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Complexes of chemoreceptors in the bacterial cytoplasmic membrane allow for the sensing of ligands with remarkable
sensitivity. Despite the excellent characterization of the chemotaxis signaling network, very little is known about what
controls receptor complex size. Here we use in vitro signaling data to model the distribution of complex sizes. In
particular, we model Tar receptors in membranes as an ensemble of different sized oligomer complexes, i.e., receptor
dimers, dimers of dimers, and trimers of dimers, where the relative free energies, including receptor modification,
ligand binding, and interaction with the kinase CheA determine the size distribution. Our model compares favorably
with a variety of signaling data, including dose-response curves of receptor activity and the dependence of activity on
receptor density in the membrane. We propose that the kinetics of complex assembly can be measured in vitro from
the temporal response to a perturbation of the complex free energies, e.g., by addition of ligand.
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Introduction

The chemotaxis network allows bacteria to sense and swim
toward attractants (nutrients such as amino acids and sugars)
and away from repellents. For this purpose, cells are
equipped with ;10,000 chemoreceptors, forming large arrays
at one or both cell poles. The chemotaxis network has
remarkable properties, including signal integration by multi-
ple types of chemoreceptors [1], precise adaptation to
persistent stimulation [2,3], and high sensitivity to changes
in ligand concentration [1] over several orders of magnitude
of background concentrations. These signaling properties are
thought to originate from strongly coupled receptor com-
plexes [4,5]. Specifically, in vivo fluorescence resonance
energy transfer (FRET) measurements of receptor sensitivity
[1] and Hill coefficients [6] indicate coupled complexes of up
to 10–20 receptor homodimers [6–10]. Despite the impor-
tance of complex size to signaling, little is known about what
controls receptor complex size (for recent reviews see
[11,12]). In vivo observation of complex size and dynamics,
e.g., by fluorescence recovery after photobleaching (FRAP), is
currently not practical because of limited spatial resolution.
However, the close relation between complex size and the
sensitivity and cooperativity of signaling means that receptor
activity can be used to probe complex size [8]. To
demonstrate the potential of this approach, we analyze in
vitro receptor-activity data [13–15] and present a simple
biophysical model for the energetics of complex assembly.

Here we mainly focus on data from Bornhorst and Falke
[13], whose in vitro receptor-activity assay employed a
chemotaxis null strain of Escherichia coli overexpressing one
of the five receptor types, the high-abundance receptor Tar.
The Tar receptor specifically binds aspartate and its non-
metabolizable analogue methyl-aspartate (MeAsp). The cyto-
plasmic membranes were isolated, and incubated with
purified CheW, CheA, and CheY proteins. In vivo, CheW
enhances complex formation and mediates binding to the
kinase, CheA. Active CheA autophosphorylates using ATP

and transfers the phosphate to the response regulator, CheY.
Phosphorylated CheY diffuses to the flagellar motor and
induces clockwise rotation and cell tumbling. In vitro, CheA
kinase activity was measured by assaying the rate of
phosphorylation of CheY using radiolabeled ATP. CheA
activity is inhibited by an increase of attractant concen-
tration. For the assay, receptors were genetically engineered
to have either a glutamate (E) or a glutamine (Q) at each of
four specific modification sites in the cytoplasmic domain. In
vivo, these four modification sites are used for adaptation,
with the enzyme CheR methylating glutamates to increase the
kinase activity, and the enzyme CheB demethylating methy-
lated glutamates to decrease the kinase activity. In chemo-
taxis, a Q is functionally similar to a methylated E. For
instance, TarfQQQQg is highly active at zero attractant
concentration, while TarfEEEEg is generally inactive.
Figure 1 shows experimental in vitro dose-response curves

from Bornhorst and Falke [13], i.e., CheA activity versus
stimulation by different amounts of attractant, for Tar
receptors in defined modification states. Hill coefficients
are smaller (and sensitivities are lower) than typical for in
vivo studies of cells overexpressing Tars [6,8], indicating
smaller in vitro clusters. The in vitro Hill coefficients (nH ’ 2–
3) are in line with expectations from partial crystal structures
[16] and cross-linking experiments [17,18] indicating that
receptors oligomerize into mixed trimers of homodimers as
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the smallest unit of complexes. In vivo, larger complexes
possibly form with a hexagonal lattice structure [19,20].
Modeling in vitro data using receptor complexes of a single
fixed size (e.g., trimers of dimers) does not describe the data
well (inset Figure 1). Here we examine a model in which the
receptor modification state determines the amount of trimers
of dimers, yielding a significantly better fit to the data (solid
lines in Figure 1) and suggesting that receptor modification
may vary complex size, possibly along with other parameters
[21].

In this paper, we analyze in detail the in vitro activity data
from Bornhorst and Falke [13], Shrout et al. [14], and Lai et al.
[15]. We model homodimers of Tar receptors in membranes
as an ensemble of different species, including single dimers,
dimers of dimers, trimers of dimers, and the signaling
complex formed by the kinase CheA bound to trimers of
dimers, in line with recent experiments [22]. The relative free
energies of these species determine their equilibrium
distribution, accounting for the different amounts of actively
signaling trimers of dimers indicated by the data. We further
propose that the kinetics of receptor-cluster assembly can be
measured experimentally by perturbing the receptor free
energies, e.g., through addition of ligand.

