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Abstract

The threshold firing frequency of a neuron is a characterizing feature of its dynamical behaviour, in turn determining its role
in the oscillatory activity of the brain. Two main types of dynamics have been identified in brain neurons. Type 1 dynamics
(regular spiking) shows a continuous relationship between frequency and stimulation current (f-Istim) and, thus, an arbitrarily
low frequency at threshold current; Type 2 (fast spiking) shows a discontinuous f-Istim relationship and a minimum threshold
frequency. In a previous study of a hippocampal neuron model, we demonstrated that its dynamics could be of both Type 1
and Type 2, depending on ion channel density. In the present study we analyse the effect of varying channel density on
threshold firing frequency on two well-studied axon membranes, namely the frog myelinated axon and the squid giant
axon. Moreover, we analyse the hippocampal neuron model in more detail. The models are all based on voltage-clamp
studies, thus comprising experimentally measurable parameters. The choice of analysing effects of channel density
modifications is due to their physiological and pharmacological relevance. We show, using bifurcation analysis, that both
axon models display exclusively Type 2 dynamics, independently of ion channel density. Nevertheless, both models have a
region in the channel-density plane characterized by an N-shaped steady-state current-voltage relationship (a prerequisite
for Type 1 dynamics and associated with this type of dynamics in the hippocampal model). In summary, our results suggest
that the hippocampal soma and the two axon membranes represent two distinct kinds of membranes; membranes with a
channel-density dependent switching between Type 1 and 2 dynamics, and membranes with a channel-density
independent dynamics. The difference between the two membrane types suggests functional differences, compatible with
a more flexible role of the soma membrane than that of the axon membrane.
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Introduction

It is now more than 60 years since Alan Hodgkin categorized

the firing behaviour in his classical study of isolated axons from the

crab Carcinus maenas [1]. In many respects his experiments still

form the basis for analysis of firing patterns in nervous systems.

Using threshold dynamics and maximum frequency as parame-

ters, he identified two major classes of repetitively firing axons (he

also defined a class of axons which only fired with difficulty, Class

3): Class 1 axons start firing with very low frequency at threshold

stimulation, yielding a continuous f-Istim relationship, whereas

Class 2 axons start firing abruptly with a relatively high frequency

(typically 75 Hz) at threshold, yielding a discontinuous f-Istim

relationship.

On the basis of a similar categorization mammalian cortical

neurons have also been separated into main classes [2,3], one

exhibiting Class 1 characteristics (regular spiking neurons) and

another Class 2 characteristics (fast spiking neurons). The former

class consists primarily of pyramidal neurons and the latter

primarily of interneurons. This differential classification of

excitability has been shown to correlate with a differential

bifurcation behaviour of corresponding dynamical models [4–6]

and successfully been used in analysing the coding properties of

neurons [2–7]. To avoid confusion, and in accordance with the

notation of Tateno and Robinson [7], we in the following use the

terms Type 1 and Type 2 dynamics when referring to continuous

and discontinuous f-Istim relationships, respectively. This classifica-

tion takes the threshold dynamics of the regular and fast spiking

neurons, and that of the Class 1 and 2 axons, into account, but not

all behavioural aspects of these classes [8].

The intricate interactions between the many factors involved in

the dynamical regulation of neuronal firing are poorly understood

[8]. The dominant idea is that different combinations of ion

channel types explain the different patterns [9]. In a previous study

we proposed a complementary explanation [10,11]. We showed

that both Type 1 and Type 2 behaviour can be simulated in a

dynamical model of a hippocampal neuron [12] by varying the

membrane density of voltage-gated Na and K channels (i.e. the

number of channels per unit of membrane area, reflected in the

Na and K permeabilities when all channels are open; see Figure 1

and Methods). The model used was four-dimensional and based

on a detailed experimental voltage-clamp study, thus comprising

experimentally estimated parameters. The choice of ion channel

densities as bifurcation parameters was due to their physiological

and pharmacological relevance. Many drugs act by specifically

blocking channels and thereby reducing ion channel density both
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at a somatic and at an axonal level. Perhaps the most used local

anaesthetic drug, lidocaine, acts by blocking sodium channels in

axons and sensory nerve endings [13]. An increasing number of

studies suggest a role for physiological regulation of channel

densities, even at a relatively short time scale [14–19].

Each type of dynamics, i.e., Type 1 and 2, was found to be

associated with distinct regions in the channel density plane

(�PPNa2�PPK ) or with corresponding surface areas of an oscillation

volume in the �PPNa2�PPK 2Istim space (Figure 2). In regions with high
�PPNa and low �PPK values (region C1) the model exhibits Type 1

dynamics, whereas in regions with higher �PPK values (regions A2

and B) the model generates Type 2 dynamics.

A bifurcation analysis (see Methods) showed that the Type 1

dynamics of the model is due to saddle-node on invariant circle

(SNIC) bifurcations [10,11]. Figure 3A portrays such a bifurcation

in a V-Istim plot, calculated for the model using region C1 values.

The Type 2 dynamics was found to be due to either local

Andronov-Hopf bifurcations and/or global double limit cycle

bifurcations [10,11]. The dynamics of the model associated with

region B values is due to double limit cycle and subcritical

Andronov-Hopf bifurcations (Figure 3B), while the dynamics

associated with region A2 is exclusively due to double limit cycle

bifurcations (Figure 3C). The double limit cycle bifurcation implies

an unstable limit cycle, which is part of a separating structure

(sometimes referred to as a separatrix [9,20]) which separates

trajectories turning to a central stable point and those approaching

a stable limit cycle.

However, preliminary calculations suggested that the bifurca-

tion structure at the border between regions B (Andronov-Hopf)

and C1 (saddle node) is more complex than previously described.

When more bifurcation parameters are changed (in our case

channel densities and stimulation current) a more intricate loss of

stability occurs (e.g. bifurcations with a co-dimension 2) [21].

Thus, to obtain a better understanding of the processes we

reanalysed the hippocampal neuron model in more detail.

