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The role of side-chain entropy (SCE) in protein folding has long been speculated about but is still not fully understood.
Utilizing a newly developed Monte Carlo method, we conducted a systematic investigation of how the SCE relates to
the size of the protein and how it differs among a protein’s X-ray, NMR, and decoy structures. We estimated the SCE for
a set of 675 nonhomologous proteins, and observed that there is a significant SCE for both exposed and buried
residues for all these proteins—the contribution of buried residues approaches ;40% of the overall SCE. Furthermore,
the SCE can be quite different for structures with similar compactness or even similar conformations. As a striking
example, we found that proteins’ X-ray structures appear to pack more ‘‘cleverly’’ than their NMR or decoy
counterparts in the sense of retaining higher SCE while achieving comparable compactness, which suggests that the
SCE plays an important role in favouring native protein structures. By including a SCE term in a simple free energy
function, we can significantly improve the discrimination of native protein structures from decoys.
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Introduction

Side-chains of amino-acid residues encode the information
governing aprotein’s three-dimensional fold. In a typical X-ray
crystal structure, each residue’s side-chain is represented by a
fixed configuration, and most side-chain modelling methods
assume that each buried side-chain takes only one fixed
conformation among all possible rotameric states (rotamers)
[1–4]. Recent studies, however, have shown that many different
self-avoiding side-chain packing (called the side-chain con-
formation of a backbone structure henceforth) may exist for a
given native backbone structure [5–7]. It is alsowell-recognized
that the so-called ‘‘native protein structure’’ is an ensemble of
structures insteadof a single structure asnormally seen fromX-
raycrystallography [8–11].Ensemblepropertiesof aproteinare
thus important for characterizing its structure and function.

Estimating ensemble properties such as entropy or free
energy has been a long-standing difficult task in structure
modelling and simulations [12,13]. In general, side-chain
entropy (SCE) can be divided into the vibrational and the
conformational [12]. Studies have shown that vibrational
entropy is invariant in folded and unfolded states [14].
Therefore, most studies including ours focus on the estima-
tion of conformational SCE [12]. Throughout this article, the
term ‘‘SCE’’ actually refers to the conformational. Because of
computational limitations, most of our current understand-
ing of SCE is based on an aggregation of entropic effects such
as rotamer counts of individual amino-acid residues [4,15–
17], which has been shown to significantly overestimate the
true SCE [18,19]. With the aid of a new Monte Carlo method,
we can now accurately estimate the SCE of proteins based on
a realistic model with all heavy atoms explicitly represented.

Results

A Large-Scale Analysis of Side-Chain Conformational
Entropy

We computed SCE for a set of 675 nonhomologous
proteins obtained from the PISCES database [20]. These

proteins are selected under requirements that they have no
missing residues; their structural resolutions are better than
1.6 Å; and no pairs have more than 20% sequence identity.
The largest protein in the set has 839 residues. Figure 1A
plots the SCE of proteins versus their chain lengths, showing
that the SCE increases nearly linearly with the chain length. It
also demonstrates that the SCE computation is insensitive to
the use of two different scales for atom radius (see Methods).
Furthermore, we estimated each individual residue’s marginal
SCE based on our weighted Monte Carlo samples, and
observed that the fraction of SCE contributed by all the
buried residues (defined as the one with less than 25% of its
surface area accessible to solvent) of a protein approaches
40%–50% as the chain’s length grows (Figure 1B).

Side-Chain Entropy of the Native and Decoy Structures of
Proteins
We considered all the 24 distinct monomeric proteins in

five decoy sets (e.g., 4state_reduced, fisa, fisa_casp3,
lattice_ssfit, and lmds) of the Decoys ‘R’ Us database [21],
in which each protein has a few hundred to ;2,000 decoy
structures and its native structure has been solved by X-ray
crystallography. All decoy structures have been minimized
using some physical force fields to reach a local energy
minimum. Most of the decoy structures have large RMSD to
the corresponding native structure (.3 Å).
We plot SCE (Ssc) of the native and decoy structures of

protein 1ctf against the corresponding radii of gyration (Rg)
in Figure 2A, and against the number of residue contacts (Nc)
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in Figure 2B. The measure Nc has been suggested as a better
compactness descriptor than the measure Rg [22]. However,
Rg has been more commonly used than Nc in the literature
and, thus, makes it easier for us to compare with previous
studies.