Results

The experimental dose-response curves in Figure 1 for Tar
receptors in different modification states were obtained from
in vitro reaction mixtures which always contained the same
total amounts of receptor, adapter protein CheW, kinase
CheA, and response regulator CheY [13]. Addition of MeAsp
inhibits the kinase activity, while the number of Qs per
receptor increases the kinase activity. Previously, similar
dose-response curves from living cells, obtained by in vivo
fluorescence resonance energy transfer (FRET), were success-
fully modeled using the Monod–Wyman–Changeux (MWC)
model [23] of strongly coupled two-state receptors [24], and

revealed complex sizes of order N¼ 10 receptors [6–10]. Here
we employ the same MWC model to estimate the size of
receptor complexes in the in vitro assays of Bornhorst and
Falke.
In the MWC model, the receptor complex activity is simply

the probability for the complex to be on, which is fully
determined by the free-energy difference between on and off
states of the complex (Equation 1). For a homogenous
complex of Tar receptors, this free-energy difference is the
product of the number of receptors, N, in the complex and
the free-energy difference between on and off states of a
single Tar receptor. The free-energy difference of a single
receptor has two contributions. One contribution, De(m),
depends on receptor modification level, m, and ranges from
positive for fully demethylated (m ¼ 0) receptors to negative
for fully methylated (m¼8) receptors. The other contribution
arises from attractant binding and depends on the ligand
dissociation constants Kon

D and Koff
D of the on and off states,

respectively. If the activity is low in the absence of ligand (e.g.,
for demethylated receptors), the inhibition constant (ligand
concentration at half maximal activity) is Ki ’ Koff

D /N and the
Hill coefficient is nH ’ 1. In contrast, if the activity is high in
the absence of ligand (e.g., for highly methylated receptors),
the inhibition constant is Ki � Koff

D and the Hill coefficient is
nH ’ N, where N is the number of receptors in the complex
([8], see Methods). Inspection of the experimental dose-
response curves in Figure 1 shows that the inhibition constant
of the low-activity QEEE curve is about Ki ’ 0.01 mM MeAsp
and that Hill coefficients of the other curves are nH ’ 2–3.
Hence, based on the MWC model and the previously
determined value Koff

D ¼ 0.02 mM for Tar receptors binding
MeAsp [8], the signaling complexes responsible for the data in
Figure 1 are likely to be trimers of dimers.
Indeed, the MWC model using N¼ 3 for trimers of dimers

and a different D2(m) for each receptor modification state m
(Equations 1 and 2) fits the shapes of the in vitro curves well,
while allowing each curve to have a free amplitude am (solid
curves in Figure 1). However, in the MWC model, D2(m) is
also supposed to determine the relative amplitudes of the
curves. Although amplitudes still depend systematically on
the number of Qs (m), the relative amplitudes from the MWC
model are substantially different and do not describe the data
well (inset in Figure 1). Hence, each dose-response curve is
well described by the MWC model for trimers of dimers, but
the MWC model does not describe the relative amplitudes
correctly. (Use of a two-state model without cooperativity [21]
or use of an alternative MWC model with a methylation-
dependent Koff

D to fit experimental amplitudes both produce
lower than observed Hill coefficients.) The discrepancy in
amplitudes raises the following question—given that all
experiments use the same total amount of receptor, why
should the amplitudes systematically differ from the MWC
model predictions for different receptor-modification states?
According to recent in vitro experiments, only receptors in

trimers of dimers can signal [22]. Therefore, the presence of
some receptors as (inactive) single dimers and dimers of
dimers could account naturally for the different amplitudes
observed in Figure 1. We therefore suggest that in the in vitro
assays not all receptors form trimers of dimers, some also
partition into single dimers and dimers of dimers, with the
fraction in trimers of dimers depending on the receptor-
modification state. In fact, such a partition is required by
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Author Summary

Chemotaxis allows bacteria to sense and swim toward nutrients and
away from toxins. The remarkable sensing properties of the
chemotaxis network, such as high sensitivity to small changes in
the chemical environment, are thought to originate from receptor
complexes in the membrane, which act as antennas to magnify
weak signals. To adapt to persistent stimulation, receptors are
covalently modified. While the individual protein components of the
chemotaxis network are well characterized, making the system well
suited for quantitative and computational analysis, direct exper-
imental visualization of receptors and receptor complexes is difficult
within the current limits of fluorescence and electron microscopy. To
address questions such as how large are complexes and why do
they assemble, we analyze in vitro signaling data using a previously
developed model of signaling by receptor complexes. Based on the
data, we propose a statistical physics model for the distribution of
complex sizes in the membrane. Within this model, complex size
depends on the receptor free energy with contributions from
receptor modification level, ligand binding, receptor–receptor
coupling, and binding to accessory proteins. Our model results
compare favorably with a variety of different signaling data, and
suggest new experiments to measure the kinetics of assembly of
receptor complexes.
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thermodynamic equilibrium, with entropy favoring single
dimers and dimers of dimers over trimers of dimers. In the
following, we formulate an equilibrium model to predict the
amounts and activities of trimers of dimers as a function of
receptor-modification state. For this purpose, we include
CheA binding to trimers of dimers only, leading to an
equilibrium between free trimers of dimers, without signaling
capability, and CheA-bound trimers of dimers, the signaling
complex. (For simplicity, we assume that CheW is present at
saturation.)

