ½MPi��:

½TMPi��~
(uize)½MPi��{b½M��½Pi��

uT v
~

c½TM��½Pi��

uiqzuT v
ð11Þ

½MPi��~
ui½MePi��

e
ð12Þ

By substituting (12) in (11) we obtained the expression for the

steady-state concentration of egressed MHC complexes with a

given peptide Pi in equation (1)

½MePi��~
1

ui

e

uize
(b½M��z x

uizx
c½TM��)½Pi��

where x~uT v=q. The equation incorporates the peptide filtering

steps described in the main text, where e=(uize) denotes the

optimization of free MHC in the ER, while x=(uizx) denotes the

optimization of MHC bound to tapasin in the ER. For a given

peptide with off-rate ui, the optimization of free and tapasin-bound

MHC is therefore fully determined by e and x, respectively.

Moreover, MHC complexes optimized in the presence of tapasin

will always be subject to an additional optimization step after

tapasin unbinding. The equation also incorporates optimization of

MHC at the cell surface given by 1=ui , where peptides with a

lower off-rate ui are more likely to remain bound to MHC.

Optimizing model parameters with respect to
experimental data

Heuristic search methods were used to fine-tune model

parameters, based on the available experimental data. Our

approach was to minimize a cost function, defined as the sum of

the squared differences between experimental data y
(i)
d (i~1,n)

and corresponding model simulated output y(i)
m , subject to an

arbitrary proportionality constant a. i.e.

min
p[P

D(p) ð13Þ

where D(p)~ min
a[R

Xn

i~1

(y
(i)
d {ay(i)

m )2

y
(i)
d

( )
ð14Þ

where P is the space of search parameters, which may be the full

parameter set or a subset thereof. For the inner minimization

problem (14), it is possible to assign an optimal a~a�(=0), by

equating the partial derivative of D (with respect to a) to 0.

LD
La

~{2a
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Approximate minimizers of the multi-dimensional objective

function (13) were found using a Metropolis-Hastings (MH)

algorithm.

During execution of the MH algorithm, a Markov chain of

proposal parameter sets is formed. Starting from an initial

parameter set p~p0 with associated objective function value

D(p0)~D0, the algorithm iteratively searches neighboring param-

eter sets by accepting or rejecting new proposal parameter sets at

each step. Neighboring points p̂p are proposed with probability

Q(p,p̂p), according to a jump rule

p̂p~f (p) ð17Þ

The chain moves to the new point p̂p according to an acceptance

criterion, which makes a probabilistic choice about whether to

accept p̂p. Given an observation u drawn from U(0,1), the proposal

point is accepted providing

uv min
Q(p,p̂p)P(p̂p)

Q(p̂p,p)P(p)
,1

� �

where P(p) is the probability that the parameter set p matches the

data and Q(p,p̂p) is the proposal density (which we fix to be

symmetric). Assuming the deviations from the experimental data

are Gaussian distributed and that D(p) makes only small jumps,

the acceptance ratio is approximately given by

P(p̂p)

P(p)
&e(D(p){D(p̂p))

Note that when D(p)wD(p̂p) we always move to p̂p, because the

exponential function of a positive number is greater than one. The

algorithm iterates until some termination condition is reached,

such as a maximum number of iterations or a convergence

condition. All parameter searches were performed using ‘Filz-

bach’, a software library for carrying out Metropolis-Hastings

Markov chain Monte Carlo parameter estimation in C++ or C#.

Filzbach is under development in the computational science lab at

Microsoft Research Cambridge and is available for download,

complete with a suite of example uses, via http://research.

microsoft.com/science.

Model selection using the Bayesian Information Criterion
To assess which model parameter(s) should be allele-specific,

different hypotheses were compared using the Bayesian Information

Quantifying MHC Class I Peptide Optimization

PLoS Computational Biology | www.ploscompbiol.org 12 October 2011 | Volume 7 | Issue 10 | e1002144



Criterion (BIC) [19]. The BIC is defined as

BIC~{2 log fk(xDp�k)zki log n ð18Þ

where p�k is the parameter set associated with model hypothesis k
that maximizes the likelihood function fk, and x~ x1, . . . ,xnf g are

the experimental observations. This is equivalent to minimizing

the residual sum of squares, as in (14). It can be seen from this

equation that the BIC penalizes the introduction of additional

parameters.

Solving the model equations
The model equations (3)–(10) were solved throughout using the

CVODE routine [35], as part of SUNDIALS suite of numerical

integrators [36]. During optimization with Filzbach, simulation

code was written in C and compiled using Microsoft Visual Studio

2010. For plotting the simulations results, we used MATLAB and

the SUNDIALS Toolbox for MATLAB. We have also provided

an implementation of the model in SBML format for HLA–B

(Protocol S1) and H22Kb (Protocol S2).

Computing the equilibrium concentrations
The equilibrium concentrations were computed from the model

equations by equating the right hand sides to zero. This amounts

to solving a system of nonlinear equations f (x)~0, where x is the

vector of concentrations and f describes the fluxes resulting from

production, degradation, binding, unbinding and ER egression.

When using MATLAB, we used an implementation of the

Levenberg-Marquhardt (L–M) search algorithm [37] to find

solutions. When using the C implementation or in the case where

the L–M algorithm did not converge to a non-negative solution,

the ODEs were simulated using CVODE until the solution had

not changed by more than 0.1% over a time interval of 1000

minutes. The latter method guarantees a non-negative solution

providing the initial condition is also non-negative.

Decay of MHC class I from the cell-surface with Brefeldin
A

Brefeldin A (BFA) blocks anterograde traffic from the ER and

thus the Golgi fuses with the ER. This prevents export of any

newly synthesized class I from the ER to the cell-surface [38,39].

BFA (Sigma, UK) was dissolved in methanol at 4 mg/ml for

storage at {200C and used at 5 mg ml{1. 3|105 suspension cells

were plated in 1 ml cell medium in a 24-well plate. 5 mg ml{1

BFA was added for the indicated times and all the cells were

harvested at the same time for flow cytometry. Cells were

harvested for flow cytometry as previously described [5].

Supporting Information

Protocol S1 An implementation of the model in SBML format

for HLA-B.

(XML)

Protocol S2 An implementation of the model in SBML format

for H2-Kb.

(XML)

Text S1 Supporting information. Here we outline in more detail

the derivation of the model and the filter relation, and provide

interpretation for parameter variation analyses. Included are 8

supplementary figures and 3 supplementary tables.

(PDF)
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