The result in Figure 2 is surprising. First, for structures
with similar compactness measured by Rg, their Ssc can differ
by more than 20 in kB units, which corresponds to 11.9 kcal/
mol of free energy at 300 K. Considering that the average
stability of proteins is at�5 to�20 kcal/mol, this difference is
huge. Second, the native structure has a higher Ssc than all
decoy structures with similar compactness. A line can be
drawn on the Rg�Ssc plane to perfectly separate the native and
decoy structures. Among the 24 proteins we studied (Protocol
S1), half of these proteins show similar distributions to that of
1ctf. The other dozen proteins possess either disulfide bonds,
metal binding sites, or interacting sites with other molecules,
which impose additional constraints on their native struc-
tures that lead to lowered SCE [23]. In contrast, most decoy
structures do not satisfy these constraints.

We observed a similar phenomenon for dimeric protein
complexes in the decoy set generated by the Rosetta program
[24]. Two representative examples are shown in Figure 2C
and 2D, in which the native protein complex 1spb has more
interfacial contacts than all the decoys but with comparable
SCE, and 1brc has much higher SCE than all the decoys, but
with a comparable number of interfacial contacts.

Side-Chain Entropy of X-Ray and NMR Structures
We chose 23 out of the 60 proteins in [25] (names are given

in the legend of Figure 3) under requirements that multiple
NMR structures are available for each protein, and that NMR
and X-ray structures correspond to the same sequence. The
distribution of jDSN j ¼ jSsc,NMR2� Ssc,NMR1j, the absolute SCE
difference between all pairs of NMR structures for each of
these proteins, is shown in Figure 3A. Although the majority
of these differences is small, there are a significant number of
pairs with jDSNjmore than 5 kB units, corresponding to 3 kcal/
mol of free energy at 300 K.

The SCE difference between X-ray and NMR structures,
DSXN¼ Ssc,X-ray� Ssc,NMR, displays a much different behaviour.
As shown in Figure 3B, magnitudes of DSXN between proteins’
X-ray structure and their corresponding multiple NMR
structures are much larger than jDSN j’s (2 versus 8 kB unit
on average). Although each chosen X-ray structure is very
similar to its corresponding NMR structures with small RMSD
[25], X-ray structures generally have higher SCE than the
corresponding NMR structures. To see how this is related to
their packing, we show in Figure 4 the average DSXN of a
protein versus DRg¼ Rg,X-ray� Rg,NMR, the average difference
of the radius of gyration of backbone atoms between X-ray
and NMR structures, for all the 23 proteins. Clearly, X-ray
structures have comparable Rg to the corresponding NMR
structures. For many proteins (‘‘3’’ in Figure 4), their X-ray
structures have much higher SCE than the corresponding
NMR structures with similar Rg. Some proteins’ X-ray
structures (‘‘D’’) gain considerable SCE by packing a little
looser. Two X-ray structures (‘‘*’’) pack tighter than NMR
structures but with comparable SCE. Small proteins (‘‘þ’’)
tend to have small DRg and DSXN, while large proteins tend to
have large DSXN (see also Figure 3). This is expected since
NMR experiments tend to be more accurate for small
proteins.