In our model for Tar receptors in membranes, we consider
single dimers, dimers of dimers, trimers of dimers, and CheA-
bound trimers of dimers. These different species can either
be active (on) or inactive (off) as illustrated in Figure 2, but
only active CheA-bound trimers of dimers can signal. The
relative free energies of the various species determine their
equilibrium distribution. To compare the free energies of the
different species, we introduce homodimer–homodimer
coupling energies, which can be different between active
homodimers ( Jon) and between inactive homodimers ( Joff).
We also include a chemical potential, l, to adjust the receptor
density. The resulting free-energy expressions are given in
Equations 3–10. To facilitate calculations, we treat the
membrane as a lattice where each site can be either empty,
or occupied by a single dimers, a dimer of dimers, a trimer of
dimers, or a CheA-bound trimer of dimers, yielding the
partition function in Equation 11. To model the in vitro
experiments, in which the same total amount of receptor was
used for each assay, we multiply the probability that a given
CheA-bound trimer of dimers is active by the fraction of
receptors in CheA-bound trimer of dimers (cf. Equation 14 in
Methods).

This equilibrium-assembly model (dashed lines in Figure 1)
describes the data as well as the ad hoc model with free
amplitudes (solid lines in Figure 1). Specifically, the equili-
brium-assembly model accounts for the systematic depend-
ence of the dose-response curve amplitudes on receptor
modification state. Since for each curve we assume a fixed
fraction of CheA-bound trimers of dimers, set by the
incubation conditions, the shape of each curve is still
determined by the MWC model with N ¼ 3 (Equation 13 in
Methods). While the equilibrium-assembly model requires
seven parameters, Kon

D , Koff
D , Jon, Joff, 2A, l, and a, plus an offset

energy, D2, for each receptor-modification state, some of
these parameters are nearly redundant. For example, D2 and
Jon� Joff play nearly equivalent roles, as do l and ( Jonþ Joff)/2,
differing only in their effects on the ratio of dimers of dimers
and trimers of dimers. Therefore, our parameter choices
represent only one consistent set of values.
In their data, Bornhorst and Falke [13] observed a strong

correlation between the activity in the absence of MeAsp and
the inhibition constant Ki. Figure 3A shows this correlated
data for all possible modification states except EEEE, for
which the measured activity was zero. The observed func-
tional relation between activity and Ki supports our
suggestion that not all receptors form CheA-bound trimer
of dimers. To illustrate, in Figure 3A we have plotted, as a
dotted curve, the expected relation between activity and Ki if
all receptors did form CheA-bound trimers of dimers. The
curve has a noticeably different shape from the experimental
data. In contrast, the equilibrium-assembly model, with the
same parameters as in Figure 1, is able to capture the
observed relation between activity and Ki (dashed curve). In
either case, the one-to-one relation between activity and Ki

follows because both quantities depend uniquely on the
receptor offset energy D2. For ease of comparison, we used
the same amplitude parameter a ¼ 10 for both curves in
Figure 3A. This means that the ratio of the two curves gives
the fraction of receptors in CheA-bound trimers of dimers in
the equilibrium-assembly model, because only those recep-
tors in CheA-bound trimer of dimers contribute to the
activity. The actual fraction of receptors in CheA-bound
trimers of dimers (and in all trimers) is shown in Figure 3B,
both for the equilibrium-assembly model and, by inference,

Figure 2. Schematic of Membrane-Bound Chemoreceptor Complexes

Membrane contains equilibrated mixture of active (black) and inactive
(white) single dimers, dimers of dimers, trimers of dimers, and CheA-
bound trimers of dimers, where CheA is shown in yellow. Only CheA-
bound trimers of dimers can signal. Red and green lines indicate
interactions among active and inactive receptors, respectively.
doi:10.1371/journal.pcbi.0030150.g002

Figure 1. In Vitro Dose-Response Curves and Fits from Models

Activity of CheA complexed to Tar receptors of defined modification state
(QQQQ, QEQQ, QEQE, QEEE) for different MeAsp attractant concentra-
tions. Data (mean and standard deviation of three measurements) are
taken from in vitro activity assays of Bornhorst and Falke [13]. All
measurements used the same total amount of receptor. Least-squares fits:
solid curves, simple model of signaling by trimers of dimers, where the
amplitude of each curve (e.g., QQQQ) is an independent fitting parameter;
dashed curves, equilibrium-assembly model of an ensemble of single
dimers, dimers of dimers, trimers of dimers, and CheA-bound trimers of
dimers, where only CheA-bound trimers of dimers can signal. Inset: all
receptors assumed to form trimers of dimers. The MeAsp dissociation
constants KD

off¼ 0.02 mM and KD
on¼ 0.5 mM are taken from [8].

doi:10.1371/journal.pcbi.0030150.g001
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for the in vitro data. Why does the fraction of receptors in
CheA-bound trimers of dimers increase with Ki? Within the
model, the inhibition constant Ki increases as the offset
energy D2 decreases; this behavior follows because decreasing
D2 favors the active state of receptors, and therefore more
attractant is required to inactivate them. The same shift of
receptors toward higher activity causes the fraction of
receptors in CheA-bound trimers of dimers to increase, both
because Jon , Joff implies a stronger tendency of active
receptors to form trimers of dimers, and simply because
increasing the total concentration of active receptors
increases their equilibrium partition into trimers of dimers.