Furthermore, we extended the analysis to two other well-described

excitable membranes, i.e., the myelinated axon of Xenopus laevis

[22] and the giant axon of Loligo forbesi [23]. We found that

oscillations associated with a subregion of region C1 of the

hippocampal model show Type 2 dynamics, and that the

oscillations of both axon models exclusively show Type 2

dynamics. We investigated the mathematical background to these

findings, using techniques from bifurcation theory. The results

suggest that the hippocampal soma and the two studied axon

membranes represent two distinct types of membrane with respect

to the excitability pattern; membranes with a channel-density

dependent switching between Type 1 and 2 dynamics, and

membranes with a channel-density independent dynamics. The

difference between the two membrane types suggests functional

differences, compatible with a more flexible role of the soma

membrane than that of the axon membrane.

Results

The models
The three membrane models analysed here are all based on

voltage-clamp data, and on the formalism originally developed by

Figure 1. Type 1 and Type 2 dynamics in the hippocampal neuron model. The time-course of the membrane voltage with increasing steady
current for low and high K channel densities. (A) �PPNa = 20 mm/s and �PPK = 5 mm/s. The onset frequency is infinitely small. (B) �PPNa = 20 mm/s and
�PPK = 5 mm/s. The onset frequency is 30 Hz. Note the damped oscillation with stimulation at 114 mA/m2.
doi:10.1371/journal.pcbi.1000753.g001

Author Summary

All activity of the brain is manifested in electrical oscillatory
patterns, shaped by the firing dynamics of the many neurons
forming the brain networks. The underlying mechanisms of
the firing pattern in the single neurons are still not fully
understood. The distribution and identity of different channel
types have been suggested as critical factors. We have
suggested that the density of channels in the membrane is a
fundamental complementary mechanism. In a hippocampal
soma membrane model study we have shown that altering
the ion channel densities can cause the membrane to switch
between two qualitatively different firing patterns. Here we
extend the analysis to two axon membranes. Unexpectedly,
both show that channel density alterations do not cause
switches between different firing behaviours. We believe that
this is an important property of axon membranes, explaining
their limited flexibility.

Ion Channel Density and Threshold Firing Frequency
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Hodgkin and Huxley [23] to describe the dynamics of the squid

giant axon. The hippocampal neuron model used is that

developed by Johansson and Århem [12] to describe small-sized

interneurons in hippocampal slices of the rat Rattus norvegicus. The

myelinated axon model used is basically the same as that

developed by Frankenhaeuser and Huxley [22] to describe sciatic

nerve fibres from the African clawed frog (Xenopus laevis) [24,25].

The giant axon model used is that of Hodgkin and Huxley

[23], describing the dynamics of the giant axon of the squid Loligo

forbesi.

All the models assume that the membrane current consists of a

capacitive current (IC) and a three-component ionic current (Iionic),

consisting of a Na current (INa), a delayed rectifier K current (IK),

and a leak current (Ileak). It should be noted that in all three models

the description of the K currents are based on experimentally

measured currents, which cannot be regarded as homogeneous,

but are most likely the sum of currents passing through several

types of voltage-gated K channels. The descriptions of the currents

differ slightly between the three membrane types. For instance, the

Na and K currents of the squid axon are described using the

Figure 2. Oscillation maps for the hippocampal neuron model. (A) Regions in the PNa2PK plane associated with different threshold
dynamics. Oscillations occur within the area defined by the continuous line. Double-limit cycle bifurcations in the A2 region, Andronov-Hopf
bifurcations (together with double-limit cycle bifurcations) in the B region and saddle-node bifurcations in the C1 region. The bold dashed line
indicates the border for channel densities associated with three stationary potentials. The map is a projection of a curved plane in the �PPNa2�PPK 2Istim

space (on which the oscillation starts) to the PNa2PK plane. (B) The corresponding three-dimensional map, showing the volume associated with
oscillations in the �PPNa2�PPK 2Istim space. Oscillations occur in the volume defined by blue and green surfaces. The green surface area represents
double-limit cycle bifurcations and the blue area saddle-node bifurcations (SNICs).
doi:10.1371/journal.pcbi.1000753.g002

Figure 3. Bifurcation diagrams for the hippocampal neuron model. (A) A saddle node bifurcation in region C1. There are three stationary
voltages in the Istim range of 240 to +50 mA/m2. The oscillations occur when the stable stationary potential Vs1 merges with a saddle point voltage
Vs2. Type 1 threshold dynamics is generated if the limit cycle involves the merged point, i.e. a saddle-node bifurcation on an invariant circle (SNIC).
�PPNa = 20 mm/s, �PPK = 2 mm/s. (B) Subcritical Andronov-Hopf and double-limit cycle bifurcations in region B, �PPNa = 20 mm/s, �PPK = 10 mm/s. The
oscillations emerge at Istim = 84 mA/m2, thus when the corresponding stationary point/voltage still is stable. The loss of stability is due to a double-
limit cycle bifurcation, characterized in the variable space by the simultaneous appearance of two limit cycles of opposite stability, one yielding stable
and persistent oscillations. This bifurcation is not detectable by the Jacobian matrix of the stationary point; instead the bifurcation depends on the
global properties of the variable space. The local Andronov-Hopf bifurcation (also named degenerate Andronov-Hopf bifurcation because of the way
the limit cycles collapse onto the equilibrium point [21,29]) occurs at Istim = 92 mA/m2. There is also an additional Andronov-Hopf bifurcation at
higher Istim (524 mA/m2, now shown) that terminates the oscillations. (C) For higher values of �PPK (region A2) these two Andronov-Hopf points collide
and disappear (the non-transversal Andronov-Hopf bifurcation), after which no Andronov-Hopf points are present PNa = 20 mm/s, �PPK = 20 mm/s.
doi:10.1371/journal.pcbi.1000753.g003

Ion Channel Density and Threshold Firing Frequency
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conductance concept, while the corresponding currents of the

myelinated axon and the hippocampal somatic membrane use the

permeability concept, developed by Goldman [26] and Hodgkin

and Katz [27] (see Methods).