Incorporation of Side-Chain Entropy in Free Energy
Functions
Since native structures tend to have higher SCE than

computer-generated decoys at the same level of compactness,
incorporating SCE into free energy functions should improve
modelling accuracy. We tested this idea on all 24 distinct
proteins and their decoys in the Decoys ‘R’ Us database. We
use a statistical contact potential [26] based on the pairwise
distances of Cb atoms, which can be easily computed from a
protein’s backbone structure. Following the equation of
Gibbs free energy, the free energy of ensemble structures
represented by a backbone structure is defined as: Gbb¼Hbb –
TSSC, where Hbb is the potential energy defined by the
backbone conformation, Ssc is the side-chain entropy, and T
is the temperature. Since we use here a statistical potential,
temperature T has no physical meaning and can be freely
adjusted. We set T to 1 in this study without optimization. We
use the rank of the native structure among all the decoys to
evaluate the discrimination performance. Table 1 shows that
for most proteins, the measures based on free energy Gbb

significantly improved the discrimination power compared
with those using potential energy Hbb. For a few proteins, the
discrimination performances under Gbb and Hbb are compa-
rable, and in only one case Gbb performed slightly worse than
Hbb. It is possible that some proteins are stabilized mainly by
enthalpy and other entropic terms instead of by side-chain
conformational entropy. For example, the energy of a couple
of disulfide bonds may be enough to stabilize a small protein
so that other factors become insignificant.
We note here that an all-atom potential function, which

differentiates different side-chain conformations, can also be
accommodated by our Monte Carlo method. In particular,
free energy Gbb can be estimated using the formula Gbb ¼
�kBTln(Qbb), where Qbb is the partition function of the
ensemble side-chain conformations of a backbone structure,
which can be estimated by our Monte Carlo method.
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Synopsis

Side-chains of amino acids determine a protein’s three-dimensional
structure. The flexible nature of side-chains introduces a significant
amount of conformational entropy associated with both protein
folding and interactions. Despite many studies, the role that this
side-chain entropy (SCE) plays in the process of folding and
interactions has not been fully understood. Some basic questions
about SCE have not been systematically studied. In this study, Zhang
and Liu developed an efficient sequential Monte Carlo strategy to
accurately estimate the SCE of proteins of arbitrary lengths with a
given potential energy function. Using this novel tool, they studied
how the SCE scales with the length of the protein, and how the SCE
differs among a protein’s X-ray, NMR, and decoy structures. They
observed that X-ray structures pack more ‘‘smartly’’ than the
corresponding decoy and NMR structures: with the same compact-
ness, X-ray structures tend to have larger SCE. A combination of an
SCE term with a contact potential energy significantly improved the
discrimination between native and decoy structures. The implication
of this study is that the SCE contributes so significantly to protein
stability that it should be included explicitly in tasks such as
structure prediction, protein design, and NMR structure refinement.
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Discussion

In this study, we systematically investigated the SCE of a
large set of protein structures and its difference among X-ray,
NMR, and decoy structures. Our findings do not contradict
the traditional view that SCE is an opposing factor for protein
folding from extended states to compact native states, but our
findings on the systematic difference of the SCE among the
folded conformations with similar compactness suggest that
the SCE plays an important role in protein stability and
should be included in tasks such as protein structure
prediction, protein design, and NMR structure refinement.

The Nuts-and-Bolts model states that proteins pack quite
randomly, thus giving rise to many internal voids
[19,22,27,28]. In contrast, the Jigsaw-Puzzle model alleges that
proteins pack like a jigsaw puzzle with side-chains closely
interlocked [29–33]. It is conceivable that side-chain packing
in protein cores is not completely random, as some
regularities and specific residue interactions have been
observed [32,33]. However, such specific interactions are
sparse among all interacting residue pairs [34]. Our observa-
tion that buried residues of a protein contribute significantly
to its overall SCE suggests that the interior of a protein’s
native structure is unlikely to pack in a jigsaw-puzzle mode.
However, we also found that the SCE of individual buried
residues vary greatly, with some having comparable entropy
to exposed ones while others have almost zero entropy, which
is consistent with observed local packing in proteins [35]. This
indicates that the packing of the protein core is likely
heterogeneous, with parts forming a jigsaw puzzle to gain
specificity and other parts resembling nuts and bolts to
maintain entropy and gain robustness against mutations.