Our suggestion that not all receptors form trimers of
dimers or CheA-bound trimers of dimers is given further
experimental support by Shrout et al. [14] and Lai et al. [15]
who used a receptor-activity assay similar to that of
Bornhorst and Falke but with E. coli Tar receptors. Shrout
et al. measured the kinase activity for different modification
states of cytoplasmic Tar-receptor fragments at zero attrac-
tant concentration. While the measured activities depended
strongly on modification state, the same activities normalized
by the amount of bound CheA were almost independent of
modification state. We find the same behavior in our
equilibrium-assembly model. Figure 4 shows the calculated
activity and activity per CheA (activity divided by the fraction
of receptors in CheA-bound trimers of dimers) for four
different receptor-modification states (cf. Figure 1). We
observe qualitative agreement with the data in Figure 2A of

Shrout et al. [14], although their receptor fragments tend to
be more active than complete receptors [25]. In the
equilibrium-assembly model, if the CheA-bound trimers of
dimers were always fully active (on), the normalized activities
would be completely independent of the modification state.
However, for receptors with few Qs, the CheA-bound trimers
of dimers are not fully active even at zero attractant
concentration, resulting in the weak modification-level
dependence of the normalized activity seen in Figure 4B.
If an equilibrium exists among single dimers, dimers of

dimers, trimers of dimers, and CheA-bound trimers of dimers,
one would expect changes in the receptor density to affect the
distribution of different sized receptor clusters. Consistent
with this expectation, Lai et al. [15] reported the activity per
TarfQEQEg receptor, in the absence of attractant, as a
function of the receptor fraction of total membrane protein.
As shown in Figure 5, they observed an increase in and
saturation of the activity per receptor with increasing receptor
fraction. We interpret their data to mean that at low receptor
fractions (densities), it is thermodynamically unfavorable for
receptors to come together and form trimers of dimers (or
even dimers of dimers), and consequently single dimers, which
lack signaling capability, predominate. This density-dependent
activity per receptor is captured by our equilibrium-assembly
model, as shown in Figure 5 (solid lines), using the same
parameters as in Figure 1. The calculated activity is scaled by
an overall factor to convert to the activity scale of Lai et al.
[15], and the calculated receptor density (Equation 15) is also
rescaled. Within the equilibrium-assembly model, the kinase
activity per receptor increases with receptor density entirely
because of the increasing fraction of receptors in CheA-bound
trimers of dimers expected from thermodynamics.
The large amount of in vitro data from Bornhorst and

Falke [13] can be used to test an additional hypothesis.
Specifically, do the offset energies from each of the four
modification sites D2i¼1,2,3,4 contribute additively to give the
total offset energy D2? The total offset energy D2 for each of
the 15 modification states can be obtained from the
inhibition constants Ki [13] based on our model that only
CheA-bound trimers of dimers can signal (see Methods). This
value can be compared with the additive model, where the
D2i are treated as fitting parameters. Figure 6 shows that the
additive model for the total offset energy is indeed a

Figure 4. Kinase Activity per Receptor-Bound CheA

(A) CheA kinase activity at zero attractant concentration for four different
receptor modification states within the equilibrium-assembly model
(Figure 1, dashed curves).
(B) Kinase activity per receptor-bound CheA, i.e., activity from (A) divided
by fraction of receptors in CheA-bound trimers of dimers (cf. Figure 3B).
doi:10.1371/journal.pcbi.0030150.g004

Figure 3. Kinase Active Receptors Are in CheA-Bound Trimers of Dimers

(A) CheA kinase activity at zero MeAsp concentration versus Ki, defined
as the MeAsp concentration required to reduce activity by one-half, for
Tar receptors in different modification states. Data (mean and standard
deviation of three measurements) are taken from in vitro activity assays
and Hill fits of Bornhorst and Falke [13]. All measurements used the same
total amount of receptor. Dotted curve, all receptors assumed to form
CheA-bound trimers of dimers (A:TDs), with maximal activity a ¼ 10.
Dashed curve, equilibrium-assembly model with same a (cf. Figure 1,
dashed curves).
(B) Left axis, fraction of receptors in A:TDs, i.e., ratio of data or dashed
curve to the dotted curve in (A). Right axis, fraction of receptors in all
trimers (TDs and A:TDs), equal to the fraction of receptors in A:TDs
multiplied by 1þ exp(2A), where 2A is the binding energy of CheA (see
Methods). The MeAsp dissociation constants KD

off ¼ 0.02 mM and KD
on ¼

0.5 mM are taken from [8].
doi:10.1371/journal.pcbi.0030150.g003
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reasonably good approximation. Interestingly, modification
sites 1 to 3 make a similar contribution (approximately �0.5
to �0.6 kBT ) while site 4 makes a smaller contribution
(approximately �0.3 kBT) to the offset energy (see Methods).
This may have to do with the fact that, relative to the CheA
binding site, modification sites 1 to 3 are nearby on the N-
terminal side of the receptor and modification site 4 is on the
C-terminal side of the receptor.