Istim is equal to the sum of the capacitive current (IC), charging

the capacitor, and the ionic current Iionic. Thus,

Istim~Cm
dV

dt
zIionic ð1Þ

where CM is the membrane capacitance. To obtain the time-

course of V(t), we solve this differential equation numerically, using

the expressions for Iionic presented in the section of Methods. For

the analysis of the mathematical nature of the oscillatory activity

we determine the stationary potentials (Vs), i.e. the potentials at

which the system is in a stationary state and, consequently, the

time derivatives of all variables are zero. This was done by solving

the following equation for different values of Istim, �PPNa and �PPK (or

�ggNa and �ggK values depending on model; see Methods):

Iss Vð Þ{Istim~0 ð2Þ

where Iss is Iionic at steady state. The stability of the system in the

neighbourhood of the stationary potentials was examined by a

linearization procedure as described in Methods. Graphical

solutions to Equation 2 are presented in Figure 4. A more detailed

version of Equation 2 is given by Equation 17 in Methods.

As shown previously [4,5,10,11], some region in the �PPNa2�PPK

(or �ggNa2�ggK ) plane must be associated with a non-monotonic Iss-V

curve for the model to produce Type 1 dynamics when entering

the oscillatory regime. This is due to the nature of a saddle-node

bifurcation on an invariant circle (SNIC), requiring an Istim interval

at which Equation 2 yields three solutions (i.e. Vs1, Vs2 and Vs3; see

Methods). Thus, Type 1 threshold dynamics occurs only when
�PPNa (or �ggNa) is of a relatively large magnitude, giving the Iss-V

curve a non-monotonic, N-like shape (Figure 4). Hence, a switch

from Type 1 to Type 2 firing dynamics takes place when �PPNa (or

�ggNa) is reduced (and �PPK or �ggK remains intact), corresponding to

Na channels being blocked. It should here noted that the existence

of three stationary solutions of Equation 2 does not guarantee

Type 1 dynamics, as has been pointed out previously [5] and will

be seen in the following.

The hippocampal model: Type 1 and 2 dynamics
In our previous examination of the hippocampal model (see

Figure 2), we defined the C area as the region where the model

shows a non-monotonic Iss-V relationship (and Equation 2 yields

three stationary potentials at some Istim), with area C1 representing

the subregion associated with oscillations. As mentioned above,

most of this region is associated with Type 1 threshold dynamics. A

more detailed analysis reveals, however, that for density values

close to the border of the B area the model demonstrates Type 2

dynamics (Figure 5). This can be shown to be due to an Andronov-

Hopf bifurcation when the most negative stationary potential (Vs1)

becomes unstable as indicated in the bifurcation diagram of

Figure 6 (cf. Figure 3A).

Figure 7A depicts an oscillation map in the channel density

plane, on which minimum frequencies are indicated. As seen on

Figure 7B, the line delineating zero frequency deviates from the

C1 border at �PPNa = 14 mm/s and forms a separate, narrow region

below this border at higher densities of the Na channel. Below we

will denote this subregion C1b and the remaining, larger, region of

C1, associated with Type 1 behaviour, C1a. The oscillation map

revised accordingly is shown in Figure 7B, where the border

between C1a and C1b represents a curve in the ion channel

density plane at which Bogdanov-Takens bifurcations occur

[28,29] (see Methods and Table 1). (For the role of Bogdanov-

Takens bifurcations in the Hodgkin-Huxley model, integrate-and-

fire models and the Morris-Lecar model, see [30–33].)

It should be noted that in addition to the C1b region, there is

another C1 subregion, a narrow strip along the borders to the B,

A1 and C2 regions for �PPNa values below 14 mm/s, associated with

a saddle-node bifurcation that causes Type 2 dynamics (non-

SNIC), CIc. However, for reasons that will become clear from the

analysis of the behaviour of axonal membranes, we will here focus

on the dynamics associated with the C1b region. A summary of

the regions in the density plane is given in Table 1.

Figure 4. Prerequisites for three stationary potentials (defining region C1). Steady-state currents versus membrane voltage for the
hippocampal neuron model. Calculated from Equation 17. The Na channel density is varied while other parameters are maintained constant to
demonstrate the requirement of a high Na channel density to obtain three stationary potentials. Inward currents are shown as positive. (A)
PNa = 30 mm/s and PK = 5 mm/s. (B) PNa = 11 mm/s and PNa = 5 mm/s.
doi:10.1371/journal.pcbi.1000753.g004

Ion Channel Density and Threshold Firing Frequency
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The explanation for the deviant (i.e. Type 2) threshold dynamics

in the region associated with non-monotonic Iss-V curves (region

C1b) becomes evident when the corresponding Istim2�PPK diagrams

are considered (similar bifurcation diagrams have been successfully

used to analyse comparable models [34]). Figure 8 illustrates two

such diagrams for �PPNa = 40 mm/s, one overview and another

highlighting the structure at the cusp of the three-root region

(which is part of the non-monotonic Iss-V region), with thick

continuous lines. The thin continuous line marks points associated

with Andronov-Hopf bifurcation dynamics and the hatched line

depicts the double-limit cycle bifurcation. The Andronov-Hopf

bifurcation line intersects the three-solution region and collides

with the saddle-node bifurcation line in a Bodganov-Takens

bifurcation point [29]. Hence, at the cusp of the three-root region,

the Andronov-Hopf line forms a small subregion, characterised by

unstable Vs1 and Vs3. Thus, at these permeabilities and stimulation

currents the threshold dynamics is due to subcritical Andronov-

Hopf bifurcations and not to saddle-node bifurcations, and the

model will show typical Type 2 behaviour with a minimum non-

zero threshold frequency.

Axonal models: Exclusively Type 2 dynamics
How general is our present description of neuronal models? And

how does the density of channels influence the threshold dynamics

and firing patterns in other models? To address these issues, two

well-described excitable membranes, i.e., the node in myelinated

axons of Xenopus leavis [22] and the giant axon of the squid Loligo

forbesi [23] were examined. Both these membranes are similar to

the hippocampal membrane with reference to channel composi-

tion and kinetics (see Table 2), as can be inferred from the similar

mathematical formalism used (see Methods). Nevertheless, the

dynamics of both axon membranes were found to show principal

differences from that of the hippocampal neuron membrane.