Structures solved by X-ray crystallography are generally
more reliable than the corresponding NMR structures, which
lack the quality measurement for solved structures. It has
been found that NMR structures tend to pack poorly [36].
Such poor packing is mainly due to the nature of exper-
imental data and computational methods employed instead
of a reflection of the difference between the solution and
crystal states. Indeed, experimental NMR observables agree
better with structures calculated from high-resolution crys-
tals than those from the corresponding NMR structures [37].
Our findings suggest that the SCE difference found between

X-ray and NMR structures may account for some of the poor
packing of NMR structures, and thus, incorporating SCE in
the energy functions used in computational methods of NMR
experiments, may improve the quality of NMR structures.
Both decoy and NMR structures were obtained by

structural optimization under some potential functions. The
backbone conformational entropy has been suggested as a
stabilizing factor for native proteins. [38] Observations made
in this study indicate that ignoring SCE by those optimization
techniques produces significant deviations from character-
istic packing and interaction of native proteins, which suggest
that atom-level modelling of protein structures and inter-
actions should take approaches with more emphasis on
ensemble sampling rather than on optimization. Our
preliminary study on the incorporation of SCE in an
empirical free energy function shows a significant improve-
ment in discrimination of native structure against decoys.
We used in SCE estimation a very simplified energy

function, which focuses only on the excluded volume effect.
It is somewhat surprising to us that, just with excluded
volume effect, the SCE can already differentiate well native
X-ray structures from NMR and decoy ones. We also
experimented with another energy function considering
rotamer probabilities, which reduces the SCE by 10% on
average, and observed that the results reported here hold
well. It remains to be seen how the reported results will be
affected when a more realistic potential energy function is

Figure 1. Side-Chain Entropy (SCE), Ssc, of 675 Nonhomologous Proteins

in the PDB

(A) Side-chain entropy versus chain length. Two results with a¼ 0.6 (red
crosses) and 0.8 (green circles) are shown.
(B) Percentage of SCE contributed by buried residues versus chain length.
doi:10.1371/journal.pcbi.0020168.g001

Figure 2. SCE of Native and Decoy Structures

(A) SCE (Ssc) versus the radius of gyration (Rg).
(B) SCE (Ssc) versus the number of residue contacts (Nc), for protein 1ctf
and its decoys from the 4state_reduced decoy set.
(C) SCE (Ssc) versus the number of interfacial contacts for protein–protein
complex 1spb and its decoys.
(D) SCE (Ssc) versus the number of interfacial contacts for protein–protein
complex 1brc and its decoys.
The black dot is the native structure, blue triangles (,2.0 Å RMSD to the
native structure) and green circles (.2.0 Å) are decoy structures. The SCE
of protein complexes are calculated using a¼ 0.7 (see Methods).
doi:10.1371/journal.pcbi.0020168.g002
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used. For example, if a Van der Waals interaction term is to
be added, the discrete rotamer formulation adopted in this
article’s research has to be adequately refined so as to
accommodate the continuous nature of the protein side-
chain positions. Otherwise, the SCE could be seriously
distorted when a few atoms are not placed very well due to
the discrete nature of side-chain rotamers.

Interfacial regions in protein–protein complexes have been
shown to be less flexible than other parts of the protein
surface [23]. It has also been suggested that conserved polar
residues at the binding interfaces have higher rigidity so that
the entropic cost is minimized on binding, whereas surround-
ing residues form a flexible cushion [39]. These studies
suggest that conformational entropy may play important
roles in protein interactions. A recent study has assessed
prediction difficulties of protein–protein complexes based on
CAPRI [40] results, which indicated that one type of difficult
complex has a small interface area and a weak binding energy
[41]. Existing computational docking algorithms typically
favor interaction conformations with large interface areas,
thus producing many false positives for this type of complex.
As shown in Figure 2, we believe that an energy function
incorporating an SCE term should improve the prediction
accuracy of this and any other type of protein complex in

which SCE contributes significantly in the binding free
energy.