Discussion

The chemotaxis network of E. coli exhibits remarkable
sensing and signaling properties that rely on receptor
complexes. Despite recent high resolution electron micro-
scopy [19,20], fluorescence images [26–28], and in vivo
fluorescence recovery after photobleaching (FRAP) measure-
ments of protein dynamics (V. Sourjik, personal correspond-
ence), very little is known about what determines receptor-
complex size [11,12]. Interestingly, because complex size and
signaling sensitivity or cooperativity are closely related [8],
receptor kinase activity can be used to probe complex size.
Starting from in vitro dose-response data of the activity of
Tar receptors in native membranes [13–15], we presented a
simple biophysical model for the energetics of complex
assembly that can account for these and other data. An
essential feature of the model is that not all receptors form
signaling complexes, i.e., kinase CheA-bound trimers of
dimers. Our model for receptor complexes is based on an
MWC model, with constants Kon

D and Koff
D , in which receptor

modification state affects complex size only through the
offset energy D2 (which depends additively on contributions
from the four modification sites). At this stage, we cannot rule
out alternative models, e.g., in which modification state
affects other parameters as well [21].

In our model, Tar receptors form an ensemble of different
species, including single dimers, dimers of dimers, trimers of
dimers, and CheA-bound trimers of dimers, as illustrated in
Figure 2. The different species can either be active (on) or
inactive (off), but only active CheA-bound trimers of dimers
can phosphorylate CheY. This is in line with recent in vitro
experiments where trimers of dimers were found to signal,
but single dimers and dimers of dimers did not signal [22].
The relative free energies of the various species determine
their equilibrium distribution, leading naturally to the
observed variation in the signaling activity of receptors in
different modification states (cf. Figures 1, 3, 4, 5). We find
that the fraction of receptors in trimers of dimers and CheA-
bound trimers of dimers increases with the number of Qs at
the modification sites (or with Ki, see Figure 3B). Within this
picture, the ‘‘superactivity’’ of certain mutant receptors can
be attributed to more efficient complex formation rather
than enhanced CheA binding or kinase velocity [25].
Our free-energy model assumes that complex assembly/

disassembly is slow compared with changes in signaling. For
instance, if attractant is added together with ATP to initiate
the activity measurement, the ensemble of clusters is assumed
to stay frozen, i.e., the ratio of fsingle dimersg:fdimers of
dimersg:ftrimers of dimersg:fCheA-bound trimers of
dimersg is assumed to be unaffected by the addition of
attractant, even though the kinase activity is immediately
affected. This separation of time scales is reflected in
Equation 14, where the fraction of receptors in CheA-bound
trimers of dimers (first factor) is evaluated at the incubation
attractant concentration ([L0]¼ 0), while the activity (second
factor) is evaluated in the presence of the added attractant
([L]). To model the case where attractant is added during
incubation, one only needs to set [Lo]¼ [L]. In this case, shown
by solid curves in Figure 7, inhibition occurs at lower

Figure 6. Additivity of Offset Energies from Four Modification Sites

Test of additivity of the contributions of the four modification sites to the
total offset energy D2, based on the in vitro data for 15 receptor
modification states (all possible combinations of Es and Qs, except EEEE)
from Table I of [13]. Horizontal axis, D2 obtained from experimental Ki

values (see Methods); vertical axis, D2 determined from the sum of the
offset energies from the four individual modification sites D2i treated as
v2 fitting parameters (see Methods). Inset, histogram of v2 values after
minimization for 1,000 randomized permutations of the data; v2¼0.67 of
the unrandomized data is the lowest v2 (see Methods).
doi:10.1371/journal.pcbi.0030150.g006

Figure 5. Kinase Activity versus Receptor Fraction of Total Membrane

Protein

The data for TarfQEQEg receptors (mean and standard deviation of three
measurements) are taken from in vitro activity assays of Lai et al. [15]. All
measurements used the same amount of receptor. Solid curves for
receptors in different modification states were calculated with param-
eters obtained from the equilibrium-assembly model (Figure 1, dashed
curves). Calculated activities are scaled by 0.9 to convert to activity of Lai
et al. [15], and receptor density is scaled by 5.3 to convert to receptor as
a fraction of total protein.
doi:10.1371/journal.pcbi.0030150.g005
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attractant concentrations, in agreement with the data of Lai
et al. [15] for TarfQEQEg incubated in the presence of
MeAsp (solid symbols). In the model, the inhibition at lower
attractant concentrations can be traced to the loss of trimers
of dimers in favor of single dimers and dimers of dimers in
the new equilibrium produced by incubation with attractant
(see inset Figure 7). Incubation with attractant is exactly the
opposite of adding Qs in terms of receptor free energies, and
therefore favors smaller rather than larger complex sizes.

The dose-response curves in Figure 7 for incubation
without attractant (dashed curves) and with attractant (solid
curves) are easily distinguishable, which suggests a way to
measure the kinetics of complex assembly. During the period
after the addition of attractant, as the clusters re-equilibrate,
the dashed curves must evolve toward the solid curves. The
rate of evolution can be quantified by measuring the kinase
activity at specific times following the addition of attractant.
In this way, information can be obtained about the kinetics of
assembly and disassembly of receptor complexes. Our
equilibrium-assembly model, augmented by kinetic rate
constants, provides an appropriate theoretical framework
for planning and interpreting kinetic experiments of this
type.