The myelinated axon model. Figure 9 documents the

calculated time-course of the changes in voltage calculated to

occur in the model of the myelinated axon at different stimulation

amplitudes for low and high densities of K channel (�PPK = 0 and

40 mm/s). In this case, no combination of channel densities yielded

Type 1 dynamics. However, the shape of the individual spikes

differed at low and high K channel densities, an

afterhyperpolarization being prominent only at a high K

channel density. As shown in the figure, this model, in contrast

to the hippocampal model, displays repetitive firing at �PPK = 0,

which may reflect the fact that myelinated axons at a later

evolutionary stage, i.e. mammals, lack K channels and still fire

repetitively [35].

A stability analysis revealed the mechanisms involved. Figure 10

displays Istim2�PPK diagrams, showing an Andronov-Hopf bifurca-

tion line within the three-solution space. As summarised below, the

resulting channel-density map shows a region with non-monotonic

Iss-V relationship. However, unlike the narrow Andronov-Hopf

region C1b of the hippocampal neuron model, the corresponding

region of the myelinated axon model covers the whole C1 area.

Consequently, saddle-node bifurcation dynamics is missing,

explaining the absence of Type 1 dynamics in the myelinated

axon model. It can also be noted that the double-limit cycle

bifurcation occurs very close to the Andronov-Hopf bifurcation,

why great care is needed to distinguish them numerically. That

this kind of change can occur very close to each other in a

parameter space is a known feature in these kinds of models

[34,36].

The findings suggest less dynamic flexibility in this axon

membrane than in the hippocampal neuron model discussed

above. Since the hippocampal neuron model is based on

measurements of the soma membrane properties, the comparison

between the myelinated axon and the hippocampal model mainly

concerns a comparison between axonal and soma membranes. To

get further information about the functional relevance of the found

differences between axon and soma membranes we next analysed

the classical squid giant axon membrane, using the description

given by Hodgkin and Huxley [23].
The squid axon model. Calculations showed that the giant

squid axon model in similarity with the myelinated axon did not

show saddle-node or Type 1 dynamics (Figure 11). In contrast to

the myelinated axon model, however, the squid axon model could

not fire repetitively at zero K channel density (�ggK = 0), possibly

related to the much higher leak conductance in the myelinated

axon (see Table 2). The firing pattern at low �ggK values differed

from that at higher �ggK values; it never showed damped

oscillations.

Figure 5. Type 2 dynamics within region C1 for the hippocampal neuron model. The time-course of the membrane voltage with increasing
steady current. �PPNa = 40 mm/s and �PPK = 15 mm/s. The onset frequency is 8 Hz.
doi:10.1371/journal.pcbi.1000753.g005

Figure 6. A Andronov-Hopf bifurcation within region C1.
Schematic bifurcation diagram showing a subcritical Andronov-Hopf
bifurcation within the range of three stationary potentials. The distance
between the Andronov-Hopf bifurcation and the coalescence of Vs1 and
Vs2 has been extrapolated.
doi:10.1371/journal.pcbi.1000753.g006

Ion Channel Density and Threshold Firing Frequency
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The reason for the absence of saddle-node dynamics is evident

in the Istim2�ggK diagram of Figure 12. As seen, there exists a three-

root region, but in similarity with the myelinated axon model,

there is an Andronov-Hopf bifurcation line within this area.

Figure 13 shows the oscillation map for the squid axon model (B)

in comparison with that of the myelinated axon (A). Figure 13 also

shows the onset frequencies of the two axon models, being

typically higher than 30 Hz for the squid axon (D) and higher than

100 Hz for the myelinated frog axon (C). In summary, the present

analysis suggests a similar response pattern for models of different

axon membranes in spite of considerable differences in mathe-

matical structure. Furthermore, it suggests a functional difference

between axon and soma membranes, the latter being more

flexible.

Discussion

The manner in which interactions between the ionic currents in

a neuron determine the pattern and dynamics of firing is a

multifaceted problem, having many ramifications within theoret-

ical systems biology [8]. In a previous study, we demonstrated that

altering the ion channel densities in a four-dimensional dynamical

model (comprising experimentally measurable parameters) of a

hippocampal neuron could cause switches between Type 1 and

Type 2 firing behaviour [10,11]. We also suggested that this

channel density paradigm may explain the different threshold

dynamics of regular and fast spiking cortical neurons [2,7,8], as

well as that of Class 1 and Class 2 axons in Carcinus maenas [1]. The

physiological and pharmacological relevance of channel densities

as bifurcation variable has recently been experimentally confirmed

[37,38].

In the present analysis we show that corresponding channel

density alterations in two well-studied axon models (the amphibian

myelinated axon and the squid giant axon) cannot change the

firing dynamics, exclusively being of Type 2. This suggests that the

hippocampal soma and the two axon membranes represent two

distinct types of membrane with respect to the excitability pattern;

one more flexible that can switch channel-density dependently

between Type 1 and Type 2 dynamics (represented by the

hippocampal neuron membrane and for simplicity here denoted

M1/2) and one, less flexible, that exclusively shows Type 2

dynamics (represented by the membranes of the two axons and

here denoted M2).

The mathematical background to the flexibility of the first

membrane type is the existence of two types of bifurcations

associated with separate regions in the �PPNa2�PPK plane (regions B

and C1). Type 1 dynamics (region C1) is associated with saddle-

node on invariant cycle bifurcations (SNIC) and Type 2 dynamics

(region B and A2) with double-limit cycle bifurcations (in some

cases along with a subcritical Andronov-Hopf bifurcation). A

requirement for the occurrence of a saddle-node bifurcation is the

existence of three stationary voltages at near threshold stimulation

Figure 7. Revised oscillation maps for the hippocampal neuron model. Regions associated with oscillations in the �PPNa2�PPK plane, showing
the existence of Type 2 dynamics within region C1. (A) Onset frequencies. (B) Oscillation map for comparison with the map of Fig. 2, showing the
subregions C1a and C1b. The border between C1a and C1b closely follows the Bogdanov-Takens bifurcation curve (see Table 1).
doi:10.1371/journal.pcbi.1000753.g007

Table 1. Characterization of Regions in the Channel-density Plane of the Models.