Materials and Methods

Side-chain modelling. Each residue’s side-chain conformation is
modelled as a rotamer with a finite number of discrete states [42]. The
rotamer library used is developed by Lovell et al. [43], as recom-
mended by Dunbrack [42] for the study of entropy. The rotamer
library of Dunbrack and Cohen [44] was also applied to some of the
proteins studied here and similar results were observed. To account
for the excluded volume effect (or self-avoiding requirement), we took
the approach of Kussell et al. [6], in which a pair of atoms i and j is
considered to be a hard clash if rij , a 3 (r0(i)þ r0(j)), where rij is their
distance, a is a scaling coefficient to account for the discrete nature of
side-chain rotamers, and r0(i) and r0(j) are the van der Waals radii of
the two atoms.We tested three a values at 0.6, 0.7, and 0.8, respectively,
and found that they gave qualitatively similar results (Figure 2). Lower
a values give higher entropy and diminish the side-chain entropy
differences among different structures, whereas higher a values give
lower entropy and cause some structures to have no valid self-avoiding
side-chain conformations, which were discarded in the analysis. All
results on the comparison of X-ray, decoy, and NMR structures were
obtained with a equal to 0.8, unless otherwise stated.

The SCE is defined as: Ssc ¼ �kB;
P

i pilnðpiÞ, where kB is the
Boltzmann constant and pi ¼ e�Ei=kT=

P
i e
�Ei=kT is the probability of a

self-avoiding side-chain conformation. When the pi’s are all equal or
T is very high, we have S ¼ kBln(nsc), where nsc is the number of self-
avoiding side-chain conformations for the given backbone structure.
The compactness measurement Nc is defined as number of pairwise
Cb (or Ca of Glycine) atoms with their distance of less than 7.5 Å.

Sequential Monte Carlo method. The Sequential Monte Carlo
method (SMC) is a generalization of the Rosenbluths’ chain growth
method [45] and has been applied previously in studying problems
ranging from protein-packing behaviour, effect of amino acid
chirality, side-chain flexibility, protein folding, and near-native
structures of proteins [19,22,46–48]. In this work, we made two
design modifications to further improve the SMC’s efficiency: (a) we

Figure 4. SCE of NMR and X-Ray Structures versus Rg

Average SCE difference between X-ray and NMR structures (DSXN) versus
the average difference of radius of gyration between X-ray and NMR
backbones (DRg) for the 23 proteins.
3, proteins whose X-ray structures have much higher SCE than but
similar Rg to the corresponding NMR structures.
D, proteins whose X-ray structures gain considerable SCE by packing a
little looser.
*, proteins whose X-ray structures pack tighter than NMR structures but
with comparable SCE.
þ, small proteins of which both DRg and DSXN are small.
doi:10.1371/journal.pcbi.0020168.g004

Figure 3. SCE of NMR and X-Ray Structures

(A) Box plot for distributions of the absolute pairwise SCE difference
(jDSNj) of NMR structures of 23 proteins. Different coloured boxes
indicate different ranges of average RMSDs of the structure pairs.
(B) Box plot for distributions of the SCE difference between X-ray and
NMR structures (DSXN) for 23 proteins. Different colours indicate different
ranges of average RMSDs of the X-ray and NMR structure pairs. For
proteins 1btv, 1vre, and 1ah2, a¼ 0.7 was used for both X-ray and NMR
structures.
doi:10.1371/journal.pcbi.0020168.g003
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make use of a recently developed stratified resampling technique
[19,47], and (b) we take advantage of the fact that the sampling order
of each residue’s conformation can be arranged arbitrarily. A brief
description on the method is given below. More details about the
general method can be found in [19,22,46,48].