There are previously published models for chemoreceptor
complex assembly. These models, however, do not consider
the effects of ligand binding, and hence cannot address dose-
response data. Furthermore, Lai et al. [15] assume all
receptors form trimers of dimers, hence their model cannot
explain the activity versus receptor density data in Figure 5.
Shrout et al. [14] assume that CheA binding directly depends
on the receptor modification state. While this assumption can
explain the increase of activity with modification level, it
violates the conventional view of precise adaptation based on
the two-state receptor model, where receptors are either on

(active) or off (inactive). Precise adaptation occurs because
receptor modification responds exclusively to receptor
activity so as to exactly balance the effects of ligand binding.
If CheA binding depended directly on receptor modification
level, this would increase kinase activity at higher attractant
concentrations and, hence, interfere with precise adaptation.
In contrast, in our model, CheA binds to trimers of dimers
irrespective of modification level or activity. The recent
model by Asinas and Weis [25] considers the competitive
assembly of wild-type and activity-mutant receptors. The
authors come to a similar conclusion to ours, i.e., that
receptor activity determines cluster assembly and, conse-
quently, CheA recruitment and activity (see also Li and Weis
[29]).
An approach similar to ours may allow measurement of the

kinetics of receptor complexes in living cells. Complex sizes
of 10–20 receptors or more have been inferred from in vivo
dose-response curves [6–10] and, in E. coli cells lacking an
adaptation system, polar clustering appears to depend on
receptor-modification level ([28,30,31]; V. Sourjik, personal
correspondence). This suggests that dose-response curves can
be used to measure the real-time evolution of in vivo cluster
sizes in response to perturbations of receptor free energy,
e.g., addition of attractant or repellent. It is not clear why in
vivo complexes are significantly larger than the trimers of
dimers seen in vitro and why receptors localize predom-
inately at the cell poles. It is known that receptors are
inserted into the membrane by the Sec translocon machinery
[32] in large cell-spanning spirals [33]. Once inserted into the
membrane, receptors may localize at the cell poles due to the
higher membrane curvature [34] and/or different lipid
composition [35–37] at the poles. A means to probe
receptor-assembly kinetics may help reveal what determines
complex size in vivo.
Compared with previous modeling of in vivo data [8–10],

the offset energies, D2, obtained from in vitro data are much
larger. This can be traced to the fact that we explicitly include
homodimer–homodimer interactions, which lead to an
effective offset energy for each receptor in a trimer of dimer
of D2 þ Jon� Joff, close to estimated in vivo values. However,
in a large in vivo complex, if each receptor participates in six
homodimer–homodimer interactions, as on a hexagonal
lattice, the effective offset energy per receptor would be D2
þ 3( Jon � Joff), which is much more negative than the
estimated in vivo values. One possible resolution might be
that, in an in vivo cluster, homodimers in different trimers of
dimers are coupled together more weakly than homodimers
within a trimer of dimers. However, the coupling between
trimers of dimers must still be strong enough to cause clusters
of 10–20 receptors to switch on and off together. An
important open question is what mediates the interactions
among receptor homodimers in trimers of dimers, or
between trimers of dimers? One way to address this question
may be to measure in vitro or in vivo dose-response curves of
mutant receptors specifically engineered to interrupt or
strengthen homodimer–homodimer interfaces. Possible in-
sight can be gained from the observation of large in vitro Tsr
clusters [29], pointing toward a difference between Tsr:Tsr
and Tar:Tar interfaces [15].
We expect that a better understanding of the assembly of E.

coli chemoreceptor complexes may provide insights into the
oligomerization of other membrane proteins, including

Figure 7. From Signaling to Assembly Kinetics

Difference between the equilibrium partition of receptors incubated
without MeAsp (dashed curves) or with MeAsp (solid curves), using the
equilibrium-assembly model. Dashed curves and data (open symbols) are
from Figure 1. Experimentally, the kinetics of complex assembly can be
obtained from the ratio of relaxation from the dashed curves to the solid
curves following addition of MeAsp (arrows). Also shown is data for
TarfQEQEg receptors from in vitro activity assays of Lai et al. [15] (solid
squares), based on addition of MeAsp during incubation, but using
different protein concentrations compared with Bornhorst and Falke [13].
Inset. fraction of receptors in CheA-bound trimers of dimers (CheA:TDs).
doi:10.1371/journal.pcbi.0030150.g007
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bacterial outer membrane proteins such as porins (e.g.,
LamB). For other membrane-bound receptors that form
complexes, including ryanodine receptors [38,39] and rho-
dopsin [40], we hope that analysis of complex size and
assembly kinetics based on dose-response curves may also
prove feasible.