Region Oscillations Bifurcation type
Discontinuous
f-Istim curve

Continuous f-Istim

curve
Three Vs for near-
threshold stimulation

A1 No

A2 Yes Double limit cycle Yes No

B Yes Subcritical Andronov-Hopf or double limit cycle Yes No

C1a Yes Saddle-node Yes Yes

C1b Yes Subcritical Andronov-Hopf or double limit cycle Yes Yes

C2 No Yes

The channel-density plane corresponds to the permeability or conductance (�PPNa2�PPK or �ggNa2�ggK ) plane. The bifurcation type refers to the onset of oscillations. Vs is the
stationary potential.
doi:10.1371/journal.pcbi.1000753.t001

Ion Channel Density and Threshold Firing Frequency
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and thus, a non-monotonic Iss-V relationship. In the present

analysis we show that this requirement is not sufficient. In all three

models we find regions in the �PPNa2�PPK plane with a non-

monotonic Iss-V relationship, that are associated with Type 2

dynamics (C1b regions). In the hippocampal neuron model the

region consists of a narrow band, and in the axon models they

cover the whole C1 region, and thus, the axonal models lack Type

1 threshold dynamics (for the analysis of the bifurcation structures

in regions with non-monotonic Iss-V relationships of generic two-

dimensional models, see [30–33,39]).

Functional implications: The plastic soma membrane and
the restricted axon membrane

What is the functional reason for the difference in the flexibility

of threshold dynamics between the two membrane types defined

above (M1/2 and M2, represented by membranes of the

hippocampal neuron and the axons)? Type 1 and 2 dynamics

per se most likely have different functional roles; Type 1 dynamics

being required for low frequency firing and Type 2 being essential

for doublet spiking (in hippocampal interneurons, [40]; in dorsal

horn neurons, [41]). and for synchronization of firing in coupled

neurons (in the synchronization case due to the fact that both a

phase advance and a phase delay are possible; the phase response

curve being predominantly positive when the oscillations appear

via a saddle-node on invariant cycle bifurcation, but both negative

and positive in the case of the Andronov-Hopf bifurcation; see

[42]). But what about the difference in flexibility between the two

membrane types presently discussed?

The membranes of the soma and the proximal portion of the

axon, which most likely determine the dynamics of the

hippocampal neurons analysed here, can be assumed to show

a considerable flexibility in their roles as integrative summing

points, requiring (transmitter- or trafficking-) induced switch-

ability between Type 1 and Type 2 dynamics (see e.g. [43,44]).

Such flexibility has also been shown in cortical fast spiking (Type

2) interneurons [45]; Type 2 dynamics being changed to Type 1

dynamics when the K channel density (in soma) is reduced in

dynamic clamp experiments. Similarly, fast spiking mesenchaplic

V neurons have been shown to belong to the M1/2 class

[37].

In contrast to the flexible or plastic soma membrane, the axon

membranes form passive information transport chains, requiring

reliable triggering mechanisms (i.e. high current thresholds leading

to rejection of low stimulus noise, and temporal all-or-none

responses, meaning that the first spike always occurs early at

threshold stimulation) and, therefore, Type 2 dynamics. It should

be pointed out, however, that the main value of the axon type

dynamics most likely relates to its action when associated with a

trigger zone, which likely is the case of the distal process of the

dorsal root ganglion. Features associated with Type 2 dynamics,

such as subthreshold oscillations and doublet spiking have been

postulated to play an important role in pain modulation [46,47].

Figure 8. Bifurcation curves and the three-root solution space for the hippocampal neuron model. Istim2�PPK diagrams at �PPNa = 40 mm/s.
The thick continuous line defines the region associated with three-root solutions of Equation 17. The thin continuous line is the Andronov-Hopf
bifurcation curve and the hatched line, defining the oscillation limit, is the double limit cycle bifurcation curve. (A) An overall perspective. (B) A
detailed view of the cusp of the three-root solution space to describe the two subregions, defined by the stability of the stationary potentials. The
Bogdanov-Takens bifurcation point is marked.
doi:10.1371/journal.pcbi.1000753.g008

Table 2. Kinetic Parameter Values for the Models.

Model INa activation (m3, m2) INa inactivation (h) IK activation (n4,n2) Leak conductance

V1/2 (mV) s (mV) V1/2 (mV) s (mV) V1/2 (mV) s (mV) gL (S/m2)

Hippocampal neuron 211 10 248 25 28 5 2.3

Myelinated axon 226 10 263 25 232 5 303

Squid axon 222 8 257 27 215 20 10

doi:10.1371/journal.pcbi.1000753.t002
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Thus, the Type 2 nature of the axon plays a role both in the

information propagation and modulation.

Clearly, this discussion, based on an analysis of axons from one

amphibian (Xenopus laevis) and one cephalopod (Loligo forbesi),

cannot be generalized to axons from all animal phyla. As

mentioned above, certain axons from the arthropod Carcinus

maenas display Type 1 dynamics [1,23], suggesting that that their

cell membranes are of M1/2 type (for a computational analysis of

modifying the dynamics of squid axons, see [48]). What about

vertebrate axons in general? The phylogenetic bifurcation

between the vertebrate and the arthropod lines occurred more

than 500 million years ago, allowing a considerable time for

specialization of axon membranes. To get information on this

issue, we used the data from a voltage-clamp analysis of

myelinated rat axons by Brismar [35] to construct and evaluate

a dynamical model. The computations suggest that the rat

myelinated axon membrane is of M2 type, exclusively displaying

Type 2 dynamics (Figure S1 and Text S1). In conclusion, the

present analysis shows that axon membranes of two vertebrate

and one mollusc species are of M2 type, and axon membranes

from one arthropod species are either of M1/2 or of M2 type.

More studies are needed to determine whether vertebrate axons

mainly are of M2 type or not. It should here be noted that the

phylogenetic distance between present day molluscs and arthro-

pods is considerably shorter than that between present day

vertebrates and molluscs or arthropods.