Given a fixed backbone structure with n residues, a realization of
side-chain placement can be represented as Sn¼ (r1,. . .rn), where n is
the length of the protein sequence, ri 2 1. . . Mi is the rotameric state
of residue i with Mi being the number of rotamers at residue i. Let Xn
be the space of all self-avoiding side-chain conformations with the
given backbone structure. We are interested in estimating:

X

Sn2Xn

hðSnÞ; ð1Þ

where h(Sn) is a given function. This can be achieved by the
importance sampling formula,

1
m

Xm

i¼1
wðiÞn hðSðiÞn Þ; ð2Þ

where each SðiÞn is sampled with probability pðSðiÞn Þ and wðiÞn ¼ 1=pðSðiÞn Þ
is its weight.

Conformation SðiÞn and its associated weight wðiÞn are con-
structed by stochastically placing the side-chain rotamer of
every residue sequentially. Once the side-chain of a residue is
sampled, it is regarded as fixed and thus reduces the degrees of
freedom for side-chain placements of future residues. Initially
(step 0), we set the weight wðiÞ0 to 1 and place no side-chains on the
backbone. At step t þ 1, we check the environment of every
residue of the chain whose side-chain has not been placed. Then,
we place the side-chain for the residue with the most restrictive
environment by sampling a rotamer valid for this residue from a
given distribution. The weight of the chain is updated to
wðiÞtþ1 ¼ wðiÞt =pk, where pk is the probability of sampling rotamer k
f o r th i s r e s i due . Th i s p robab i l i t y i s c a l cu l a t ed a s
e�Ek=T=

PN
j¼1 e

�Ej=T , where Ek is the energy of rotamer k (see below
for the details of the energy functions used) and N is the total
number of valid side-chain rotamers at the residue being
sampled. After the placement of this side-chain, environments
of all other unsettled side-chains are updated. If no valid self-
avoiding rotamer can be found for a residue, then the weight of
the chain is set to zero and a stratified resampling procedure is
performed to replace the dead chain by an existing chain with
large weights [19,22,47].

Using the weights computed recursively as above, we can
estimate the partition function Z ¼

P
S2Xn

e�EðSÞ=kTby Equation 2
with function h(S)¼ e�E(S)/kT. The SCE, SSC, can also be estimated
by Equation 2 using function h(S) ¼�p(S)ln(p(S)), where p(S) ¼

e�E(S)/kT / Z is the Boltzmann probability of conformation S.
Since we do not know the true partition function Z, we replace it
by its importance sampling estimate. The estimated partition
function can also be used to estimate free energy. In this study,
two potential functions were used: E ¼ E0, a constant, and
E ¼

PN
i¼1�lnðpðrotðiÞÞÞ, where N is number of residues and

p(rot(i)) is the database derived probability of the rotamer
sampled at residue i. All figures shown in this paper are the
results from using E¼E0. We also studied SCE using the second
potential function for some of the proteins and found that it
gave qualitatively similar results to those from using E ¼E0.

The SCE of an individual residue k is: Ssc;k ¼ �
PM

j¼1 pj lnðpjÞ,
where pj is the probability of rotamer j andM is the number of all
possible rotamers at residue k. We estimate pj at residue k as
p̂j ¼

Pm
i¼1 w

ði;jÞ
n =

Pm
i¼1 w

ðiÞ
n , where wn

(i,j) is the weight of sample i with
its residue k taking the rotamer state j.

Performance of SMC in estimation of side-chain entropy. We
selected two proteins, 2ovo and 3ebx, and enumerated all the self-
avoiding side-chain conformations, which give rise to exact SCEs for
their backbone fragments of various lengths from residue 1 to 19. We
then used SMC to estimate SCEs for these fragments and compared