Methods

Review of in vitro activity assay. We mainly model the data of
Bornhorst and Falke [13], who used an in vitro activity assay to study
chemotaxis signaling. Briefly, Tar receptors of Salmonella typhimurium
were engineered to be in a particular modification state, e.g., QQQQ,
QEQQ, QEQE, or QEEE, where Q is approximately equivalent to a
methylated E. Using a chemotaxis null strain of E. coli, the Tar
receptor was overexpressed from a plasmid. Cytoplasmic membranes
were isolated in which Tar receptors constituted approximately 5%–
10% of total membrane protein. Reaction mixtures of the same total
amount of Tar and purified CheA, CheW, and CheY were prepared
and incubated for 45 min to allow for complex formation in native
membranes. Signaling was initiated by adding radiolabeled ATP. The
activity of CheA was measured by assaying the rate of phosphor-
ylation of CheY and normalized to QEQE (wild-type). Quantified
attractant (MeAsp) was added with the ATP.

Monod–Wyman–Changeux model. In the MWC model [6,8,23],
two-state receptors (homodimers) [24,41] form complexes with all
receptors in a complex either on or off together. At equilibrium,
the probability that an MWC cluster of N Tar receptors will be
active is

pon ¼
e�Nf on

e�Nf on þ e�Nf off
¼ 1

1þ eNDf ; ð1Þ

where N f on (N f off) and f on ( f off) are the free energies of the complex
as a whole and an individual receptor to be on (off), respectively. The
individual receptor free-energy difference is given by

Df ¼ f onðmÞ � f off ¼ D 2 ðmÞ þ log
1þ ½L�=Koff

D

1þ ½L�=Kon
D

� �
: ð2Þ

Here, [L] is the ligand (MeAsp) concentration, m is the number of
Qs per receptor (m ¼ 0,. . .,8), and Kon

D and Koff
D are the ligand

dissociation constants in the on and off states, assumed to be
independent of m. All energies are expressed in units of the thermal
energy kBT.

In our model, Qs or methylated Es favor the on state of a receptor
by lowering D2 (m), while attractant binding favors the off state, i.e.,
Koff

D , Kon
D . Importantly, the model exhibits two regimes [8]. In

regime I, where D2 . 0 (e.g., for TarfEEEEg), receptors have a low
activity and an inhibition constant (ligand concentration at half
maximal activity), Ki ’Koff

D /N, indicating an N times higher sensitivity
than for a single receptor. In regime II, where D2 , 0 (e.g., for
TarfQQQQg), receptors are highly active, and turn off at large
attractant concentration Ki ’ Koff

D exp(jD2j) with high cooperativity,
i.e., a Hill coefficient nH ’ N. The possible MWC complexes
considered here are the single receptor dimer, the dimer of dimers,
and the trimer of dimers, corresponding to complex sizes N ¼ 1, 2,
and 3, respectively.

Equilibrium-assembly model. We use statistical mechanics to
predict the partitioning of receptors into active and inactive single
dimers, dimers of dimers, trimers of dimers, and CheA-bound trimers
of dimers, as illustrated in Figure 2. Since CheA-bound trimers of
dimers are the signaling complex, only trimers of dimers can signal,
not single dimers and dimers of dimers, in line with recent
experiments [22]. To compare the energies of the different-sized
complexes, we generalized the MWC model to include homodimer–
homodimer interactions. The interaction energy between active
homodimers ( Jon) and the interaction energy between inactive
homodimers ( Joff) can be different. These homodimer–homodimer
interactions may originate from interactions of the periplasmic or
cytoplasmic domains of the receptors, possibly mediated by the
adapter protein CheW. Specifically, single dimers, dimers of dimers,
and trimers of dimers (as well as CheA-bound trimers of dimers) have
zero, one, and three homodimer–homodimer interactions, respec-
tively. We also introduce a receptor chemical potential, l, which
determines the receptor density, q, in the membrane, and a free
energy, 2A, for the binding of the kinase CheA to trimers of dimers
(assuming for simplicity an equilibrium between bound CheAs and

free CheAs at some invariant concentration). The resulting complex
free energies for a single dimer (SD), a dimer of dimers (DD), a trimer
of dimers (TD), and a CheA-bound trimer of dimers (A:TD) are given
by

Fon
SD ¼ D 2 �logð1þ ½L�=Kon

D Þ � l ð3Þ

Foff
SD ¼ �logð1þ ½L�=Koff

D Þ � l ð4Þ

Fon
DD ¼ 2ðD 2 � logð1þ ½L�=Kon

D Þ � lÞ þ Jon ð5Þ

Foff
SD ¼ 2ð�logð1þ ½L�=Koff

D Þ � lÞ þ Joff ð6Þ

Fon
TD ¼ 3ðD 2 � logð1þ ½L�=Kon

D Þ � lþ JonÞ ð7Þ

Foff
TD ¼ 3ð�logð1þ ½L�=Koff

D Þ � lþ JoffÞ ð8Þ

Fon
AT:D ¼ 3ðD 2 �logð1þ ½L�=Kon

D Þ � lþ JonÞþ 2A ð9Þ

Foff
AT:D ¼ 3ð�logð1þ ½L�=Koff

D Þ � lþ JoffÞþ 2A ð10Þ

To regularize our calculations, we treat the membrane as a lattice
where each lattice site can be either empty, or occupied by a single
dimer, a dimer of dimers, a trimer of dimers, or a CheA-bound trimer
of dimers, determined by their relative free energies. The equilibrium
partition function of a single lattice site is given by

Z ¼ 1þ e�F
on
SD þ e�F

off
SD

þe�FonDD þ e�F
off
DD

þe�FonTD þ e�F
off
TD

þe�FonA:TD þ e�F
off
A:TD

ð11Þ

The probability that a site is occupied by species s (¼ SD, DD, TD,
or A:TD) is given by