Figure 9. Exclusively Type 2 dynamics in the myelinated axon model. The time-course of the membrane voltage with increasing steady
current for low and high K channel densities. (A) �PPNa = 300 mm/s and �PPK = 0 mm/s. The onset frequency is 59Hz. (B) �PPNa = 300 mm/s and �PPK = 40 mm/
s. The onset frequency is 139Hz.
doi:10.1371/journal.pcbi.1000753.g009

Figure 10. Bifurcation curves and the three-root solution space for the myelinated axon model. Istim2�PPK diagrams at PNa = 200 mm/s.
The thick continuous line defines the region associated with three-root solutions of Equation 14. The thin continuous line is the Andronov-Hopf
bifurcation curve and the hatched line is the double limit cycle bifurcation curve. (A) An overall perspective. (B) A detailed view of the cusp of the
three-root solution space to describe the subregions.
doi:10.1371/journal.pcbi.1000753.g010
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Structural implications: Different trigger zones in cortical
pyramidal cells and interneurons?

Mammalian cortical pyramidal cells have been shown to display

both Type 1 (regular spiking) and Type 2 dynamics (fast spiking),

with Type 1 in majority [7,44]. Assuming that the trigger zone

dynamics is of critical importance for the dynamics of the neuron

in toto, the present analysis suggests that the membrane of the

trigger zone of the majority of pyramidal cells is of M1/2 type.

This also suggests that the assumed trigger zone of pyramidal cells,

the initial segment of the axon [49,50], is not formed by a M2

membrane, contrary to the presently studied axons. A way to

experimentally test the hypothesis of a M1/2 membrane as trigger

zone in pyramidal cells could be to analyse the results of

introducing K channels with the dynamic clamp technique. Such

a test is under way.

Contrary to the majority of pyramidal cells, mammalian cortical

interneurons mainly display Type 2 dynamics (fast spiking). This

suggests that the membranes of their trigger zones are either of

M1/2 or of M2 type. In the latter case the trigger zone could be

assumed to be located in the axon proper; i.e. in the first node of

Ranvier or in an initial segment that is more functionally (and

structurally?) axon-like than that of the pyramidal cells. A way to

experimentally separate between these two hypotheses (whether

the trigger zone in interneurons is of M1/2 or M2 type) could be

to analyse the dynamics after blocking K channels. Such a test is

also under way.

Figure 11. Exclusively Type 2 dynamics in the squid axon model. The time-course of the membrane voltage with increasing steady current
for low and high K channel densities. (A) �ggNa = 1200 S/m2 and �ggK = 50 S/m2. Onset frequency is 22 Hz. (B) �ggNa = 1200 S/m2 and �ggK = 360 S/m2 (values
used by Hodgkin and Huxley in their original study from 1952 [23]). The onset frequency is 52 Hz.
doi:10.1371/journal.pcbi.1000753.g011

Figure 12. Bifurcation curves and the three-root solution space for the myelinated axon model. Istim2�ggK diagrams at �ggNa = 1200 S/m2.
The thick continuous line defines the region associated with three-root solutions of Equation 14. The thin continuous line is the Andronov-Hopf
bifurcation curve and the hatched line is the double limit cycle bifurcation curve. (A) An overall perspective. (B) A detailed view of the cusp of the
three-root solution space to describe the three subregions. The Bogdanov-Takens bifurcation point is marked.
doi:10.1371/journal.pcbi.1000753.g012
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Pharmacological implications: Network effects of
switches between Type 1 and 2 dynamics

As pointed out previously [10], the possibility to modify the

threshold dynamics of neurons suggests novel scenarios for the

action of channel active drugs such as general anaesthetics;

implying mechanisms where selective blocking ion channels in

critical neurons induces a switch from one brain state (e.g.

associated with consciousness) characterized by certain frequen-

cy patterns to another state (e.g. associated with general

anaesthesia) characterized by other frequency patterns. Network

modelling has shown that such ideas are feasible. Thus,

selectively blocking K channels in critical inhibitory neurons

(assuming M1/2 membrane trigger zones) in a network of

excitatory and inhibitory neurons, distance-dependently con-

nected, can lead to switches from unsynchronised high

frequency to synchronised low frequency mean network

oscillations [39]. The mechanisms of synchronisation at the

network level are still not well understood, but the mechanisms

at a cellular level have been extensively studied and a tight

connection between the bifurcational structure and the phase-

response curve has been established [44,51–53]. Interneurons

with Type 2 dynamics have recently been shown to account for

the cortical c-oscillations (20–80 Hz) [54], which are considered

to provide a temporal structure for information processing in the

brain [55].

Reducing and increasing the dimensionality of the
models: Chaos

Since two of the eigenvalues always are real and negative in the

models here discussed, it suggests that the systems essentially are of a

two-dimensional character. The decisive variation of the four

variables (i.e. V, m, h, n) may then take place on a two-dimensional

surface in the four-dimensional variable space. Hence, a model with

reduction of variables (as is done in e.g. Fitzhugh-Nagumo and

Morris-Lecar models [20,56]) can give a relatively good description

of an excitable membrane. The emergence of a limit cycle following

a stability loss can under these circumstances be understood by the

Poincaré-Bendixson theorem [57], since the system remains in a

finite domain on a curved plane in the phase space. That the system

remains in a finite domain is obvious from analysing the variables;

the membrane potential V is limited by the reversal potential of Na+

and K+, as well as by the capacitive properties, and the gating

parameters are limited by the values 0 and 1.

Particularly, the two-dimensional character of the models

eliminates more complex types of solutions, such as irregular,

‘‘chaotic’’ solutions or oscillations with two separate frequencies.

Nevertheless, local and highly unstable chaos has been reported in

a Hodgkin-Huxley system [36], why the models are unlikely to be

two-dimensional in the whole parameter space. A more stable

chaos seems to require that more voltage-dependent ion channels

are added to the model. We thus added two artificial ion channels

Figure 13. Oscillation maps for the axon models. Regions associated with oscillations in the �PPNa2�PPK or �ggNa2�ggK plane. (A) The frog myelinated
axon model. (B) The squid giant axon model. As seen there is no C1a region in any of the maps and consequently both axon models lack Type 1
dynamics. Note also that the myelinated axon model (A) allows oscillations for �PPK = 0 (no K channels). (C) Onset frequency in the myelinated axon
model. (D) Onset frequency in the squid axon model. Circles indicates the original values used by Hodgkin and Huxley for the model of the axon of
Loligo forbesi [23] and Frankenhaeuser and Huxley for model of the sciatic nerve of Xenpus leavis [22].
doi:10.1371/journal.pcbi.1000753.g013
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to the hippocampal model and found chaotic firing (Figure S2). A

rather extensive search for chaotic firing in models with just one

added ion channel gave no positive results.