Table 1. Discrimination of Native Structures Using a Free Energy Function

Protein ID Rank by Hbb Rank by Gbb Protein ID Rank by Hbb Rank by Gbb

1ctf (Aa) 6 1 1beo (D) 67 2

1r69 (A) 24 5 1ctf (D) 10 1

1sn3 (A) 86 10 1dkt-A (D) 588 5

2cro (A) 63 5 1fca (D) 136 10

3icb (A) 19 25 1nkl (D) 217 3

4pti (A) 143 83 1pgb (D) 12 1

4rxn (A) 14 7 1b0n-B (Eb) 114 104

1fc2 (B) 7 5 1ctf (E) 13 4

1hdd-C (B) 10 5 1dtk (E) 1 1

2cro (B) 47 17 1fc2 (E) 32 3

4icb (B) 1 1 1igd (E) 159 6

1bl0 (C) 851 4 1shf-A (E) 2 2

1eh2 (C) 995 3 2cro (E) 1 1

1jwe (C) 288 1 2ovo (E) 19 2

smd3 (C) 266 1 4pti (E) 1 1

Ranks are produced according to the energy value of the native structure relative to those of its decoys (the smaller the better). For most of the proteins, the scaling factor a¼ 0.7 was
used for both native and their decoy structures. In the case that more than half of the structures in a decoy set do not have a self-avoiding side-chain conformation, a¼ 0.6 was used for
both the native structure and its decoys.
aLetters in parentheses represent the particular decoy set in the database, where A stands for 4state_reduced, B for fisa, C for fisa_casp3, D for lattice_ssfit, and E for lmds.
bProtein 1bba in this decoy set is an NMR structure and thus excluded from this study.
doi:10.1371/journal.pcbi.0020168.t001

Figure 5. Performance of the Sequential Monte Carlo Method

(A) Comparison of the SMC estimation with exhaustive enumeration for
fragments of proteins 2ovo and 3ebx.
(B) Standard deviation of the SMC estimation for four different sample
sizes, 100, 500, 1,000, and 2,000, respectively, calculated from 20
independent SMC runs. The first number in each parentheses pair is the
number of residues of the protein, and the second number the average
SCE of 20 runs with 1,000 samples in each run.
doi:10.1371/journal.pcbi.0020168.g005
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with the exact answers. As seen from Figure 5A, the estimates using
SMC are indistinguishable from those obtained by exhaustive
enumeration. For example, the total number of self-avoiding side-
chain conformations for the fragment of 3ebx, residue 1–17, is
396,325,923,840, and our SMC estimate is 4.013 1011 with the Monte
Carlo sample size M¼ 1,000. Figure 5B shows the standard deviations
of these estimates against the sample size M used by SMC. We found
that a single run of SMC with M ¼ 1,000 is enough to give accurate
estimates of the SCE for all the proteins we studied.

The running time of SMC with M¼ 1,000 samples and a¼ 0.6, on a
Linux machine with a CPU of 1.4 GHz, was 3.1 s for protein 4rnt (104
residues); 6.4 s for protein 1svn (269 residues); and 81 seconds for
protein 1epw (1,287 residues), the longest protein we have tried.

Supporting Information

Protocol S1. Side-Chain Entropy and Packing of Native and Decoy
Structures

Found at doi:10.1371/journal.pcbi.0020168.sd001 (3.3 MB PDF).

Accession Numbers

PDB names of NMR structures of the 23 proteins in Figure 3A are
(with PDB names of X-ray structures and protein lengths in
parentheses): 1erc (2erl, 40), 1tur (2ovo, 56), 1f2g (1fxd, 58), 1fra
(3ebx, 62), 1r63 (1r69, 63), 3mef (1mjc, 69), 2ait (1hoe, 74), 1cdn (3icb,
75), 2pac (451c, 82), 1hdn (1cm2, 85), 2abd (1hb6, 86), 1afh (1mzl, 93),
1bmw (1who, 94), 1ygw (4rnt, 104), 1it1 (2cdv, 107), 1xoa (2tir, 108),
2aas (1kf5, 124), 1pfl (1fil, 139), 1vre (1jf4, 147), 1rch (1rbv, 155), 1eq0
(1hka, 158), 1btv (1bv1, 159), 1ah2 (1svn, 269).
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