Ps ¼
�eFon

s þ eF
of f
s

Z
ð12Þ

The probability that a particular CheA-bound trimer of dimers is
active is given by the MWC model (cf. Equation 1), now also
depending on Jon� Joff,

pA:TDon ¼ 1

1þ eF
on
TD�Foff

TD
¼ 1

1þ e3ðDfþJon�Jof f Þ
ð13Þ

To compare with experiments on a per receptor basis, the
probability that each CheA-bound trimer of dimers is active needs
to be multiplied by the fraction of receptors in CheA-bound trimers
of dimers, i.e.,

A ¼ a
3PA:TD

PSD þ 2PDD þ 3ðPTD þ PA:TDÞ

����½L0� � pA:TD
on ð½L�Þ ð14Þ

where a is an overall amplitude parameter, and can be interpreted as
the maximal possible activity, which would be achieved if all
receptors were in active CheA-bound trimers of dimers. The ligand
concentrations [L0] and [L] indicate that the ensemble of species can
equilibrate at one ligand concentration, e.g., [L0]¼ 0, while signaling
can be measured at another concentration, [L].

Assuming a constant density, q, of receptors in the membrane, we
find the chemical potential, l, that yields this density. The definition
of the density,

q ¼ PSD þ 2PDD þ 3ðPTD þ PA:TDÞ; ð15Þ

can be solved for l by solving the cubic equation

qþ ðq� 1Þaxþ ðq� 2Þbx2 þ ðq� 3Þcx3 ¼ 0 ð16Þ

for x¼ el and choosing the largest real root. The coefficients are given
by

a ¼ e� F~onSD þ e� F~offSD ð17Þ

b ¼ e� F~onDD þ e� F~offDD ð18Þ

c ¼ e� F~onTD þ e� F~offTD þ e� F~onA:TD þ e� F~offA:TD ; ð19Þ

where ~F indicates that the chemical potential is removed from the
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free energy F, i.e., ~F ¼ F þ Nl. The resulting chemical potential l can
be used in Equation 14 to calculated the activity.

Given Kon
D ¼ 0.5 mM and Koff

D ¼ 0.02 mM [8], Equation 14 for the
activity depends on amplitude parameter a and five additional
parameters: the second factor (pA:TDon ) depends on D2(m) and Jon� Joff,
and the first factor (fraction of receptors in CheA-bound trimers of
dimers) depends additionally on q(l), Jon or Joff, and 2A. We chose a¼
10, somewhat above the activity 5.5 observed for superactive receptor
mutants, to constrain the other energy parameters to be of
reasonable size, i.e., on the order of kBT. Fitting the four dose-
response curves in Figure 1 provides D2(QEEE) ¼ 3.1, D2(QEQE) ¼
2.6, D2 (QEQQ)¼2.2, D2(QQQQ)¼ 1.8, 2A¼�1.32, Jon¼0.01, and Jon
� Joff ¼�3.39 in units of kBT, and q ¼ 0.045 receptors per site. For
comparison, constraining the values to Jon¼ Joff leads to a fit as poor
as that in the inset to Figure 1.

Additivity of offset energies. We test whether modifications of the
four receptor sites contribute additively to the total offset energy D2.
From the measured inhibition constants, Ki, of 15 different receptor
modification states (QEEE, etc., except EEEE) [13], the total D2 can be
calculated from Equation 13, assuming only CheA-bound trimers of
dimers can signal

D 2 ðKiÞ ¼ �
1
3
log

1þ Ki=Koff
D

1þ Ki=Kon
D

� �3

� 2

" #
� Jon þ Joff ð20Þ

with Jon� Joff¼�3.39 from the previous paragraph. These values for
the total offset energies can be compared with the corresponding
values within an additive model

D 2 ¼
X4
i¼0

D 2i : ð21Þ

where D2i ¼ 1,. . .,4 is the contribution to the total offset energy from
the presence of a Q at site i. The values D2i ¼ 0,. . .,4 are treated as
fitting parameters obtained from minimizing

v2 ¼
X15
M¼1
ðDeðKiðMÞÞ �

X4
i¼0

DeiðMÞÞ2; ð22Þ

With M indexing the 15 modification states. D20 allows a fully

unmodified receptor EEEE to have a nonzero offset energy. The best
fit parameters are D20 ¼ 3.738, D21 ¼�0.603, D22 ¼�0.504, D23 ¼
�0.589, De2¼�0.289. The resulting total offset energies, D2(QEEE)¼
3.135, D2(QEQE) ¼ 2.546, D2(QEQQ) ¼ 2.257, and D2 (QQQQ) ¼
1.753, compare well with the values from the previous paragraph. All
energies are given in units of the thermal energy, kBT.

To further test whether the additivity assumption is valid, we
permutated the data, i.e., randomly reassigned all 15 Ki values to the
15 different receptor modification states, and calculated v2 values
after minimization. One thousand such permuted calculations were
used to plot the histogram in the inset in Figure 6. Remarkably, the v2

fit to the original data is smaller than all fits to the permutated
datasets, indicating that the linearity assumption is meaningful and
that the good fit in Figure 6 has not occurred by chance.
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