Methods

Time evolution of the membrane potential
The time evolution of the membrane potential (V) was

calculated by solving the following equation (derived from

Equation 1) numerically:

dV

dt
~

Istim{INa V ,m,hð Þ{IK V ,nð Þ{Ileak Vð Þ
CM

ð3Þ

where INa and IK are functions of the activation parameters m and

n, and the inactivation parameter h. Ileak is given by

Ileak~gleak V{Eleakð Þ ð4Þ

INa and IK for the hippocampal and the myelinated axon model are

described by the following expressions, based on the permeability

concept of Goldman [26] and Hodgkin and Katz [27]:

INa~m2h�PPNaVFj
Na½ �o{ Na½ �iexp Vjð Þ

1{exp Vjð Þ ð5Þ

and

IK~n2 �PPK VFj
K½ �o{ K½ �iexp Vjð Þ

1{exp Vjð Þ ð6Þ

where �PPNa and �PPK denote the Na and K permeabilities when all

Na and K channels are open, and thus represent the Na and K

channel densities. R, T and F denote the gas constant, the

thermodynamic temperature and the Faraday constant, respec-

tively, and define j ~
def

F=RT . [Na]o, [Na]i, [K]o and [K]i are the

external and internal concentrations of Na and K ions. The

parameter values for the three models are listed in Table 3.

For the squid axon model we use the original expressions by

Hodgkin and Huxley [23] based on the conductance concept:

INa~m3h�ggNa V{ENað Þ ð7Þ

and

IK~n4�ggK V{EKð Þ ð8Þ

where �ggNa and �ggK denote the Na and K conductances when all Na

and K channels are open, thus representing Na and K channel

densities.

The activation and inactivation parameters (m, h and n) are in all

three models described by their time derivatives:

dm

dt
~am Vð Þ 1{mð Þ{bm Vð Þm ð9Þ

dh

dt
~ah Vð Þ 1{hð Þ{bh Vð Þh ð10Þ

dn

dt
~an Vð Þ 1{nð Þ{bn Vð Þn ð11Þ

where ai and bi denote rate functions. For the hippocampal

neuron model they are defined as follows:

am Vð Þ~ 60000 Vz0:033ð Þ
1{exp { Vz0:033ð Þ=0:003½ �

bm Vð Þ~ {70000 Vz0:042ð Þ
1{exp Vz0:042ð Þ=0:02½ �

ah Vð Þ~ {50000 Vz0:065ð Þ
1{exp Vz0:065ð Þ=0:006½ �

bh Vð Þ~ 2250

1zexp { Vz0:01ð Þ=0:01½ �

an Vð Þ~ 16000 Vz0:01ð Þ
1{exp { Vz0:01ð Þ=0:01½ �

bn Vð Þ~ {40000 Vz0:035ð Þ
1{exp Vz0:035ð Þ=0:01½ �

ð12Þ

For the myelinated axon model the rate functions are defined as:

am Vð Þ~ 360000 Vz0:048ð Þ
1{exp { Vz0:048ð Þ=0:003½ �

bm Vð Þ~ {400000 Vz0:057ð Þ
1{exp Vz0:057ð Þ=0:02½ �

ah Vð Þ~ {100000 Vz0:08ð Þ
1{exp Vz0:08ð Þ=0:006½ �

bh Vð Þ~ 4500

1zexp { Vz0:025ð Þ=0:01½ �

an Vð Þ~ 20000 Vz0:035ð Þ
1{exp { Vz0:035ð Þ=0:01½ �

bn Vð Þ~ {50000 Vz0:06ð Þ
1{exp Vz0:06ð Þ=0:01½ �

ð13Þ

Table 3. Parameter Values for the Models.

Parameter Value

Hippocampal neuron Myelinated axon Squid axon

T 295K 295K

Vrest 270 mV 270 mV 260 mV

[Na]i 14 mM 14 mM

[Na]o 114.5 mM 114.5 mM

[K]i 120 mM 120 mM

[K]o 2.5 mM 2.5 mM

ENa 55 mV

EK 272 mV

ELeak 270 mV 270 mV 249.5

gLeak 2.32 S/m2 303 S/m2 3.0 S/m2

Cm 70 mF/m2 20 mF/m2 10 mF/m2

V1/2 is the midpoint value and s the slope value of the activation (m‘
22V or

m‘
32V, and n‘

22V or n‘
42V) or the inactivation (h‘2V) curves (in mV), as

fitted to the equation 1
�

1zexp { V{V1=2

� ��
s

� �� �
. The voltage-dependent

parameters in the squid axon model are based on the assumption that the
resting potential is 260 mV [58].
doi:10.1371/journal.pcbi.1000753.t003
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For the squid axon model the rate functions are defined as:

am Vð Þ~ 100000 Vz0:035ð Þ
1{exp { Vz0:035ð Þ=0:01½ �

bm Vð Þ~4000exp { Vz0:06ð Þ=0:018½ �
ah Vð Þ~70exp { Vz0:06ð Þ=0:02½ �

bh Vð Þ~ 1000

1zexp { Vz0:03ð Þ=0:01½ �

an Vð Þ~ 10000 Vz0:05ð Þ
1{exp { Vz0:05ð Þ=0:01½ �

bn Vð Þ~125exp { Vz0:06ð Þ=0:08½ �

ð14Þ

Stability analysis of the steady-state values
The stability analysis of the differential equations was performed

as briefly described by Århem et al. [11]. The stationary potentials

can be calculated with the expression for the gating parameters (m, n

and h) at steady state together with Equation 3. The time derivates

of the gating parameters are zero at stationary potentials, and hence

the stationary values of the parameters (denoted m‘ etc) become:

m? Vð Þ~ am Vð Þ
am Vð Þzbm Vð Þ ð15Þ

h? Vð Þ~ ah Vð Þ
ah Vð Þzbh Vð Þ ð16Þ

n? Vð Þ~ an Vð Þ
an Vð Þzbn Vð Þ ð17Þ

Introducing these expressions into Equation 3, we obtain the following

equation, the roots of which yield the stationary potentials (Vs):

INa V ,m? Vð Þ,h? Vð Þð ÞzIK V ,n? Vð Þð ÞzIleak Vð Þ~Istim ð18Þ

This equation can be solved numerically and always yields at least one

Vs. However, if the Na channel density (�PPNa or �ggNa) is large enough,

the equation can for a defined stimulation interval give three

equilibrium points, a requisite for the system to provide a saddle-

node bifurcation (see Figure 3).

We investigated the character of the equilibrium points, i.e.

r*(V,m‘(V),h‘(V),n‘(V)), when the stimulation current (Istim) and the

permeability or conductance parameters (�PPNa and �PPK or �ggNa and

�ggK ) representing the density of Na and K channels, were varied.

This was done by linearizing the differential equations close to r*

and by solving the characteristic equation

det JM{lIð Þ~0 ð19Þ

where I denotes the identity matrix, and JM the Jacobian matrix

JM~

L _vv

Lv

L _vv

Lm

L _vv

Lh

L _vv

Ln
L _mm

Lv
{am{bm 0 0

L _hh

Lv
0 {ah{bh 0

L _nn

Lv
0 0 {an{bn

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð20Þ

where _vv, _mm, _hh and _nn denote the time derivatives of the parameters.

The solution to Equation 18 are the four eigenvalues li (i = 1, 2, 3

or 4) yielding an approximate time evolution of the system. Hence

any perturbation dr around the equilibrium point r* can be

written as

dr tð Þ~c1r1el1tzc2r2el2tzc3r3el3tzc4r4el4t ð21Þ

where ci (i = 1, 2, 3 or 4) depends on initial conditions and ri (i = 1,

2, 3 or 4) is the associated eigenvector. Two of the eigenvalues are

in the present system (here called l3 and l4) always real and

negative. Consequently the remaining two eigenvalues determine

the character of the Vs (see Table 4); the two negative eigenvalues

will cause its associated terms in Equation 20 to decay to zero.

Hence, Equation 20 can be approximated as

dr tð Þ&c1r1el1tzc2r2el2t ð22Þ

If l1 and l2 are a complex conjugated pair (l1,2 = a6bi), one can

rewrite the equation, using Euler’s formula, as

dr tð Þ&eat c1r1zc2r2ð Þcos btzi c1r1{c2r2ð Þsin btð Þ ð23Þ

why b/2p correlates with the firing frequency.

All computations were done in custom software written in

Mathematica 6.0.2 (Wolfram Research, Inc.) on a 64-bit IBM

compatible computer. All values are given in SI-units.

Supporting Information

Figure S1 Firing frequency as a function of Na channel density

in a rat axon model. The firing frequency at threshold is plotted

against Na permeability constant. For Na permeabilities less than

59mm/s the axon model does not show any repetitive firing. The

curve is calculated from the equations described in Text S1, based

on the voltage-clamp analysis by Brismar [1]. Since this axon

exclusively comprises Na and leak channels (it lacks K channels),

the curve implies that this rat axon, in agreement with the

Xenopus and the squid axon discussed in the main text, exclusively

shows Type 2 dynamics for all channel densities. The Iss-V

relationship is non-monotonic (N-shaped) for values of higher than

166 mm/s.

Found at: doi:10.1371/journal.pcbi.1000753.s001 (0.54 MB EPS)

Table 4. Characterization of Stationary Points Based on the
Eigenvalues from Equation 15.

Character Eigenvalues Applies to

Stable spiral l1,2 = 2a6bi Vs1 and Vs3

Andronov-Hopf bifurcation l1,2 = 06bi Vs1 and Vs3

Unstable spiral l1,2 = a6bi Vs1 and Vs3

Stable node l1 = 2a1, l2 = 2a2 Vs1 and Vs3

Saddle node l1 = a1, l2 = 2a2 Vs2

Saddle-node bifurcation l1 = 0, l2 = 2a2 Coalescence of Vs1 and Vs2

Bogdanov-Takens bifurcation l1,2 = 0 Coalescence of Vs1 and Vs2

Two of the four eigenvalues are always real and negative and are not included
in the table. a and b are real positive numbers.
doi:10.1371/journal.pcbi.1000753.t004

Ion Channel Density and Threshold Firing Frequency

PLoS Computational Biology | www.ploscompbiol.org 12 April 2010 | Volume 6 | Issue 4 | e1000753



Figure S2 Chaotic firing in a modified hippocampal neuron

model. Time course and phase-plot of a modified hippocampal

neuron model, including an extra Na and an extra K channel. The

figure depicts data from an extensive search for parameter values

that give the model chaos like dynamics (i.e. aperiodic appearance

over the time scale simulated). The extra channes were assumed to

be described by the same kinetics as the hippocampal channels, i.e.

by equations 4, 5 and 6 in the Methods section. The rate functions

of the extra channels were calculated from equation 12 with the

numerical values altered randomly 650%. The permeability

constants ( and in equations 5 and 6) were altered randomly in the

range 0–100 mm/s, and the stimulating current in the range 0–

1000 mA/m2. The search was performed using custom written

software in Mathematica 6.0.2. Out of about 100.000 trials, eight

parameter combinations yielded chaos like firing. When a similar

search, equally extensive (100 000 trials), was performed with an

hippocampal model comprising only one extra channel (Na or K),

no positive results were found. The results seem to suggest that at

least four channels (two Na and two K channels), and thus a seven-

dimensional system, are required to give neuron models of the type

studied here chaotic dynamics.

Found at: doi:10.1371/journal.pcbi.1000753.s002 (1.63 MB EPS)

Text S1 A model of the myelinated rat axon

Found at: doi:10.1371/journal.pcbi.1000753.s003 (0.07 MB

PDF)
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